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Abstract: Reachability computation is the central problem arising in the verification of
hybrid or continuous systems. One approach, among others, to compute an over
approximation of the reachable space is to split the continuous state space and to abstract
the continuous dynamics in each resulting cell by a linear differential inclusion for which
the reachable space may be computed with polyhedra. A previous work proposed to use
characteristics of the affine continuous dynamics to guide the polyhedral partition. This
paper presents an extension of this approach to uncertain planar systems where one
parameter of the model may take its value in a polytope. It is shown that the result for all
values of the parameter may be deduced from the computation for a finite number of
values. An algorithm that performs the reachability computation and determines the
minimum number of values of the parameter required at each step is proposed and

exemplified. Copyright © 2006 IFAC
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1. INTRODUCTION

Reachability computation is the central problem in the
verification of hybrid or continuous systems (Guéguen
and Zaytoon, 2004) and has become a major research
issue in hybrid systems. Most approaches to solve this
problem are based on a combination of numerical
integration and geometrical algorithms (Girard, et al.,
2006; Henzinger, et al., 2000). However it is also
possible to use hybridization methods to perform this
computation. The basic idea, introduced by (Henzinger,
et al., 1998), consists in splitting the continuous state
space into cells and abstracting the continuous
dynamics in each cell, by a linear differential inclusion
for which the reachable space may be computed with
polyhedra (Frehse, 2005). One key point is then to find
a trade off between the number of cells that are
introduced and the accuracy of the over-approximation.
The choice of the hyperplanes that define the cells is
also important and it is possible to use structural
properties of the continuous dynamics to guide this
choice (Lefebvre and Guéguen, 2006).

For affine systems, defined by equation (1), it is then
possible (Lefebvre and Guéguen, 2006) to use left
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eigenvectors of matrix A to define the hyperplanes
that split the continuous regions. This approach leads to
interesting results but is limited to systems where the
model is exactly known.

x=Ax+b (1)
This paper is a first step towards the extension of the
proposed approach to models where the parameter b of
equation (1) is unknown and takes its values in a
polytope. As a first attempt, it only considers planar
systems where matrix A is non singular. In the next
section, the approach for certain planar systems is
briefly presented in order to illustrate the basic ideas.
The principles and important properties for uncertain
systems are presented in section 3. The proposed
algorithm to compute an over-approximation of the
reachable space is then presented in section 4. Finally
the application of the algorithm to an example is shown
in section 5.



2. ABSTRACTION BASED REACHABILITY FOR
PLANAR REGULAR CERTAIN SYSTEMS

The dynamics of the systems considered in this section
is specified by equation (1) where the dimension of the
state space is two, matrix A is not singular and vector b
is perfectly known. It is then possible to define the
equilibrium point of the system by equation (2).

x,=A"b )
This dynamics is associated with a polytopic region of
the state space, denoted Inv, and the aim of the
reachability calculation is to compute the set of points

of this region that may be reached by the dynamics,
from a given region denoted /nit, namely the set:

{x/3x, € Init,3t > 0 s.a. x = ®(¢) with (0) = X,
and ¥t <t () = Ad(7) + b and &(7) € Inv}

The initial region /nit will be considered as a polytope
and it is then possible to compute the reachable space
as the convex hull of the reachable space from each of
its vertices. As it is difficult to have an explicit
representation of the set defined by (3), hybridization
methods aim at abstracting the continuous dynamics by
polytopic differential inclusions on cells defined by
splitting the region /nv with hyperplanes.

