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6 Av. du Ponceau, 95014 Cergy-Pontoise Cedex, France.

{djemai,saadaoui,barbot}@ensea.fr
∗∗CReSTIC, University of Reims, Moulin de la Housse BP

1039, 51687 Reims cedex 2 - France,
noureddine.manamanni@univ-reims.fr

∗∗∗LAGIS, UMR CNRS 8146, Ecole Centrale de Lille,
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Abstract: The main topic of this paper is the problem of observer synthesis
for switched systems, which includes, as a specific case, the design of observers
based on high order sliding mode technique. High order sliding mode is used
to overcome the occurring chattering phenomena which induces some irrelevant
decision of switching between the subsystems when the trajectory is in the
neighborhood of the switching manifold. Moreover, in this paper, after presenting
the general structure of the step by step differentiator, well show the step by step
finite time convergence of the estimation error and the discrete state estimation.
Two simulation examples illustrate the efficiency of the proposed approach.
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1. INTRODUCTION

Switched systems are a class of Hybrid Sys-
tems (HS) which consist of several subsystems
that switch according to a given switching law
(Antsaklis, 2000).

A rich and thorough bibliography deals with sta-
bility problems of switched systems, see (Branicky,
1998), (Liberzon, 2000), (Michel and Sun, 2003)
and references therein. More recently, various re-
searchers have studied observability and observer
design for such systems. Some sufficient geomet-
rical conditions to analyze the observability of
hybrid dynamical systems were given in (Boutat
et al., 2004). These conditions are refined for the
particular class of piecewise linear and nonlinear

systems. The so-called extended joint observabil-
ity matrix was proposed in (Vidal et al., 2003),
to analyze the observability of jump linear sys-
tems. In (Sontag, 1979), Sontag introduced a set
of observability related definitions and examined
the implications among the various concepts of
observability. In the same way, other works deal
with the hybrid observer design.

Indeed, in (Balluchi et al., 2002) a methodol-
ogy was presented for the design of dynamical
observers of hybrid systems that reconstruct the
discrete state and the continuous state from the
knowledge of the continuous and discrete outputs.
The design of linear observers for a class of linear
hybrid systems was addressed in (De laSen and

Preprints of the 2nd IFAC Conf. on Analysis and Design of Hybrid Systems (Alghero, Italy), 7-9 June 2006

124



Luo, 2000). Two observer prototypes based on the
prediction errors were proposed.

Despite an abundant literature on the design
of linear observers for hybrid systems, only few
works are concerned with the design of nonlinear
hybrid observers for hybrid systems (see for ex-
ample (Lin et al., 2002)and (Pettersson, 2005)).

Within this context, the problem of designing
sliding mode observers for non linear hybrid sys-
tems without jump was discussed in (Djemäı et
al., 2005) and (Saadaoui et al., 2005). Neverthe-
less, when the trajectory is in the neighborhood of
the switching manifold, a chattering phenomena
occurs and induces some irrelevant decision of
switching between the subsystems. To overcome
this problem, it is proposed to design high order
sliding modes (Fridman and Levant, 1996).

Hence, the main purpose of this paper lies in
nonlinear observer design for a class of HS. The
considered class is assumed to be bounded state
in finite time without, jumps and without Zeno
phenomenon. The observer design is discussed by
using a triangular input observer form introduced
in (Barbot et al., 1996) and (Drakunov and Utkin,
1995). The idea consists in using the step by step
procedure. Another contribution of the paper lies
in the convergence analysis of the estimation error
in the general case.

The paper is organized as follows: Section 2 recalls
some observability notions for hybrid systems.
The high order sliding mode observer design and
the convergence analysis are detailed in section
3. In section 4, two illustrative examples are dis-
cussed to show the performances of the developed
algorithm.
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Fig. 1 : Hybrid observer structure

2. RECALLS ON OBSERVABILITY STUDY

Recently, many researchers have approached the
study of observability of hybrid systems in general

and switched systems in particular. In (Vidal et
al., 2003), was considered the case of autonomous
switched systems. A definition of observability
based on the concept of indistinguishability of
continuous initial states and discrete states evolu-
tions from the output in free evolution was given.
In (Boutat et al., 2004), both cases of linear and
nonlinear switched systems were considered and
some algebraic and geometrical conditions of ob-
servability for such class were stated.

