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1. INTRODUCTION

Discrete-event systems (DES) are event-driven dy-
namical systems (i.e. the state transitions are initi-
ated by events, rather than a clock). In the last cou-
ple of decades there has been an increase in the re-
search on DES that can be modeled as max-plus-linear
(MPL) systems (Baccelli et al., 1992; Heidergott et
al., 2005). There are two main directions in MPL DES
control: one direction uses optimal control based on
residuation theory (Cottenceau et al., 2001; Maia et
al., 2003; Menguy et al., 1998; Menguy et al., 2000),
and the other a receding horizon control (RHC) based
approach (De Schutter and van den Boom, 2001). Al-
though there are several papers on optimal and RHC
control for MPL DES, the literature on the stabiliz-
ing controller for this class of systems is relatively
sparse. In fact, to the authors’ best knowledge, the
only papers explicitly dealing with stabilizing control
of MPL DES are (Maia et al., 2003; van den Boom et
al., 2005).

Receding horizon control (RHC), also known as
model predictive control, is an attractive feedback
strategy for linear or nonlinear processes subject to

input and state constraints (Mayne et al., 2000). The
essence of RHC is to determine a control profile that
optimizes a cost criterion over a prediction window
and then to apply this control profile until new process
measurements become available. Feedback is incor-
porated by using these measurements to update the
optimization problem for the next step.

This paper considers the problem of designing a stabi-
lizing receding horizon controller for the class of MPL
DES. We consider a trade-off between tracking a ref-
erence state trajectory and just-in-time production for
the so-called “unconstrained” case, in which only the
constraint that the input (i.e., the sequence of feeding
times) should be nondecreasing is taken into account.
In this particular case we derive a stable RHC scheme
for which the analytic solution exists. The main ad-
vantage of this paper compared to most of the results
on RHC of MPL DES is the fact that we guarantee a
priori stability of the closed-loop system. Moreover,
the conditions that we will derive in this paper are less
strict than those of (van den Boom et al., 2005) (where
output tracking is considered). We also prove several
properties of the RHC controllers, and we characterize
a whole class of stabilizing controllers for MPL DES.
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2. MAX-PLUS ALGEBRA AND MPL DES

2.1 Max-plus algebra

Define ε := −∞ and Rε := R ∪ {ε}. The max-
plus-algebraic (MPA) addition (⊕) and multiplication
(⊗) are defined as (Baccelli et al., 1992): x ⊕ y :=
max{x, y}, x ⊗ y := x + y, for x, y ∈ Rε. For
matrices A,B ∈ R

m×n
ε and C ∈ R

n×p
ε we have

(A ⊕ B)ij := Aij ⊕ Bij , (A ⊗ C)ij :=

n
⊕

k=1

Aik ⊗

Ckj , for all i, j. Define εm×n as the m × n MPA
zero matrix: (εm×n)ij := ε, for all i, j; En is the
n × n MPA identity matrix: (En)ii := 0, for all i and
(En)ij := ε, for all i, j with i 6= j. For A ∈ R

n×n
ε we

define A∗ := En⊕A⊕· · ·⊕A⊗
n
⊕A⊗

n+1
⊕· · · For

a positive integer n, we denote n := {1, 2, · · · , n}.
Given x ∈ R

n
ε we define ‖x‖⊕ := maxi∈n xi and

‖x‖∞ := maxi∈n |xi|. A matrix Γ ∈ R
n×m
ε is row-

finite if for any row i ∈ n, maxj∈m Γij 6= ε.

We denote with x⊕′y := min{x, y} and x⊗′y := x+
y (the operations ⊗ and ⊗′ differ only in that (−∞)⊗
(+∞) := −∞, while (−∞) ⊗′ (+∞) := +∞).
The matrix multiplication and addition for (⊕′,⊗′)
are defined similarly as for (⊕,⊗). It can be shown
that the following relations hold for any matrices A,B
and vectors x, y of appropriate dimensions over Rε:

A⊗′(B⊗x)≥(A⊗′B)⊗x, (1a)
((−AT )⊗′A)⊗x≥x (1b)
x ≤ y ⇒ A⊗x≤A⊗y and A⊗′x≤A⊗′y. (1c)

Lemma 2.1. (Baccelli et al., 1992) (i) The inequality
A ⊗ x ≤ b has a unique largest solution given by
xopt = (−AT ) ⊗′ b = −(AT ⊗ (−b)) (by the largest
solution we mean that ∀x : A ⊗ x ≤ b ⇒ x ≤ xopt).

