
THE ELEVATOR DISPATCHING PROBLEM:

HYBRID SYSTEM MODELING AND

RECEDING HORIZON CONTROL

K. S. Wesselowski, C. G. Cassandras
1

Center for Information and Systems Engineering

Boston University

Abstract: Elevator dispatching is a combinatorially hard problem with many
control constraints, time-varying traffic patterns, partial state information, and
random effects. We develop a hybrid system model of a building with multiple
elevator cars and apply a receding horizon control approach, bypassing some of
the problem’s complexities. Thus, we obtain a “universal” dispatcher which is
robust with respect to changing traffic patterns and avoids the problem of having
to switch among different controllers when these patterns change over the course of
a day (as currently done). Moreover, simulation results show that the performance
of this approach improves upon that of state-of-the-art dispatchers.

Keywords: Hybrid Systems, Receding Horizon Control, Elevator Dispatching

1. INTRODUCTION

In an elevator system, the “dispatcher” is a cen-
tralized, upper-level controller which determines
where each car is to stop, either to load passengers
(in response to “hall calls”at various floors) or to
unload them (in response to “car calls”). Effective
elevator dispatching must meet certain quality-of-
service criteria and gives rise to a problem of great
practical importance which remains open because
of several difficulties.

A multi-car elevator system is a hybrid system
that combines the time-driven motion dynamics of
the cars with the event-driven dynamics imposed
by the dispatching controller. The state space
of such a system is enormous; as an example, a
building with 18 floors and 6 cars has a state
space size of the order of 1044, which is approxi-
mately the same size as that of the game of chess.
The dispatching problem is further complicated

1 The authors’ work is supported in part by NSF under
grant DGE-0221680 and by AFOSR under grant FA9550-
04-1-0208.

by numerous elevator operating constraints and
by partial state information, e.g., the controller
knows about the existence of a hall call at some
floor, but not the number of passengers there.

Because of these difficulties, the problem is often
decomposed into a set of archetypal passenger ar-
rival patterns, with control algorithms customized
for a specific pattern. For example, the uppeak

traffic pattern occurs during the morning rush
hour at a typical office building, when hall calls
occur at the lobby only and result in car calls to
all floors. Given a cost function based on specified
quality-of-service criteria, the dispatching prob-
lem can, in principle, be solved through dynamic
programming. In practice, however, this is only
possible for very limited cases under specific mod-
eling assumptions, such as the uppeak scenario
(Pepyne and Cassandras, 1997) and the park-
ing problem (Brand and Nikovski, 2004). Other
dynamic programming approaches, e.g. (Nikovski
and Brand, 2003), may not handle all traffic sce-
narios well and/or impose a high computational
burden. To avoid the intractability of dynamic

Preprints of the 2nd IFAC Conf. on Analysis and Design of Hybrid Systems (Alghero, Italy), 7-9 June 2006

136

FRANCO
Text Box
Copyright © 2006 IFAC

programming approaches, many heuristic algo-
rithms have been developed, most based on the
idea of dynamically assigning a car to serve a
certain sector of the building, e.g., the Dynamic
Load Balancing (DLB) algorithm in (Cassandras
et al., 1990) and other sectoring schemes, e.g.,
(Chan et al., 1997). Efforts to use fuzzy logic
to control switching between algorithms depend-
ing on the traffic patterns (Powell and Sirag,
1993), or attempts to implement various reinforce-
ment learning techniques using neural networks
(Siikonen, 1997), (Crites and Barto, 1996), have
yielded limited success.