In what follows is recalled the main result of
(Boutat et al., 2004), on the observability of the
class of hybrid system considered in this paper.
The proof of the theorem can be found in the cited
reference. Let us consider the dynamical systems
formed with two dynamics interconnected by a
switching function:

{ .
x = F1(x) and y = h1(x) if σ(x) ≤ 0
.
x = F2(x) and y = h2(x) if σ(x) > 0 (1)

where Fi(x) are smooth vector fields, hi(x) are
smooth outputs and σ(x) is a smooth switching
function.

Assumption 1. We assume throughout this paper
that:

a) All the evolution duration of each subsystem
of (1) are measurable.

b) For i = 1 : 2 the codistribution:
{

dhi, dLFihi, ...., dL
(n−1)
Fi

hi

}

has rank n, this implies that is locally weakly
observable.

Assumption 1 a) means that systems with Zeno
phenomenon are not considered.

Under assumption 1, if we know which of the
subsystem evolves, one can conclude on the ob-
servability of the global system (1). Hence, when
considering the observability coordinates (zj , j =
1 : 2) defined by:

zj
i+1 = L

(i)
Fj

hj for 0 ≤ i ≤ n− 1

where L
(i)
Fj

hj is the ith Lie derivative of hj in the
direction of Fj , and using the Fliess’s observability
canonical form, each subsystem of (1) can be
written as:{

.
z
1
i = z1

i+1 for i = 1 : n− 1
.
z
1
n = g1(z1

1 , z1
2 , ..., z1

n)
(2)

if σ1 := φ−1(z1
1 , z1

2 , ..., z1
n) ≤ 0, and

{
.
z
2
i = z2

i+1 for i = 1 : n− 1
.
z
2
n = g2(z2

1 , z2
2 , ..., z2

n)
(3)

if σ2 := φ−1(z2
1 , z2

2 , ..., z2
n) > 0.
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The approach to analyze the observability of (1),
presented in (Boutat et al., 2004), is based on the
comparison of g1 and g2 on the one hand and
σ1 and σ2 on the other hand. For this, we need
to evaluate such functions in terms of the same
variables. These variables are given naturally by
the output y and its successive time derivatives
y(i) = diy

dti for i = 1 : n− 1.
Let us consider the two submanifolds:

M= {v ∈ IR n / g1(v) = g2(v)}
S = {v ∈ IR n / σ1(v) = σ2(v)}

and finally, the submanifold of common singular-
ities of subsystems of system (1):

L = {x ∈ IR n / F1(x) = F2(x) = 0}
The main result is recalled in the following theo-
rem.

Theorem 1. i) If M is a discrete set then sys-
tem (1) is observable for any switch σ for
which we have σ(L) ≤ 0 or else σ(L) > 0.

ii) If dynamics (2) and (3) are transverse to M
except on a discrete subset then the system
is observable for any switch σ for which we
have σ(L) ≤ 0 or else σ(L) > 0.

iii) If S = IR n then system (1) is observable.

The reader can refer to (Boutat et al., 2004) for
proof and more details. Some algebraic sufficient
conditions on the observability of piecewise linear
systems can also be found.

3. HYBRID OBSERVER

In this paper will be designed a step by step
sliding mode observer. The idea consists in using
the concept of equivalent vector (see (Drakunov,
1992) and (Drakunov and Utkin, 1995)) in an
iterative way. Both systems (2) and (3) are in the
so-called canonical observer form of a nonlinear
autonomous system:





ẋ1 = x2

. . .
ẋn−1 = xn

ẋn = fq(x) if σq(x) ∈ Iq

(4)

where y = x1, σq(x) for q = 1, .., p is a switching
function and Iq is a domain of validation of a
subsystem q. The considered class of systems is
assumed to be bounded state in finite time with-
out jumps and does not concern Zeno phenomena.

The consideration of such class of systems (4) is
not restrictive. In fact, most of lagrangian sys-
tems, for example, are written in the considered
form.

Remark 1. The assumption of a canonical form
(4) without jump is quite restrictive, because the
diffeomorphism linked to the sub-system q = 1 is
not generally the same than the diffeomorphism
linked to the sub-system q = 2. Then at each
switch from q = 1 to 2, the state in the observabil-
ity canonical form (4) ((Fliess, 1990)) jump even
if the state in the original (1) coordinates does not
jump. This jump may be easily taken into account
by a new structure of sliding mode which will be
given in a forthcoming paper.