(ii) x = A ⊗ x ⊕ b has a solution x = A∗ ⊗ b. If
Aij < 0 for all i, j, then the solution is unique.

2.2 MPL systems

DES with only synchronization and no concurrency
can be modeled by an MPA model of the form
(Baccelli et al., 1992) 1

xsys(k)=Asys⊗xsys(k − 1)⊕Bsys⊗usys(k), (2)
where xsys(k) ∈ R

n
ε represents the state, usys(k) ∈

R
m
ε is the input and where Asys ∈ R

n×n
ε , Bsys ∈

R
n×m
ε are the system matrices. In the context of

DES k is an event counter while usys, xsys are dates
(feeding times and processing times, respectively). A
typical constraint that appears in the context of DES
where the input represents times, is that the signal usys

should be increasing: usys(k + 1) − usys(k) ≥ 0.

1 In general there is also an output equation of the form y(k) =
C ⊗ x(k), but in this paper we assume that all the states can be
measured (i.e. C = En). Note however that the results of this paper
can also be extended to take the output into account.

Let λ∗ be the largest MPA eigenvalue of Asys (λ ∈ Rε

is an MPA eigenvalue of Asys if there exists an MPA
eigenvector v ∈ R

n
ε , v 6= εn×1 such that Asys ⊗

v = λ ⊗ v). In the next section we will consider a
reference signal that the state should track of the form

rsys(k) = xsys,t + kρ. (3)

Since through the term Bsys ⊗ usys it is only possible
to create delays in the starting times of activities,
we should choose ρ ≥ λ∗. If λ∗ > ε (in practical
applications we even have λ∗ ≥ 0), then there exists
an MPA invertible matrix P ∈ R

n×n
ε such that 2 the

matrix Ā = P⊗
−1

⊗Asys⊗P satisfies Āij ≤ λ∗ for all
i, j ∈ n (De Schutter, 1996). We make the following
change of coordinates x̄(k) = P ⊗

−1
⊗ xsys(k). We

denote with B̄ = P⊗
−1

⊗ Bsys and ū(k) = usys(k).
In the new coordinates the system (2) becomes:

x̄(k) = Ā ⊗ x̄(k − 1) ⊕ B̄ ⊗ ū(k).

We now consider the normalized system with x(k) =
x̄(k) − ρk, u(k) = ū(k) − ρk, A = Ā − ρ (i.e. by
subtracting in the conventional algebra all entries of
x̄, ū and of Ā by ρk and ρ, respectively) and B = B̄.
The normalized system can be written as:

x(k) = A ⊗ x(k − 1) ⊕ B ⊗ u(k). (4)

The MPL system (4) is controllable if and only
if (iff) each component of the state can be made
arbitrarily large by applying an appropriate con-
troller to the system initially at rest. It can be
checked that the system is controllable iff the matrix
Γn :=[B A⊗B · · ·A⊗

n−1
⊗B] is row-finite 3 .

The following key assumption will be used throughout
the paper:
Assumption A: We assume that ρ > λ∗ ≥ 0 and that
the system is controllable.
The conditions of this assumption are quite weak
and are usually met in applications. Note that from
Assumption A it follows that Aij < 0, for all i, j ∈ n.
In the new coordinates the state should be regulated to
the desired target xt := P⊗

−1
⊗ xsys,t.