The goal of this work is to explore a new approach
to elevator dispatching based on a formal hybrid
system model in conjunction with a receding hori-
zon controller. Our motivation is twofold. First,
there is a continuing need to demonstrate that
substantially better performance is achievable by
new controllers relative to state-of-the-art heuris-
tics. Second, with existing algorithms customized
to specific traffic patterns, dispatchers are forced
to switch among algorithms by detecting when it
is optimal to do so. It is, therefore, desirable to
have a “universal” dispatching controller which
is equally effective in all situations and involves
few, if any, tunable parameters. The approach
we propose is characterized by this feature, while
also showing (based on simulation experiments)
substantial performance improvements compared
to state-of-the-art dispatching algorithms. By us-
ing a hybrid model of the elevator system, our
approach allows us to conveniently calculate the
travel times of cars to various hall or car calls.
Moreover, this model facilitates the use of the
cooperative receding horizon control developed in
(Li and Cassandras, 2006).

2. A HYBRID SYSTEM MODEL

Consider a multi-car elevator system with C cars,
each with capacity P passengers, operating in an
N -floor building, where floor 1 is the ground floor
(or lobby) and floor N is the top floor. The system
can be represented by a graph we will refer to as
the spine model shown in Figure 1, where each
floor is associated with three nodes: two spike
nodes and one spine node. Letting M = 2N ,
the spike nodes are indexed by i = 1, . . . ,M in
a clockwise direction, where nodes i = 1, . . . , N
on the left-hand side are associated with upward-
bound passengers, and nodes i = N+1, . . . ,M on
the right-hand side are associated with downward-
bound passengers. Nodes i = 1, . . . , N − 1 can be
origins for upward-bound passengers, and nodes
i = 2, . . . , N can be destinations for upward-
bound passengers. Similarly, nodes i = N +
1, . . . ,M − 1 and i = N + 2, . . . ,M can be ori-

...

car

node 1

node node

nodenode

node

10.4

hall call

car call

20.7 19.5

16.2

hall call

N N+M +1 N

M M +1

Fig. 1. The “spine model” of an elevator system.

gins and destinations, respectively, of downward-
bound passengers. The spine nodes, indexed by
i = M+1, . . . ,M+N (in the center of the model in
Figure 1) represent decision points for stopping at
floors 1, . . . , N respectively. That is, a car reaching
node M + i at top speed may choose to decelerate
and stop at node i (if moving upwards) or node
M − i + 1 (if moving downward); otherwise it
continues moving at top speed and skips floor i.

Cars move on the arcs connecting the nodes: on
vertical arcs, cars move between floors at top
speed with a corresponding arc travel time D;
on horizontal arcs (or “spikes”), cars decelerate
as they approach a floor or accelerate away from
some floor with a corresponding arc travel time
d. A car located at a spike node is stopped at
the corresponding floor either serving upward-
bound passengers (for i = 1, . . . , N) or downward-
bound passengers (for i = N + 1, . . . ,M). We
represent hall calls and car calls by numbers in
boxes next to the appropriate spike node. A hall
call is generated by the first passenger at a node
who presses an up or down button. Its box is
bordered by a solid line and lists all passenger
waiting times (note that additional passengers
may arrive at the same node after the initial hall
call is initiated). A car call is generated when a
car answers a hall call and a passenger entering
this car selects a destination floor. A car call is
represented by a box bordered in a dashed line
shown next to the destination node and lists all
times since corresponding passengers in that car
issued the call. For this model, we assume that
all acceleration/deceleration times (required for a
car to go between a complete stop and full speed)
are fixed and equal and all top speeds are fixed
and equal to a value vmax. For simplicity, we
also assume that the vertical distance travelled
by a car during acceleration is less than half the
vertical distance between floors.

The state of this hybrid system consists of a
continuous (real-valued) component for the C
cars and a discrete (non-negative integer-valued)
component for all hall and car calls present. The

137

state of car j = 1, . . . , C is a vector [ej , vj] where
ej is the elevation of car j and vj = ėj is its
velocity. The state of hall calls in the system
is described by the hall call queue lengths h(i),
i = 1, . . . ,M and by ah(i, l), l = 1, . . . , h(i), the
arrival time of each passenger waiting at the hall
call at node i. The state of car calls is described
by the car call queue lengths ψj(i), i = 1, . . . ,M ,
j = 1, . . . , C, and by acj(i, l), l = 1, . . . , ψj(i),
the arrival times of each passenger in car j with
destination node i.