In (Djemäı et al., 2005), a step by step first order
sliding mode observer was mainly employed for
the following reasons: the finite time convergence
and the ability to take naturally into account the
variable structure of the HS. Nevertheless, some
difficulties occur due to the chattering phenom-
ena. It induces some irrelevant decision of switch-
ing between the subsystems when the trajectory
is in the neighborhood of the switching manifold.
This problem was bypassed by using a low pass
filter during the computation of the equivalent
vector; unfortunately, this solution introduces a
delay. In this work, a relevant solution for the
case of switched systems is given. It consists
in using exact and robust second order sliding
mode differentiators (Super Twisting Algorithm,
see (Fridman and Levant, 1996)).

The “Super Twisting Algorithm” (Figure 2) is
given by the following structure:

∑
obs

=
{

u(e1) = u1 + λ1 |e1|
1
2 sign(e1)

u̇1 = α1sign(e1)
λ1, α1 > 0

(5)

where e1 = x1 − x̂1 and λ1, α1 are positive

1u

1x̂)e(u 1

_

+

1x

Sobs

Fig. 2 : Super Twisting Algorithm Structure

parameters, and u1 is the differentiator output
where:

sign(e1) =





+1 if e1 > 0
−1 if e1 < 0
∈ [−1, 1] if e1 = 0

The step by step exact differentiator applied to
(4), leads to the following form:
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˙̂x1 = x̃2 + λ1 |ẽ1|1/2
sign(ẽ1)

˙̃x2 = α1sign(e1)
˙̂x2 = E1

[
x̃3 + λ2 |ẽ2|1/2

sign(ẽ2)
]

˙̃x3 = E1α2sign(ẽ2)
...

˙̂xn−1 = En−2

[
x̃n + λn−1 |ẽn−1|1/2

sign(ẽn−1)
]

˙̃xn = En−2αn−1sign(ẽn−1)
˙̂xn = En−1

[
θ̃ + λn |ẽn|1/2

sign(ẽn)
]

˙̃
θ = En−1αnsign(ẽn)

(6)

where ẽi = x̃i − x̂i, with x̃1 = x1 for i = 1, .., n,
and the Ei for i = 1, ...n− 1 are defined as

Ei = 0 if ẽi = x̃i − x̂i 6= 0, else Ei = 1 (7)

In practice

Ei = 0 if ẽi = x̃i − x̂i > ε, else Ei = 1

The structure of the step by step differentiator for
a system of order n in canonical form is given in
figure (3), where each bloc Bi for i = 1, ..., n− 1,
is only valid when Ei = 1.

Fig. 3 : Structure of step by step differentiator

3.1 Convergence analysis

The convergence of the observation error is ob-
tained in (n − 1) step in finite time. The idea
consists in using the step by step observer such as
described here after: The (n−1) first steps consist
in reconstructing the state vector and after that,
under conditions of theorem 1, recovering in which
state (location) q, the system evolves. Another
feature of the differentiator (5) is the fact that the
output u1 does not depend directly on discontinu-
ous functions but on an integrator output. So high
frequency chattering, which can be very harmful
for the system (see for example chaotic system
known for its extreme sensitivity to noise (Djemäı
et al., 2005)), can be avoided. These properties
are importants since the switching function can be

obtained in a continuous way and without delays
and chattering.

Theorem 2. Consider the system (4), assumed to
be bounded state in finite time t < ∞, and
the observer (6) based on the Super Twisting
Algorithm (5). For any bounded initial conditions
x(0), x̂(0), there exists a choice of λi and αi such
that the state observer x̂ converges in finite time
Tfs ¿ τq (dwell time(De Santis et al., 2005)) to x

and θ̃ converge also in finite time to fq(x).

Proof. The proof is given in (Saadaoui et al.,
2005) for the case of n = 2 (see also (Levant
, 1998) and (Davila et al., 2005)). Figure 4 illus-
trates the finite time convergence behavior of the
proposed observer. The demonstration is based
on the error trajectory for each quadrant in the
worst cases. In the case of n > 2, the conver-
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Fig. 4 : Majoring curve for finite time
convergence observer

gence is ensured step by step following this order
: (ė1 = e2, e1) → (0, 0) in finite time T1 in the
first step. (ė2 = e3, e2) → (0, 0) in finite time T2

in the second step. And (ėi = ei + 1, ei) → (0, 0)
in finite time Ti in the step i. Finally, (ėn−1 =
en, en−1) → (0, 0) in finite time Tn−1 in the step
(n − 1). The finite time convergence of the full
state x is:

Tfs =
n−1∑

j=1

Tj (8)