When applied to the category of systems considered in
this paper, the method described in (Lefebvre and

Guéguen, 2006) leads to consider families of
hyperplanes, orthogonal to some vectors {q / }
generated by linear combinations of two left

eigenvectors of matrix A if they are real, or two given
vectors otherwise. Vectors {q 1} are chosen and ordered

in such a way that each cell is defined by the
intersection of the region /nv with the sector defined by

(4).

q;," (x-x,)20Aq;," (x-x,)<0 )

It is then possible to characterize the vector field in
each point of this cell by (5), which can be used to
abstract the dynamics. In (5), vectors y are defined

with respect to the vector field on the boundaries of the
cell and are characterized by (6).

vy %20y x<0

Yi= (AT)_I(L‘

)
(6)

The computation of the reachable space from a point
X, within the cell is then straightforward and its result

is given by the conjunction of (4) and (7).

YiT(X_Xo)ZO/\YiTJrl(X_Xo)SO

()
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X,
Fig 1. First steps of the reachable space computation
with abstraction

Another simplification is induced by the choice of the
separating hyperplanes: if the vector q; is not a left

eigenvector, the boundary it defines is crossed in only
one direction, and if q; is a real left eigenvector, then
the corresponding hyperplane cannot be crossed. It is
then possible, to choose the vectors {ql} so that q;
characterizes the boundary through which the state
trajectories enter the cell and q,,, the one through
which they leave it. So, state trajectories evolve from
the cell specified by (q 54, +1) to the one specified by
(q,- +1-9; +2). The first steps of the reachability
computation are illustrated in figure 1. The intersection
of the polyhedron defined by (7) with the outgoing
boundary (specified by q,,;) has two vertices that are

used as starting points for the computation within the
next cell.

3. BASIC PRINCIPLES FOR UNCERTAIN
SYSTEMS

It is now assumed that the dynamics of the system is
still characterized by equation (1) but that vector b is
unknown and may be characterized by equation (8),
where b, and b, are 2 known vectors and o is the
unknown parameter. It is also supposed that the value
of this parameter is fixed. The problem is then to find a
method to compute an over-approximation of the
reachable space from an initial point whatever the value
of o is.

b, =(1-a)b, +ob, withae[0,] (8)
When the system is characterized by equations (1) and
(8), it is possible to associate an equilibrium point to
each value of a. This point may be computed from the
equilibrium points associated to by and b; according to
equation (9).

X, = (l—a')xeo +ox,

a

(€))

It is then possible to associate to each value of ¢ the set
of cells defined by the set of vectors {q 1}, that are the

intersection of the region Inv with the region



characterized by (10). From now on, each of these cells
that depends on the value of & and on the pair
(a;.q;,;) will be denoted by S; ¢ and its boundaries

by I;, and I, , (11).

(10)

qz‘T(X_Xea)20/\(11‘+1T(X_Xe,,)50

L =f/a (x=x,, )=0} (1)

For each point of the cell S, ,, the vector field may be
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abstracted by a differential inclusion in the region,
characterized by equation (5), that does not depend on
the value of arbut only on the pair (q P P ). The basic

principle of the algorithm proposed below is based on
the property that the differential inclusion associated to
acell S;, does not depend on the value of & but only

on the index i .

It is then possible to express three properties that are
useful to design an algorithm to compute an over-
approximation of the reachable space.

Property 1. If &, and «; are such that, for all values
of o between ¢, and ¢;, an incoming point X,
within the region S§;, is aligned with the incoming
points x, and X, within the regions S;, and S;, ,

the relative outgoing points of the reachable space
within S, , are also aligned with the relative outgoing

points of S;, and S, , .

This property can be illustrated by figure 2 and proved
by considering that it is possible to find Se [O,l] such

that & = Ba, +(1- B, . As x, € lig, > Xq€1;, and
X| €14 , it is possible to deduce from (11) and (9)

that if x,,, x, and x, are aligned then

Xo =X+ (1 _ﬂ)x1

Then it is possible to compute the outgoing point by
qHIT(ya —X,, )zOAyiT(ya ~X,)=0 and check that
the solution is given by y, = fy, +(1—ﬁ)y1 where
y, and y, are the relative outgoing points of sectors
Sia, and S; ;.

Fig 2. Characteristics of outgoing point y, with respect
to incoming points and value of c.