The dynamics of the system depend on an event

set E and a set of control actions U imposed by
the dispatcher. Events in E correspond to the
arrival of cars at various decision points on the
spine model, along with an exogenous event for
passenger arrivals at (hall-call) nodes. The type of
event that occurs dictates the feasible transitions,
or decisions, for each car. There are (6C+4)(N−1)
events in E.

Next, we define a small set of control actions, U =
{STOP,GOUP,GODN,LOAD}, which may be
taken upon the occurrence of certain events. For
example, a control action must be taken when
some upward-moving car j arrives at a spine node
i ∈ {M +2, . . . ,M +N} defining a decision point.
The dispatcher must select: (i) STOP if the car
is to be routed to the corresponding spike node
i ∈ {2, . . . ,M}, or (ii) GOUP if the car is to be
routed to spine node i+ 1.

A different set of commands may be feasible when
a car is at a spike node. For example, when a car
finishes a loading operation at a spike node i, the
dispatcher must select: (i) GOUP (or GODN)
if the car is to immediately depart node i ∈
{1, . . . , N −1} (or i ∈ {N +1, . . . ,M −1}), or (ii)
STOP if the car is to remain at node i with the
doors open to possibly accept more passengers.
This construction allows for the car to idle and a
“timeout” to be implemented to prevent a loaded
passenger from waiting more than a set amount
of time before departing.

The dispatcher may issue a command to a parked
(idling) car as a result of some event that is
exogenous to that car. This event may be a
passenger arrival event or an event associated with
some car other than the parked car. In either case,
the dispatcher may issue a command to the parked
car to either (i) LOAD if the event occurs at the
floor where the car is located, or (ii) GOUP (or
GODN) if the car is to immediately depart.

Clearly, the choice of control action at a decision
point depends on the full state of the system,
denoted by x, at that time. For example, if a
car arrives at a spike node i with ψj(i) > 0,
then j is obligated to serve the associated car
calls with destination i, therefore STOP must be

n
SWITCH

n
SWITCH

n
PARK

n
PARK

n
ACC

n
ACC

n
DEC

n
DEC

1+n
UP
to

n
UP

GOUP

STOP

GOUP

GOUP

n
UNLD

n
UNLD

1+− nM
PARK

to

1−n
UP
from

1+− nM
SWITCH

from

n
LOAD

n
LOAD

GOUP

GODN

GODNLOAD

STOP

STOP

LOAD

STOP

STOP

Fig. 2. State transition diagram for a car at or
approaching floor n = 2, . . . , N − 1.

selected from the feasible control action set U =
{STOP,GOUP,GODN,LOAD}. An UNLOAD
command is not necessary, because passengers
must be allowed to depart at their destination.

The complete state transition diagram for the hy-
brid automaton model of this system is extremely
complex and depends on the specific dispatching
control scheme used. However, we can obtain a
state transition diagram for each individual car
based on the observation that dispatching deci-
sions depend only on certain discrete states defin-
ing a discrete event system abstracted from the
hybrid automaton. For example, the state tran-
sition diagram shown in Figure 2 corresponds to
a car moving upward at some floor n < N . For
simplicity, the control actions are shown, but not
events that may precipitate transitions.

Note that all hall call and car call states are also
abstracted out of this subsystem, thus allowing
for all possible control actions as defined above.
A state transition diagram for the entire system
would include the union of C state transition
diagrams, each with N subsystems as shown in
Figure 2, along with all car call and hall call states.
Which of these transitions and states are feasible
depends on the dispatching controller defined (see
next section). As an example, consider Figure 2
for some upward-moving car j with the added in-
formation that ψj(n) > 0 and

∑N

i=n+1 ψj(n) > 0,
i.e., there is a car call with destination n and there
are additional car calls for higher floors. In this
case, for example, transitions to the SWITCH
state are not feasible.