Since Aij < 0 for all i, j, we have A∗ = En ⊕

A⊕ · · · ⊕A⊗
n−1 (see (Baccelli et al., 1992, Theorem

3.20)). Note that for any finite, constant input u there
exists a state equilibrium x (i.e. x = A⊗ x⊕B ⊗ u),
viz. x = A∗ ⊗ B ⊗ u. Note that x is unique (see
Lemma 2.1 (ii)) and finite (since Γn is row-finite). We
associate to xt the largest equilibrium pair (xel, uel)
satisfying xel ≤ xt. From the previous discussion it
follows that (xel, uel) is unique, finite and given by:

uel =(−(A∗ ⊗ B))T ⊗′xt, xel =A∗ ⊗ B ⊗ uel. (5)

2
P

⊗
−1 denotes the MPA inverse of P : P ⊗ P

⊗
−1

= En.
3 This definition is equivalent to the one used in (Baccelli et
al., 1992), where the system is called controllable if all states are
connected to some input.
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3. STABILIZING MPL DES CONTROLLERS FOR
THE UNCONSTRAINED CASE

3.1 Stabilizing control for MPL DES

In this section we consider the normalized system (4),
where A satisfies Aij < 0 for all i, j (according
to Assumption A) and with the constraint that the
original input signal (usys) should be nondecreasing:

u(k + 1) − u(k) ≥ −ρ, ∀k ≥ 0. (6)
Given a desired target xt ∈ R

n, let (xel, uel) be the
largest equilibrium pair satisfying xel ≤ xt (cf. (5)).
We define also an upper bound on xt: xub = A∗ ⊗
xt ≥ xt, uub = (−B)T ⊗′ (A∗⊗xt). These pairs are
uniquely determined and finite. Note that uel ≤ uub

and whenever xt is an equilibrium state (i.e. there
exists a finite ut such that xt = A⊗xt⊕B⊗ut) then
xel = xub = xt and consequently uel = uub = ut.

Definition 3.1. Given a state feedback controller µ :
R

n
ε → R

m
ε , then the closed-loop system x(k) = A ⊗

x(k−1)⊕B⊗µ(x(k−1)) is stable iff the state remains
bounded, i.e. for every δ > 0 there exists a real-valued
function θ(δ) > 0 such that ‖x(0) − xel‖∞ ≤ δ
implies ‖x(k) − xel‖∞ ≤ θ(δ) for all k ≥ 0.

Now we formulate the control problem that we will
solve in the sequel:
Problem 1: Design a state feedback controller µ :
R

n
ε → R

m
ε for the MPL system (4) such that the

closed-loop system is stable.

3.2 Stabilizing state feedback controller

Assume we are at event step k. Given the previous 4

state x(k − 1) and input u(k − 1), we define two
controllers: a feedback controller

uf(k) := (−BT )⊗′(A ⊗ x(k − 1)⊕

B ⊗ (u(k−1)− ρ) ⊕ xt) (7)
and a “constant” controller:

uc(k) := uel ⊕ (u(k − 1) − ρ). (8)
Later on, we will show that under some conditions the
RHC controller lies between these two controllers. Let
us now study the (stabilizing) properties of these two
controllers. Note that uf(k) satisfies the constraint (6).
Indeed, from (1c) it follows that uf(k) ≥ (−BT ) ⊗′

(B ⊗ (u(k − 1) − ρ)) and from (1a) and (1b) we
conclude that uf(k) ≥ u(k − 1) − ρ. Using similar
arguments we can prove that uf(k) ≥ uel, for all
k ≥ 1. Similarly, uc(k) satisfies the constraint (6) and
uc(k) ≥ uel, for all k ≥ 1.

With the controller (7), the closed-loop normalized
system (4) becomes

xf(k) = A ⊗ xf(k − 1) ⊕ B ⊗ uf(k), (9)

4 Timing aspects and the interplay between event steps and time
steps are discussed in (van den Boom and De Schutter, 2002).

where the initial conditions xf(0) = x(0) and uf(0) =
u(0) are given. Note that uc(k) = uel ⊕ (u(0) −
ρk) and the corresponding closed-loop system, for
xc(0) = x(0) and uc(0) = u(0) is given by:

xc(k) = A ⊗ xc(k − 1) ⊕ B ⊗ uc(k). (10)