120

Property 2. If &, and @, and (q;,q;,;) are such that

the assumption of property 1 is verified, then the over
approximation of the reachable space from the set of
entering points X, is

s 50 = convextuadi(4,. . (x0). 4, (x,) (12)

oe [‘lo R4 ]

where 4, ,(x,) is characterized by the conjunction of
(10) and (13).

vi' (x=x,4)20A7], (x-x,)<0

(13)

This property is directly deduced from property 1. It is
very important because it allows to compute the union
of reachable region for a continuous variation of the
parameter o from the computation for two values.

Property 3. If «, and ¢, are such that

Xinit € Siqy NSiq then Vae lag. o] x5 € Sia
and the vertices of the intersection of Aw(x o) with
1,4 are aligned for all values of a between ¢, and

0!1.

The first part of this property is proved by considering
that if a=pay+(1-B)a then q," (x,; —X.0)=
ﬁqz'T (Xinit ~ Xeq, )+ (1 - ﬁ)qz'T (Xinit - Xeal) is positive

and that q,,"(x,, —x,,) 1S negative with equivalent
considerations.

The second part of the property is illustrated in figure 3
and is proved by considering that these vertices are the

Of 'YI'T(X—XI",”'[)=O
yiHT(x—xmit) =0), that does not depend on «, with
1

intersection (or

i+l -

So if &, and ¢« are such that the assumption of

property 3 is verified, then the incoming points in the
next region S, , are all aligned and property 2 can be

used to compute the reachable region within this set of
cells. This can be iterated as long as the considered
regions do not intersect the boundary of /nv and leads
to the algorithm presented in the next section.

I

i+10

Fig 3. Initialisation



4. REACHABILITY ALGORITHM

This algorithm aims at computing an over
approximation of the reachable space from an initial
point that is valid for all values of the unknown
parameter. It is based on properties 2 and 3 of the
previous section that allow to compute the global set
with a continuous variation of the parameter from the
computation for a finite number of values of this
parameter. It is summarized in algorithm 1.

Algorithm 1: Global reachability calculus

Input: (A, by, b;) continuous dynamics with the
domain of the unknown parameter b, Inv the
considered region of the state space, x,,, the
initial point,

Result: R(xim-,) the over approximation of the

reachable space from x within the region

init >
Inv, with respect to the dynamics constraint and
valid for all the values of the parameter.

Step 1: decomposition of the region of interest.

Step 2: computation of the initial value of the index i of

the cells S, , and of the initial set of values for

the parameter o and initialisation of incoming
points.
Repeat
Step 3: computation of the reachable region within

the set of cells S; , for the index i: URi,k .
k

Step 4: computation for the next iteration of the
index of cells S;,, of the set of pertinent

values of the parameter o, and of the
incoming points.
Until end

4.1 Initialization phase

The initialization of the calculus consists in the two
first steps of algorithm 1. The first step may be
summarized by the interface of algorithm 2. The details
for this step may be found in (Lefebvre and Guéguen,
2006). The important point is that the vectors are
chosen and the set {q,} is ordered so that cells are

characterized by (10) and q; characterizes the border

of cell §;, through which trajectories enter the cell.

Algorithm 2: decomposition
Input: (A, by, by), Inv,
Result: {q 1} the set of vectors defining the cells, {y ,}

the set of vectors defining the differential
inclusions and (xeo,xel) the equilibrium points

associated to b and b;.

The step 2 of the algorithm is based on property 3 of
the previous section. It is summarized by algorithm 3.

Algorithm 3: initialisation of the loop
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Input: {ql } > (XeO > Xl )7 X init »

Result: V' _alp init the ordered set of values of the

parameter o that will have to be considered, the initial

index i, V_alp the initial set of values of the parameter
to be considered in the next step, for each value of the
parameter the associated incoming points.

Step 1: computation of V_alp_init.