3. THE RECEDING HORIZON
DISPATCHING CONTROLLER

The basic idea of the Receding Horizon Controller
(RHC) used for dispatching cars in an eleva-
tor system is similar in spirit to that developed
in (Li and Cassandras, 2006) for the control of
coordinated teams of fully-actuated autonomous
vehicles moving freely in a 2-dimensional space.

138

Receding horizon schemes are also associated
with model-predictive control (e.g., (Mayne and
Michalska, 1990)). In the case of dispatching,
the optimal control problem is combinatorially
intractable and further complicated by random
events due to uncertain passenger arrivals and sto-
chastic loading/unloading times. Typically, dis-
patching algorithms assign cars to floors as new
hall calls and car calls are generated. In contrast,
the RHC we propose issues commands from the
set U = {STOP,GOUP,GODN,LOAD} that
are applied to a car whenever it comes to a deci-
sion point as a result of the events defined in the
previous section. There is no attempt to commit a
car to a floor except at the last possible point pos-
sible (i.e., when the car arrives at the spine node
for that floor). This allows for taking into account
unexpected events that may alter a prior car-to-
floor assignment. Moreover, the control action set
U is much smaller than the set of all possible car-
to-floor assignments for C cars and N floors.

The RHC is invoked whenever any new event
occurs in the system at some time t, at which
point it solves an optimization problem using all
available current state information xt and a given
objective function defined over the time interval
[t, t +H(xt)], where H(xt) is called the planning

horizon. However, the control actions determined
by the RHC at t are executed only until the
next system event is observed (typically much
sooner than t + H(xt)), at which point a new
optimization problem is solved with all updated
state information. For vehicles moving freely in a
simple two-dimensional space, as in (Li and Cas-
sandras, 2006), the notion of Euclidean distance
between two points is well-defined and simple to
use. In contrast, each car of an elevator system is
constrained to move in the graph topology of the
spine model of Figure 1. Thus, we need to adapt
the RHC from a Euclidean space to a graph.

The first step is to develop an appropriate (non-
Euclidean) distance metric for a graph. Let d(r, s)
be the distance between points r, s both belonging
to the same arc on the graph as the time required
for a car to travel from r to s. Depending on
the arc in the spine model, this is simply the
time to travel from r to s at speed vmax (spine
arcs) or subject to the acceleration/deceleration
parameters given (spike arcs). If r = s is a node
of the graph, then d(r, r) is the time spent by a car
at a node, e.g., while loading/unloading. This time
generally depends on both the car and the node
states. This motivates a car-dependent definition
of the metric for nodes, dj(r, r,xt), which also
incorporates dependence on the system state xt.

The neighborhood of a point r on the graph, N (r),
is the set of all nodes with arcs connecting them to
r. For any two points r, s, a path p(r, s) from r to s

is a sequence of nodes p(r, s) = {n1, . . . , nL} such
that n1 ∈ N (r), nL ∈ N (s), and nl+1 ∈ N (nl),
l = 1, . . . , L− 1. We can then define the distance
(or length) of a path as

dj(r, s,x) = dj(r, n1,x)+ (1)
L−1∑

l=1

[dj(nl, nl,x) + d(nl, nl+1)] + dj(nL, s,x)

Of particular interest are paths from a car j’s
location at time t, denoted by ctj , to nodes where
there are hall calls or car calls to serve. We shall
refer to these as “target nodes” for car j and
denote the corresponding set at time t by Rtj . For
any r ∈ Rtj , a car-to-target node path is

P
t
j(r) ≡ p(ctj , r), r ∈ Rtj (2)

Given the path length in (1), we define the target

time τ tj (c
t
j , r) as the time when car j reaches r

along that path, i.e., τj(c
t
j , r) = t+ dj(c

t
j , r,x).

Finally, each path has a corresponding path input

sequence U
t
j(r) , where the ith element, uj(r, i), is

the ith feasible control action involved along the
path P

t
j(r), as a result of events that would occur

as car j travels on the path to target r.

