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Abstract: In this paper we report of a technique to design optimal feedback control
laws for hybrid systems with autonomous (continuous) modes. Existing techniques
design the optimal switching surfaces based on a singular sample evolution of the
system; hence providing a solution dependent on the initial conditions. On the
other hand, the optimal switching times can be found, providing an an open loop
control to the system, but those also are dependent on the initial conditions. The
technique presented relies on a variational approach, giving the derivative of the
switching times with respect to the initial conditions, thus providing a tool to
design programs/algorithms generating switching surfaces which are optimal for

any possible execution of the system.  Copyright © 2006 IFAC
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1. INTRODUCTION

Consider a switched system with autonomous
continuous dynamics,

ẋ(t) = fq(t)(x(t)), (1)

q+(t) = s(x(t), q(t)). (2)

where (1) describes the continuous dynamics of
the state variable x ∈ X ⊆ R

n and (2) describes
the discrete event dynamics of the system. Given
an initial condition x0 := x(t0), the switching
law (2) determines the switching instants ti, i =

1 This work has been partially supported by MIUR under
grant PRIN 2005092439

1, 2, . . ., and thus the intervals where a certain
modal function is active, as well as the initial
condition for the o.d.e. which defines the evolution
under the next mode. The discrete variable q is
piecewise constant in time and belongs to a finite
or countable set Q, hence, it can be expressed in
terms of the index i as q(i). In terms of such index
the dynamics of a switched system is:

ẋ(t) = fi(x(t)), t ∈ (ti−1, ti] (3)

i+ = s(x(t), i, t). (4)

with the understanding that fi := fq(i), for a given
map q(i), i.e., in this case (4) only expresses the
occurrence of the ith switch, the specification of
the next active mode being given by the map q(i).
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Since the continuous modes are autonomous, the
evolution of the system is determined by the
active modes, according to (4). When the function
s does not depend by the (continuous) state
variable x, the switching instants are determined
as exogenous inputs, and the system is controlled
in open loop (timing control); when s is dependent
only on the state variables, the switching law is
given in a feedback form, and it may be defined
by switching surfaces in the state space.

To formulate the problem we are interested with,
consider a simple execution of (3,4) with only
one switch, starting at x(t0) = x0 with mode
1, switching to mode 2 at time t1, an exogenous
switch, and terminating either at a fixed final time

t2 or in correspondence of a terminal manifold

defined by a function g(x), so that t2 satisfies
g(x(t2)) = 0. For ease of reference, denote such
two sets of possible executions by χt and χg,
respectively.

To fix notation, let the explicit representation of
the evolution determined by mode i be given by
x(t) = ϕi(t, s, x(s)), hence,

x(t) =

{
ϕ1(t, t0, x0) t ∈ [t0, t1]
ϕ2(t, t1, x(t1)) t ∈ (t1, t2]

(5)

Also, let xi := x(ti), and R := f1(x1) − f2(x1).
In this paper the following conventions will be
used: 1) vectors are columns; 2) the derivative of
a scalar, e.g. L, w.r.t. a vector x is a row vector:

Lx :=
dL

dx
=

[
∂L

∂x1
, . . . ,

∂L

∂xn

]

. (6)

(hence LT
x is a column vector). The Hessian ma-

trix is denoted by Lxx. If f is a (column) vector,
function of the vector x i.e.,

f = [f (1)(x), . . . , f (n)(x)]T

then

fx :=
∂f

∂x
=










∂f (1)

∂x1
. . .

∂f (1)

∂xn
...

. . .
...

∂f (n)

∂x1
. . .

∂f (n)

∂xn










According to this convention, if c, t are scalar
quantities, x, y, z, are vectors, and M is a square
matrix, the usual chain rule applies to c(x(t)) and
c(x(y)), i.e. dc

dt
= cxẋ, cy = cxxy (v̇ stays for dv

dt
);

also:

d

dz
[cy] = yT cz + cyz, (7)

d

dz
[xT y] = yT xz + xT yz, (8)

d

dz
[M(t(z))y(t(z))] = (Mty + Myt)tz. (9)

2. PROBLEM FORMULATION

For those systems described above, when the op-
timal control problem to minimize a cost function

J =

∫ t2

t0

L(x(t))dt (10)

is formulated, for some continuously differentiable
function L, and such that Lxx is symmetric, then
it is known that when t1 = t∗1, a (locally) optimal
switching time, it satisfies the following condition,
see e.g. (Egerstedt et al., 2003):

c(t∗1) := pT (t∗1)R(x∗
1) = 0 (11)

where pT (t), for t ∈ [t∗1, t2] is given by:

pT (t) =

∫ t2

t

Lx(x(s))Φ2(s, t)ds + pT (t2)Φ2(t2, t)

(12)

with Φi the transition matrix of the linearized
time-varying system ż(t) = ∂fi(x(t))

∂x
z(t), and

pT (t2) = 0 for fixed final time and

pT (t2) = −L(x2)gx(x2)

L2
, (13)

for an evolution ending at a terminal manifold,
where L2 := gx(x2)f(x2), the Lie derivative of g
along f2 evaluated at x2.