First let us note that:
{

xf(k)≤A⊗xf(k−1)⊕B ⊗(uf(k−1)−ρ)⊕xt

xf(k)≥A⊗xf(k−1)⊕B⊗(uf(k−1)−ρ)⊕B⊗uel

(11)
Indeed, from Lemma 2.1 we have B ⊗ uf(k) ≤ A ⊗
xf(k − 1) ⊕ B ⊗ (uf(k − 1) − ρ) ⊕ xt and thus
xf(k) ≤ A ⊗ xf(k − 1) ⊕ B ⊗ (uf(k − 1) − ρ) ⊕
xt. The second inequality is straightforward (recall
that uf(k) ≥ uf(k − 1) − ρ and uf(k) ≥ uel and
using the monotonicity property (1c) it follows that
xf(k) ≥ A ⊗ xf(k − 1) ⊕ B ⊗ (uf(k − 1) − ρ) ⊕
B ⊗ uel. The following inequality is also useful: since
xf(k − 1) ≥ B ⊗ uf(k − 1) it follows that

B⊗(uf(k−1)−ρ)=(B⊗uf(k−1))−ρ≤xf(k−1)−ρ (12)

We have (see (Necoara et al., 2006; Necoara, 2006)
for the proof):

Lemma 3.2. uf(k) ≥ uc(k), xf(k) ≥ xc(k), ∀k ≥ 0.

The stabilizing properties of the two state feedback
controllers are summarized in the next theorem:

Theorem 3.3. The following statements hold:
(i) For any initial condition xf(0) = x(0) and uf(0) =
u(0) there exists a finite K f such that xf(k) ≤ xub

and uel ≤ uf(k + 1) ≤ uub, for all k ≥ K f .
(ii) For any initial condition xc(0) = x(0) and
uc(0) = u(0) there exists a finite Kc such that
xc(k) = xel and uc(k) = uel, for all k ≥ Kc.
(iii) The closed-loop systems (9) and (10) are stable.

PROOF. (i) From (11) and (12) it follows that:
xf(k) ≤ A ⊗ xf(k − 1) ⊕ B ⊗ (uf(k − 1) − ρ) ⊕
xt ≤ A ⊗ xf(k − 1) ⊕ (xf(k − 1) − ρ) ⊕ xub. By
induction it is straightforward to prove that:

xf(k) ≤
k

⊕

t=0

(A⊗
k−t

⊗ (xf(0) − tρ)) ⊕ xub. (13)

Recall that Aij < 0 for all i, j ∈ n. Then, it is well-
known that (Baccelli et al., 1992):

A⊗
k
⊗ xf(0) → εn×1 as k → ∞. (14)

We denote with z0 = xf(0) and iteratively zk =
⊕k

t=0(A
⊗

k−t
⊗xf(0)−tρ) = max{A⊗

k
⊗xf(0), zk−1

−ρ}. From (14) and ρ > 0 it follows that

zk → εn×1 as k → ∞. (15)

Therefore, there exists a finite integer K f such that
⊕k

t=0(A
⊗

k−t
⊗ (xf(0)− tρ)) ≤ xub for any k ≥ K f .

In conclusion, xf(k) ≤ xub for any k ≥ K f .

150



Now consider k satisfying k ≥ K f . Therefore,
xf(k) ≤ xub. We obtain A⊗xf(k) ≤ A⊗xub ≤ xub.
Similarly, from (12) we have B ⊗ (uf(k) − ρ) ≤
xf(k) − ρ ≤ xub. Using now (1c) we obtain:

uf(k + 1) ≤ (−BT ) ⊗′ xub = uub.

By induction, using the same procedure it follows that
uf(Kf + l) ≤ uub, for all l ≥ 1. On the other
hand uf(k) ≥ uel for all k ≥ 1. We conclude that
uel ≤ uf(Kf + l) ≤ uub, for all l ≥ 1.

(ii) Since ρ>0, uc(k)=uel for k large enough. Also,

xc(k)=A⊗
k
⊗xc(0)⊕(

k
⊕

t=1

A⊗
k−t

⊗B⊗(uc(0)−tρ))

⊕ (

k
⊕

t=1

A⊗
k−t

⊗ B ⊗ uel).