Car trajectory construction under RHC. In
the simple 2-dimensional space used in (Li and
Cassandras, 2006), the RHC’s function is to solve
an optimization problem whose solution gives op-
timal vehicle headings at time t. Given a vehicle
speed v and a planning horizon H , the set of
points on a circle of radius H/v around the ve-
hicle’s current position defines its feasible horizon

points. The RHC determines the optimal heading
that leads to some corresponding optimal horizon
point, x∗H(t). The optimal RHC trajectory is a
straight line to x∗H(t), and the RHC trajectory’s
target time for a target at point y is simply t+H+
‖y − x∗H(t)‖ /v, where ‖·‖ is the Euclidean metric.

In our spine model setting, the set of feasible hori-
zon points has to be defined accordingly. Given a
path P

t
j(r) as in (2), a horizon point is a point

that corresponds to the car’s future position on
this path at time t+H(xt). Formally, we define a
horizon point ωj(r) for some target node r ∈ Rtj
as a point uniquely given by

dj(c
t
j , ωj(r),xt) = H(xt)

dj(c
t
j , nk,xt) ≤ H(xt) ≤ dj(c

t
j , nk+1,xt)

for some nk ∈ P
t
j(r). The horizon point ωj(r)

belongs to some arc (nk, nk+1) on the path to
target node r such that the distance from ctj to
ωj(r) is the horizonH(xt). Note that it is possible
for ωj(r) to coincide with a node in P

t
j(r) since

cars can spend a positive amount of time at a node
in the spine model. The set of all horizon points for
a car j is denoted by Ωtj = ∪r∈Rt

j
{ωj(r)}. We can

then define a path p(ω, r) from any horizon point

139

20.7 19.5

10.4

16.2

4

5

10

8 17

16

15

ω
1
(4)

ω
1
(5)

Fig. 3. Paths from a car to three target nodes, and
resulting horizon points.

ω ∈ Ωtj to any target r ∈ Rtj and an associated
target time

τj(ω, r) = t+H(xt) + dj(ω, r,xt+H(xt))

As an example of paths from cars to target
nodes, consider Figure 3, where a car is carrying
passengers upward in a building with N = 6
floors. Since the car cannot switch directions un-
til the car call at node 5 is served, the path
to the downward-bound car call at r = 10 is
P
t
1(10) = {15, 16, 17, 5, 8, 17, 16, 15, 10}, as shown

by the dotted line. Figure 3 also shows how a given
planning horizon H(xt) locates the horizon points
ω1(4) and ω1(5) = ω1(10) in the set Ωt1.

The final issue we address before discussing the
optimization problem that the RHC must solve is
that of selecting an appropriate planning horizon
H(xt). Motivated by the analysis in (Li and
Cassandras, 2006), we shall also choose H(xt) to
be the shortest distance (in time units) from any
car to any target node, i.e.,

H(xt) = min
r∈Rt

j
,j=1,...,C

dj(c
t
j , r,xt)

Intuitively, H(xt) provides the earliest time at
which the system workload could be reduced by
any car.

RHC objective function. To construct the ob-
jective function for the RHC, we will concentrate
here on minimizing the waiting times of passen-
gers. Recall that Ωtj is the set of all feasible horizon
points for car j at time t, and τj(ω, r) is the
earliest possible time that a passenger in the hall
call queue of some node r can be served if car j
chooses horizon point ω ∈ Ωtj . Then, the hall-call

waiting time function, denoted by Wj(ω, r), is

Wj(ω, r) =

h(r)
∑

l=1

[
τj(ω, r) − ah(r, l)

]

where r is a spike node with h(r) > 0 and
ah(r, l) ≤ t is the arrival time of the lth passenger
in the hall call r queue. Similarly, the car-call

system time function, denoted by Yj(ω, r), is

Yj(ω, r) =

ψj(r)∑

l=1

[
τj(ω, r) − acj(r, l)

]

where r is a spike node with ψj(r) > 0 and
ac(r, l) ≤ t is the arrival time of the lth passenger
in the car call queue for destination r originating
at some node previously visited by car j.