Step 2: for each value of V_alp init, computation of
the index ,j such that x,;,€S;, and
initialisation of the index i to the minimum of
these indexes.

Step 3: choice of values of V alp init such that
X ;i € S;o to initialise V_alp and for each value
of V_alp initialisation of the incoming points

pl,a and pz,(z to Xinit -

Step one consists in computing for each vector q; the

value of e [0,1], if it exists, such that x,,; € /;, and

ini
to add this value to V alp init that is initialized to
{0.1}. At the end of this step, two consecutive values in

V_alp_init verify assumption of property 3.

4.2 Iterative phase

The first step of the iterative phase (step 3) is the
computation of the reachable region within the cells.
Firstly, for each value of V_alp, the region 4,

characterized by (14), is computed. Then, property 2 is
used to compute for each pair (@;,a;,) of

consecutive values in V_alp, R;; (15) the reachable
region within §,, for ae [ ,0,,,]. Finally the

value of R(x i ) after this iteration is computed (16).

Ai,a = Convexh”ll(Ai,a (p La ), Aie (P 2.0 ) (14)
Ry = convex_hull(Al-’ak Aig,, )ﬁ Inv (15)
R(Xim't)= R(Xmiz)u(URi,k] (16)

k

Step 4 is the preparation for the next iteration and may
be summarized by algorithm 4.

Algorithm 4: preparation for the next iteration

Input: V_alp, {AW} the set of reachable regions for
each value in V_alp, q;,,, Inv, V_alp_init.
Result: i the index of the cells, V_alp the set of values
of the parameter, and for each value the associated

incoming points, p; , and p,, .

Step 1: for each element of V alp, computation of
O, = Ay N1, the set of possible outgoing
points.

Step 2: for all pairs (ak ,Q;.,,) of consecutive elements

of V_alp computation of Out, the convex hull
of O, and O, .



Step 3: for all regions Out, computation of Inty the
intersection with the region /nv.
If Int,=0ut; nothing
If Int,=Q the relative values of o are deleted
from V_alp
else computation of the values of o such that
the vertices of In# belongs to 7, ,

and insertion of these values in V_alp.

Step 4: if q;+; is a left eigenvector, setting of V_alp to
empty. Increment of index i.

computation for all elements of V alp of the
incoming points (pl’a,pz,a)in the cell S, .

Step 5:

Step 6: if x;,, €S,, for some value of V _alp init,

insertion of the relevant value to V _alp and

setting of the associated incoming points to

Xini -

Step 7: for each three-tuple (a’ 01,0 +2) of
consecutive values in V alp, if the 3 points

(pl’aj, Pra,,» pl’“ﬁz) are aligned, and so are
the points (pz’% Pra, Pra, ), then deletion

of the value ¢, from V_alp.

Step 3 of this algorithm 4 is central in the approach
because it ensures that at each step all the pairs of
consecutive elements of the set V alp verify the
assumptions of property 2. The calculus for continuous
variation of o from the computation for a finite number
of values of this parameter, performed at step 4 of the
global algorithm, is then valid. The case when the
intersection Int, is neither empty nor equal to Outy is
illustrated in figure 4. As the outgoing domain Ou#
intersects the boundary of the region Inv, in the next
step the incoming points for all values of o between o,
and o, will not be aligned. A new value a* is then
introduced, such that for all a between o; and o* on
the one hand, and between o* and o, on the other hand,
the incoming points are aligned and property 2 can be
used in the next step. Step 7 of algorithm 4 ensures that
the set of values V alp is minimal as it deletes
intermediate values that are not mandatory to guaranty
this line condition.

