
Analisi dei Sistemi — Esercitazione 4

7 Novembre 2002

Esercizio 1. Calcolare la trasformata di Laplace delle seguenti funzioni del tempo:

- 1. $7e^{-2t} \delta_{-1}(t)$
- 2. $(1+4t) \delta_{-1}(t)$
- 3. $\sin(t + \frac{\pi}{4}) \delta_{-1}(t)$
- 4. $(t-3)^2 \delta_{-1}(t)$

Esercizio 2. Trasformare secondo Laplace la seguente funzione assegnata graficamente:

Esercizio 3. Verificare il teorema del valore finale per la funzione $f(t) = 7e^{-2t} \delta_{-1}(t)$.

Esercizio 4. Verificare il teorema del valore iniziale per la funzione $f(t)=(t-3)^2$ $\delta_{-1}(t)$.

Esercizio 5. Antitrasformare le seguenti funzioni di s:

a)
$$F(s) = \frac{40s + 120}{s^3 - 4s^2 + 8s}$$

b)
$$F(s) = \frac{5s+10}{s^3+7s^2+8s-16}$$
 $(p_1=1)$

c)
$$F(s) = \frac{5s^3 - 30s^2 + 55s - 30}{2s^3 + 12s^2 + 22s + 12}$$
 $(p_1 = -1)$

Funzione del tempo		Trasformata di Laplace
Impulso unitario	$\delta(t)$	1
Gradino unitario	$\delta_{-1}(t)$	$\frac{1}{s}$
Rampa lineare	$t \delta_{-1}(t)$	$\frac{1}{s^2}$
Polinomiale	$t^k \delta_{-1}(t)$	$\frac{k!}{s^{k+1}}$
Esponenziale	$e^{at} \delta_{-1}(t)$	$\frac{1}{s-a}$
Seno	$\sin(\omega t) \delta_{-1}(t)$	$\frac{\omega}{s^2 + \omega^2}$
Coseno	$\cos(\omega t) \delta_{-1}(t)$	$\frac{s}{s^2 + \omega^2}$
Sinusoide smorzata	$e^{at}\sin(\omega t) \ \delta_{-1}(t)$	$\frac{\omega}{(s-a)^2 + \omega^2}$
Cosinusoide smorzata	$e^{at}\cos(\omega t) \ \delta_{-1}(t)$	$\frac{s-a}{(s-a)^2 + \omega^2}$
Rampa esponenziale (o cisoide)	$t^k e^{at} \delta_{-1}(t)$	$\frac{k!}{(s-a)^{k+1}}$