• Discrete time observer

This section, is concerned with the discrete part of
the designed observer. Let us consider the system
(4), the task of the discrete time observer is to
locate which dynamic of the system is in evolu-
tion? In some cases, the knowledge of the system’s
output is sufficient to estimate the current loca-
tion (i.e., if σ(x) = σ(y)). If this is not the case,
some additional information obtained by using the
continuous part of the observer, may be useful or
are necessary to estimate the current location.
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In our case, the discrete-observer receives as in-
put: the observed state x̂, the output y and the
the information En−1. Its task is to provide an
estimation q̂ of the discrete location q of the hy-
brid plant at the current time. Contrarily to the
general case; here, the continuous observer doesn’t
need to know the discrete location q. This is the
main property of the canonical form (4). Indeed,
the second order sliding mode observer (6) has to
know only the output y = x1 and also the fq(x)
upper bound, noted g+.

Thus, one can announce the following corollary:

Corollary 1. If the observer is sufficiently fast
(i.e., Tfs ¿ τq), then for t ≥ Tfs, one has x = x̂

and θ̃ = fq(x). Then under conditions of theorem
1, the discrete state q is known.

Proof is a direct consequence of theorem 1 and 2.

4. SIMULATIONS AND COMMENTS

In (Djemäı et al., 2005), when a low pass filter
was used for x̃2 and x̃3 during the computation of
the switching condition σ(x̃). The results showed
a delay occurring for the switching decision and
a chattering phenomenon. Indeed, the first order
differentiator generates high levels of chattering
even if its output is filtered through a low pass
filter. A delay appears between the switching
indicators S calculated on the basis of σ(x) and So

calculated on the basis of σ(x̃). When using sliding
mode differentiators, the observer performances
are presented, but the delay is completely removed
and no chattering phenomenon occurs.

Example 1. Let us consider the following system
put in the triangular input observer form:

ẋ1 = x2, ẋ2 = x3

ẋ3 =
{− cos(30x2) + 0.4 if x2 < 0
−40 cos(300x3 + π/2)− 0.5 if x2 ≥ 0

(9)
with y = x1.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−5

0

5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−4

−2

0

2

4

Fig. 5 : x1 and x̂1, x2 and x̃2, and x3 and x̃3

The performances of the proposed hybrid observer
are shown in figures 5 (estimated state, dashed
line; system state, solid line).

Example 2. Let us consider the following switched
systems:

ẋ1 = x2

ẋ2 = x3

ẋ3 =





P1(x) if σ(x) ≥ 1
P2(x) if |σ(x)| < 1
P3(x) if σ(x) ≤ −1

with: P1(x) = − 1800
49 x1 − 55

7 x2 − 25
7 x3 + 2700

49 ;
P2(x) = 100

49 x1 − 36
7 x2 − 6

7x3, and P3(x) =
− 1800

49 x1 − 55
7 x2 − 25

7 x3 + 2700
49 . The switching

condition: σ(x) = − 7
100 (x3 + x2)− x1

The figure 6 highlights the efficiency of the pro-
posed observer and shows the finite time step by
step convergence.
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Fig. 6 : (x1, x̂1), (x2, x̃2), and (x3, x̃3)

Figure 7 shows respectively the switching function
σ(x) and σ(x̃) and the corresponding switching
indicator S, and So. There is no problem of delay
between S (switching indicator calculated on the
basis of the real states x1, x2, and x3) and So

(switching indicator calculated on the basis of the
observed states x1, x̃2, and x̃3). Also, it can be
noted that when σ(x̃) is near −1 around t = 5s,
there is no undesirable chattering phenomenon
and no irrelevant decision of switching between
the subsystems when the trajectory is in the
neighborhood of the switching manifold as it was
the case when classical sliding mode was used
with a filter (see figure 8 and paper (Djemäı et
al., 2005)).

5. CONCLUSION

This paper has dealt with the design of non linear
observer for hybrid systems. The considered sys-
tems concern switched non linear systems with-
out jump and without zeno phenomenon. It was
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Fig. 7 : Switching surfaces σ(x) and σ(x̃), and
switching indicators S and So
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Fig. 8 : Switching indicators S and So obtained with
classical sliding modes and zoom on σ(x̃)

shown that the use of high order sliding mode
technique; in our case exact differentiator of order
2 (Super twisting algorithm), leads to enhance the
observer performances. Indeed, the robustness is
guaranteed without introduction of any delays or
chattering phenomena. Another contribution of
the paper deals with the performed convergence
analysis in the general case. We have showed that
the finite time convergence of the full state is
ensured and that the estimation of the discrete
state is guaranteed.
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