Fig 4. Intersection of the outgoing domain with the
region Inv

The loop is stopped when the set V_alp is empty or
when the global estimation of the reachable space does
not evolve any more but of course there is no guaranty
that it will really stop.
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5. EXAMPLE

In order to illustrate this algorithm, its application to
the computation of the reachable space from the initial

r= [4 5] for the system specified by the

following values is considered. For this system, matrix
A has two real left eigenvectors that are used to
generate the decomposition and 15 vectors q; are
considered.

point Xx,,;

0 1 0 -1
A: ’b0: ’bl:
-4 -5 4 19
(1 0] 10 |
-1 0 -10
Inv: 0 1 x<| 10
0 -1 -1
13 -2 |15 ]

Step 2 of algorithm 1 then computes that the algorithm
is initialized with:

V _alp _init=10,0.25,0.9077, 1}
i=4
V _alp ={0.9077,1}

The first two iterations of the reachability calculus are
shown in figure 5. The results for the first iteration is
shown in figure 5.a. For this step, the considered cells
are S, for the 2 values of the parameter a. As for

a =0.9077, x;,; belongs to the outgoing border of the
cell, the reachable space within this cell is only this
point and the global reachable space is computed for
a =1. For the second iteration, the considered cells are

S5, and there are 3 values for a. For o=0.25 the

reachable space is one point, for a=0.9077 it is
computed from Xy, and forae =1 it is computed from
the vertices stemming from the previous iteration. The
polytopes A, for this iteration are represented in figure
5.b and the reachable region for all values of o between
0.25 and 1 (R,) is drawn in figure 5.c.

The result of the global computation is displayed in
figure 6. In this case, the global computation stops and
the reachable region is bounded by a line defined by the
equilibrium points of the system for all possible values
of a..

3.95 4 4.05 4.1 4.15 42 4.25 43 435 44 a)



25 ; i i i | i ; ; ;
395 4 4.05 4.1 4.15 4.2 4.25 43 4.35 44 C)

Fig. 5. First iterations of the reachability Computation

The sets of values of « that are considered at each
iteration of the calculus are summarized in table 1.
Three phases may be seen. In a first phase (iterations 1,
2, 3) at each iteration a new value from the initial set
computed at step 2 of the global algorithm is added.
During the second phase (iterations 4, 5, 6), the set
does not change. Then, at the end of iteration 6, the
boundary of the region /nv is crossed for some values
of o as shown in figure 7. The values of a associated to
the vertices of Int; and Int, are then introduced by step
3 of algorithm 4. From this iteration to the end of the
computation, the algorithm adapts the values of «
according to this step 3 and to step 7 of algorithm 4.

6r

Fig. 6. Global reachable region

Inv
Int,
1 a=0.9077
n, O,
O(XZO
Fig. 7 Details of the first intersection with the boundary

of Inv.
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Table 1 Values of parameters o with respect to the
calculus index

1 0.9077 1
2 025 0.9077 1
3 0 0.25 0.9077 1
4 0 0.25 0.9077 1
5 0 0.25 0.9077 1
6 0 0.25 0.9077 1
7 0.1275 0.1667 0.25 0.3653 09077 1
8 0.2971 0.3725 04987 0.9077 1
9 0.36l1 0.4848 0.5231 0.9077 1
10 0.3611 0.5329 0.9077 1
11 03611 0.5329 09077 1
12 03611 0.5329 0.9077 1
13 03611 0.5329 1
CONCLUSION

In this paper, a method for reachability analysis of
uncertain affine systems has been presented. It extends
a previous work which allows the reachable space to be
easily computed when the dynamics of the system
under study is completely known. This approach also
proved to be suited to uncertain systems as it allows to
compute the over-approximation of the reachable space
for uncertain systems where a parameter takes its
values in a continuous space using a finite number of
particular values. The set of these values is adapted at
each iteration in order to limit the over-approximations
of the reachable space to those linked, on the one hand,
to uncertainty and, on the other hand, to the abstraction
technique.

In this work, it has been assumed that the unknown
parameter was fixed. Future work will consider
reachability computation when this parameter may
evolve with time, for example to take into account
systems with bounded inputs (Girard, et al., 2006).
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