The relative proximity function qj(w, r) ∈ [0, 1],
where r is a hall call target, and w = [ω1, . . . , ωC],
ωj ∈ Ωtj , j = 1, . . . , C is intended to engender
cooperation between the cars. It was introduced
by (Li and Cassandras, 2006), but here we must
adapt it to our particular topology. The function
qj(w, r) is monotonically non-increasing in the
relative distance function, denoted by δj(w, r).
It depends on how close ωj is to target r, com-
pared to all other horizon points. We order the
elements of w so that dj1(ωj1 , r,xt+H(xt)) ≤
. . . ≤ djC (ωjC , r,xt+H(xt)) and using the cars
with shortest distances, j1 and j2, we define

δji(w, r) =
dji(ωji , r,xt+H(xt))

∑

k=j1,j2
dk(ωk, r,xt+H(xt))

and δji(w, r) = 0 for i = 3, . . . , C if applicable. A
simple and convenient choice of relative proximity
function is

qj(w, r) =







1 if δj ≤ ∆
(1 − ∆) − δj

1 − 2∆
if ∆ < δj < 1 − ∆

0 if δj ≥ 1 − ∆

where for brevity we let δj ≡ δj(w, r), and ∆ ∈
[0, 0.5) is a constant adjustable to quantify the
extent of car cooperation.

The RHC’s function is to select w, i.e., a horizon
point ωj ∈ Ωtj for each car j, so as to minimize

J(w) =
∑

j

∑

r∈Rt
j

[Wj(ωj , r)]
2qj(w, r) + Yj(ωj , r)

The minimizing vector of horizon points is w
∗ =

argmin J(w). Each element ω∗
j of w

∗ is associated

with a path input sequence U
t
j(ω

∗
j), and the

control input applied to car j = 1, . . . , C at time
t is the first element uj(ω

∗
j , 1) of U

t
j(ω

∗
j). In the

example of Figure 3, the optimal first control
action is the one associated with leading the car
to either ω1(4) or ω1(5) from its current position,
whichever minimizes J(w); here it happens that
u1(ω1(4), 1) = u1(ω1(5), 1) = GOUP . A simple
calculation shows that the size of the decision
space for the RHC optimization problem is O

(
(2+

2⌈d/D⌉)C
)

and independent of N .

Implementation. In the actual system, the com-
plete state is unknown. The RHC is required to
estimate the number of passengers associated with
each call based on the known elapsed time since
the call was issued and a known (or estimated)
passenger arrival rate at each node (determining

140

these rates may itself be a difficult problem.) In
addition, if h(i) = 0 for some i, an anticipatory
element can be added to the RHC by estimating
the length of a currently empty hall call queue in
the future (specifically, at time τj(ω, i) for some
ω ∈ Ωtj). Another complication is that cars whose
passenger capacity P is reached must be prevented
from responding to hall calls.

4. NUMERICAL RESULTS

The RHC and several competing controllers were
implemented in a simulation environment devel-
oped using matlab. Here, we limit the results
shown to two different traffic patterns: a two-
hour lunchtime traffic scenario (about 1,500 pas-
sengers delivered), with a combination of uppeak,
downpeak, and interfloor traffic, and a two-hour
pure uppeak case. For both tests, each car has a
capacity of P = 16 passengers, top speed vmax =
1 m/sec, and acceleration a = 0.4 m/sec

2
.

For the lunchtime scenario, we compare the per-
formance of the RHC to that of the DLB algo-
rithm of (Cassandras et al., 1990) in a simulated
building with N = 10 and C = 4. Table 1 shows
averages over 10 simulation runs where the RHC
compares favorably to the DLB algorithm. The
passenger arrivals at each floor were simulated
according to a time-varying Poisson process.

Table 1. Lunchtime scenario.