From (14) we have A⊗
k
⊗xc(0) → εn×1 as k → ∞.

So,
⊕k

t=1 A⊗
k−t

⊗ B ⊗ (uc(0) − tρ) → εn×1 as
k → ∞ (this can be proved in a similar way as (15)).
Since xel =

⊕n

t=1 A⊗
n−t

⊗ B ⊗ uel, it follows that
there exists a Kc ≥ n such that xc(k) = xel and
uc(k) = uel, for all k ≥ Kc.

(iii) Let us now prove stability of the closed-loop
systems (9) and (10). Let δ > 0 and consider ‖x(0) −
xel‖∞ ≤ δ. From uc(k) ≥ uel it follows that xc(k) ≥
xel for all k ≥ n. Since the system is controllable (by
Assumption A), for any 1 ≤ k ≤ n− 1 and any i ∈ n,
one of the two following conditions are satisfied:

xc
i (k) ≥ Bij + (uel)j , with Bij 6= ε (16)

∃ p ∈ n s. t. xc
i (k) ≥ (A⊗

p
)lj + xc

j(k − p),

with(A⊗
p
)lj 6= ε. (17)

Note that xc
j(k−p) is either equal to xc

j(0) or satisfies
(16).
Hence, for any k ≥ 0 and for any index i ∈ n we have
(xel − xc(k))i ≤ θ1(δ) := max

{

0, (xel)i1 − Bi1j−

(uel)j , (xel)i2−(A⊗
p
)li1−xi1(0), (xel)i3−(A⊗

p
)li1−

Bi1j−(uel)j} for some indices i1, i2, i3, j.
So from xc(k) ≤ xf(k) ≤ zk ⊕ xub it follows that:

‖xf(k)−xel‖∞=max
i∈n

{(xf(k)−xel)i, (xel−xf(k))i}

≤ max
i∈n

{((zk ⊕ xub) − xel)i, (xel − xc(k))i}

≤ max
i∈n

{(zk − xel)i, (xub − xel)i, θ1(δ)}

≤ max
i∈n

{(zk − xel)i, θ2(δ)}

≤ max
i,j

{(A⊗
j
⊗x(0)−(k−j)ρ−xel)i, θ2(δ)}

≤ max
i,j

{(A⊗
j
⊗x(0)−(k−j)ρ− A⊗

j
⊗xel)i, θ2(δ)}

≤ max
i,j

{(A⊗
j
⊗x(0)− A⊗

j
⊗xel)i, θ2(δ)}

≤ max
i

{(x(0) − xel)i, θ2(δ)} ≤ θ(δ)

with θ2(δ) = max{maxi∈n(xub − xel)i, θ2(δ)} and
θ(δ) = max{δ, θ1(δ)}, and where for the last transi-

tion we have used that fact that from standard prop-
erties of the max operator (recall that by definition
ε−ε = ε) it follows that: aT ⊗x−aT ⊗y ≤ ‖x−y‖⊕,
for any a ∈ R

n
ε and x, y ∈ R

n.

An immediate consequence of Theorem 3.3 is:

Proposition 3.4. For any input signal u(·) fulfilling
the constraint (6) and uc(k) ≤ u(k) ≤ uf(k), the
corresponding trajectory satisfies xc(k) ≤ x(k) ≤
xf(k), for all k and consequently u(·) is stabilizing.
Moreover, there exists a finite K such that xel ≤
x(k) ≤ xub, for all k ≥ K.

3.3 Stabilizing receding horizon controller

Given the state and the input at event step k − 1, the
following cost function is introduced:

J(x(k−1), ũ(k))=
N−1
∑

j=0

n
∑

i=1

max{xi(k+j|k−1)−(xt)i, 0}

− β

N−1
∑

j=0

m
∑

i=1

ui(k + j|k−1).

where N is the prediction horizon, x(k+j|k−1) is the
system state at event step k + j as predicted at event
step k − 1, based on the MPL difference equation (4),
the state x(k − 1) and the future input sequence

ũ(k) = [uT (k|k − 1) · · ·uT (k + N − 1|k − 1)]T .