Avg. Waiting Avg. Sys. Avg. Sq. Sys.
Controller Time, sec Time, sec Time, sec2

RHC 17.47 44.96 2,670
DLB 20.11 52.52 3,686

A comparison of the performance of the RHC to
that of an Uppeak Threshold Controller (UTC)
is shown in Table 2 for a simulated building with
N = 20 and C = 4, using a constant Poisson ar-
rival rate of 5 passengers per minute at the lobby.
It was shown in (Pepyne and Cassandras, 1997)
that the optimal dispatching policy in the pure
uppeak case (with no interfloor or downpeak
component) is a threshold-based policy, assuming
Markovian arrival and service processes. The UTC
based on this idea uses a vector T = [T1, . . . , TC],
where each element Ti is the threshold (number
of passengers) for dispatching a car loading at
the lobby when there are i cars available at the
lobby. The RHC has the advantage that it uses the
location information for other cars, and is able to
dispatch a car from the lobby when a returning car
gets close enough to place a horizon point at node
1. When applying the RHC, an expected arrival
rate λ̂1 at node 1 is used to estimate future arrivals
and effectively achieve a thresholding behavior. As
seen in Table 2, the UTC under T = [1, 1, 1, 1] and

the RHC under λ̂1 = 0 psgr/min have the same

behavior since they both ignore future arrivals
(of course, determining a λ̂1 that achieves the

best possible performance, in this case λ̂1 = 0.37
psgr/min, remains a side estimation issue). What
is important is that the RHC achieves the same
uppeak performance as the UTC without switch-

ing to a specialized operating mode, substantiating
the claim that the RHC is a robust “universal”
controller.

Table 2. Uppeak scenario.

Avg. Sys. Avg. Sq. Sys.
Controller Time, sec Time, sec2

RHC, λ̂1 = 0.00 psgr/min 62.57 5,079

RHC, λ̂1 = 0.37 58.49 4,205
UTC, T = [1, 1, 1, 1] 62.57 5,079
UTC, T = [2, 1, 1, 1] 61.26 4,707

REFERENCES

Brand, M. and D. Nikovski (2004). Optimal
parking in group elevator control. In: Intl.

Conf. on Robotics and Automation. Vol. 1.
pp. 1002–1008.

Cassandras, C. G., T. E. Djaferis, J. Lewis and
D. P. Looze (1990). Dispatching through dy-
namic load balancing (dlb): the “noontime”
scenario. Tech. Report, Dept. of ECE, U. of
Massachusetts.

Chan, W. L., A. T. P. So and K. C. Lam (1997).
Dynamic zoning in elevator traffic control.
Elevator World pp. 136–139.

Crites, R. H. and A. G. Barto (1996). Improv-
ing elevator performance using reinforcement
learning. In: Advances in Neural Information

Processing Systems 8 (D. S. Touretzky, M. C.
Mozer and M. E. Hasselmo, Eds.). MIT Press.
pp. 1017–1023.

Li, W. and C. G. Cassandras (2006). A cooper-
ative receding horizon controller for multi-
vehicle uncertain environments. IEEE Trans.

on Auto. Control 51(2), 242–257.
Mayne, D. Q. and L. Michalska (1990). Receding

Horizon Control of Nonlinear Systems. IEEE

Trans. on Auto. Control AC-35(7), 814–824.
Nikovski, D. and M. Brand (2003). Marginaliz-

ing out future passengers in group elevator
control. In: Proc. of the 19th Conf. on Uncer-

tainty in Artificial Intelligence. pp. 443–450.
Pepyne, D. and C. Cassandras (1997). Optimal

dispatching control for elevator systems dur-
ing uppeak traffic. In: IEEE. Trans. on Con-

trol Systems Technology. Vol. 5. pp. 629–642.
Powell, B. A. and D. J. Sirag (1993). A new

way of thinking about the complexities of
dispatching elevators. Elevator World pp. 78–
84.

Siikonen, M.-L. (1997). Elevator group control
with artificial intelligence. Report A67, Sys-
tems Analysis Lab., Helsinki U. of Tech.

141