In the context of DES the first term of J expresses
the tardiness (i.e. the delay with respect to the desired
due date target xt), while the second term maximizes
the feeding times. We define the following receding
horizon control (RHC) based optimization problem:

J∗(x(k − 1)) = min
ũ(k)

J(x(k − 1), ũ(k)) (18)

s.t.



















x(k+j|k−1)=A⊗x(k+j−1|k−1)⊕

B ⊗ u(k+j|k − 1)

u(k+j|k−1)−u(k+j−1|k−1)≥−ρ

∀j ∈ {0, · · · , N−1}.

(19)

where x(k − 1|k − 1) = x(k − 1), u(k − 1|k −
1) = u(k−1). Let ũ\(k) be the optimal solution of the
optimization problem (18)–(19). Using the receding
horizon principle at event counter k we apply the
input uRHC,N(k) = u\(k|k − 1). The evolution of
the closed-loop system obtained from applying the
receding horizon controller is denoted with

xRHC,N(k) = A⊗xRHC,N(k−1)⊕B⊗uRHC,N(k),

with given initial conditions xRHC,N(0) = x(0),
uRHC,N(k) = u(0).
Let us define the matrices
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D̃=









B ε · · · ε
A ⊗ B B · · · ε

...
...

. . .
...

A
⊗

N−1

⊗ B A
⊗

N−2

⊗ B · · · B









, C̃ =











A

A
⊗

2

...
A

⊗
N











and the vectors ū(k) = [uT (k−1)−ρ · · · uT (k−1)−
Nρ]T , ūel = [uT

el · · ·u
T
el]

T , x̄t = [xT
t · · ·xT

t ]T and
x̄(k) = [x̄T (k|k−1) · · · x̄T (k+N−1|k−1)]T = C̃⊗
x(k − 1) ⊕ D̃ ⊗ ū(k) ⊕ x̄t.

Now we give some properties of the receding horizon
controller (see (Necoara et al., 2006; Necoara, 2006)
for the proofs):

Lemma 3.5. uc(k)≤uRHC,N(k), xc(k)≤xRHC,N(k),
∀k ≥ 0.

Proposition 3.6. Assume β < 1
mN

and consider the
maximization problem

ũ](k) = arg max
ũ(k)

N−1
∑

j=0

m
∑

i=1

ui(k + j|k − 1) (20)

s.t.











D̃ ⊗ ũ(k) ≤ x̄(k)

u(k+j|k−1)−u(k+j−1|k−1)≥−ρ,

∀j ∈ {1, · · · , N−1}.

(21)

Then ũ](k) is also the optimal solution of the opti-
mization problem (18)–(19).

Define ũ∗N (k) := (−D̃T ) ⊗′ x̄(k). The following
proposition provides an analytic solution to the opti-
mization problem (20)–(21).

Proposition 3.7. The optimization problem (20)–(21)
has an unique solution given by:










u](k+N−1|k−1)=u∗N (k+N−1|k−1)

u](k + j|k − 1) = min{u∗N (k+j|k−1),

u](k + j + 1|k − 1) + ρ},

(22)

for j = N − 2, · · · , 0.

Lemma 3.8. Any feasible solution ũfeas(k) of (20)–
(21) satisfies ũfeas(k) ≤ ũ](k).

The next theorem characterizes the stabilizing proper-
ties of the receding horizon controller:

Theorem 3.9. Given a prediction horizon N such that
β < 1

mN
, the following inequalities hold
{

uc(k) ≤ uRHC,N(k) ≤ uf(k)

xc(k) ≤ xRHC,N(k) ≤ xf(k)
(23)

and thus the receding horizon controller stabilizes the
system (4).

PROOF. The left-hand side of inequalities (23) fol-
lows from Lemma 3.5.

The right-hand side of inequalities (23) is proved
using induction. For k = 0 we have uRHC,N(0) =

uf(0) = u(0) and xRHC,N(0) = xf(0) = x(0). Let
us assume that uRHC,N(k − 1) ≤ uf(k − 1) and
xRHC,N(k − 1) ≤ xf(k − 1) are valid and we prove
that they also hold for k. Since x(k|k − 1) = A ⊗
x(k−1)⊕B⊗ (u(k−1)−ρ)⊕xt and B⊗u](k|k−
1) ≤ x̄(k|k − 1), we have

uRHC,N(k) ≤ (24)
(−BT )⊗′(A⊗x(k−1)⊕B⊗(u(k−1)−ρ)⊕xt)

From (24) and our induction hypothesis we have:
B ⊗ uRHC,N(k) ≤

A⊗xRHC,N(k−1)⊕B⊗(uRHC,N(k−1)−ρ)⊕xt≤

A ⊗ xf(k − 1) ⊕ B ⊗ (uf(k − 1) − ρ) ⊕ xt

On the other hand, uf(k) is the largest solution of
B⊗uf(k)≤A⊗ xf(k−1)⊕B⊗(uf(k−1)−ρ)⊕xt

From Lemma 2.1 it follows that uRHC,N(k) ≤ uf(k).
Then, xRHC,N(k) = A ⊗ xRHC,N(k − 1) ⊕ B ⊗
uRHC,N(k) ≤ A⊗xf(k−1)⊕B⊗uf(k) = xf(k+1).

The stabilizing property of the receding horizon con-
troller follows from Proposition 3.4.

4. EXAMPLE

We consider the following system:

xsys(k) =









ε 1 ε ε
ε ε 2 ε
ε ε ε 3
4 ε ε ε









⊗xsys(k−1)⊕









2
ε
ε
ε









⊗usys(k)

For this example we have a (unique) MPA eigenvalue
λ∗ = 2.5, and a corresponding MPA eigenvector
v∗ = [0 1.5 2 1.5]T . We consider the due date signal
rsys(k) = [17 15 1 10]T + 4.5k (so ρ = 4.5), and
the initial condition xsys(0) = [20 31.5 42 51.5]T

and usys(0) = 20. The system and reference signal
defined above satisfy Assumption A.

Now we design stabilizing state feedback and receding
horizon controllers for this system. For the RHC con-
trollers we consider the prediction horizons N = 2
and N = 5, and a weight β = 0.1 that satisfies the
conditions of Proposition 3.6 and Theorem 3.9. In Fig-
ures 1 and 2 we have plotted respectively the control
signals and the state trajectories for the closed-loop
controlled normalized system. Clearly, all controllers
are stabilizing. Moreover, the “constant” controller
and the RHC controller with N = 5 also make all
states less than the target states. This is not always
the case for the state feedback controller and for the
RHC controller with N = 2 (so in the latter case the
prediction horizon is clearly selected too small). Also
note that uc(k) ≤ uRHC,N(k) ≤ uf(k) for all k and
for N = 2, 5. Furthermore, uRHC,5(k) ≤ uRHC,2(k)
and xRHC,5(k) ≤ xRHC,2(k) for all k. In fact, these
two inequalities hold in general as it can be shown that
if β < 1

mN
then for two prediction horizons N1 < N2

we have uRHC,N2(k) ≤ uRHC,N1(k), xRHC,N2(k) ≤
xRHC,N1(k) for all k (see (Necoara et al., 2006)).
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Fig. 1. The state feedback, “constant” and RHC con-
trol signals for the normalized system.
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Fig. 2. The evolution of the states for the state feed-
back, “constant” and RHC controllers for the nor-
malized system. The dotted lines correspond to
the target state xt.

5. CONCLUSIONS AND FUTURE RESEARCH

We have discussed the problem of stabilization of
max-plus-linear (MPL) discrete-event systems. We
have defined a stabilizing “constant” controller and a
stabilizing state feedback controller that could be con-
sidered as a lower and upper bound respectively for
the receding horizon control (RHC) controllers. For
the RHC controllers we have considered a trade-off
between minimizing the tardiness and maximizing the
input times. Using only the constraint that expresses
that the input signal should be nondecreasing and pro-
vided the trade-off weight is small enough, we have
derived an analytic expression for the RHC controller
and proved that stability can be achieved in finite time.

We have also discussed also the main properties of the
state feedback, “constant”, and RHC controllers.
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