Assuming to start from a perturbed initial con-
dition x̃0 = x0 + δx0; it is possible to use the
information of optimality of t∗1, as a switching
time, to determine t̃∗1; in other words: what is the
dependence of the optimal switching time on the
initial conditions?

This problem is motivated by the determination
of optimal switching surfaces, which tend to solve
optimal control problems for autonomous system
via the synthesis of feedback laws, which may be
pursued for specifications of stability or optimal
control. Relevant application of such technique
may arise in many areas such as behavior based
robotics (Arkin, 1998), or manufacturing systems
(Khmelnitsky and Caramanis, 1998) to cite a few.

Computational methods exist and are based on
the optimization of parametrized switching sur-
faces (Boccadoro et al., 2005). However, the choice
of the optimal values for such parameters depend
on the particular trajectory chosen to run an op-
timization program, and thus, fundamentally, on
the initial conditions (remind that systems with
no continuous inputs are being considered).

An interesting reference for this type of approach
is (Giua et al., 2001), which addressed a timing
optimization problem, and discovered the spe-
cial structure of the solution for linear quadratic
problems. Indeed, in that case it is possible to
identify homogeneous regions in the continuous
state space, whose boundaries, when reached, de-
termine the optimal switches, thus providing a
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feedback solution to a problem which is formu-
lated in terms of an open loop strategy.

Here we explicitly investigate the relation existing
between optimal switching times and initial con-
ditions, studying how the condition of optimality
(11) that switching times must satisfy, vary in
dependence of the initial conditions.

3. OPTIMAL SWITCHING TIMES V/S
INITIAL CONDITIONS

It is well known that, under mild assumptions,
executions of switched systems are continuous
w.r.t. the initial conditions (Broucke and Arapos-
tathis, 2002). If we assume that also the depen-
dence of c on t∗1 as well as t∗1 on x0 is such, we may
characterize function t∗1 by deriving (11) w.r.t.
x0 and setting this derivative to zero. In fact, if
starting from x̃0 = x0+δx0, it results t̃∗1 = t∗1+δt∗1;
then, by continuity, 0 = c(t̃∗1) = c(t∗1) + dc

dx0
δx0 +

o(δx0). Hence, settting dc
dx0

= 0, to satisfy opti-

mality condition for t̃∗1, yields a formula for the
variational dependence of t∗1 on x0. To go further,
the superscript ∗ will be dropped (hence assuming
that t1, x1 etc. are relative to optimal executions)
in order to reduce the notational burden.

By (8) we have that

dc

dx0
= RT dp(t1)

dx0
+ pT (t1)

dR

dx0
(14)

To calculate dp(t1)
dx0

, account for the following re-
sult, which is readily verified:

d

dx

∫ b(x)

a(x)

f(s, x)ds =

∫ b

a

df

dx
(s, x)ds + f(b, x)bx − f(a, x)ax (15)

Then, considering the simpler case of fixed final
time (so that t2 is not a function of x0), by (12,
8, 15)

dp(t1)

dx0
=

∫ t2

t1

[
ΦT

2 (s, t1)Lxx(x(s))
dx(s)

dx0
+

dΦT
2 (s, t1)

dt1
LT

x (xs)
dt1
dx0

]
ds

−ΦT
2 (t1, t1)L

T
x (x1)

dt1
dx0

(16)

To compute dx(s)
dx0

notice that x(t1) = ϕ1(t1, t0, x0),
hence x(s) = ϕ2(s, t1, ϕ1(t1, t0, x0)) for s ∈ [t1, t2],
thus,

dx(s)

dx0
=

∂x(s)

∂t1

dt1
dx0

+
∂x(s)

∂x1

∂x1

∂t1

dt1
dx0

+
∂x(s)

∂x1

∂x1

∂x0

(17)

Now, ∂x(s)/∂t1 = −f2(x(s)) 2 , ∂x(s)/∂x1 =
Φ2(s, t1), ∂x1/∂x0 = Φ1(t1, t0), ∂x1/∂t1 =
f1(x1), Φ2(t1, t1) = I,

d

dt1
Φ2(s, t1) = −Φ2(s, t1)

∂f2(x1)

∂x
(18)

(to be transposed). It results:

d

dx0
p(t1) = (I1 − I2 − I3 − K)

dt1
dx0

+ I4 (19)

where

I1 =

∫ t2

t1

ΦT
2 (s, t1)Lxx(x(s))Φ2(s, t1)f1(x1)ds

I2 =

∫ t2

t1

ΦT
2 (s, t1)Lxx(x(s))f2(x(s))ds

I3 =

∫ t2

t1

fT
2x(x1)Φ

T
2 (s, t1)L

T
x (x(s))ds

I4 =

∫ t2

t1

ΦT
2 (s, t1)Lxx(x(s))Φ2(s, t1)Φ1(t1, t0)ds

K = LT
x (x1)

dt1
dx0

(20)

To handle these, integrate by parts I2 (letting
dt1
dx0

), taking into account that
∫

Lxx(x(s))f2(x(s))ds = LT
x (x(s))

we have
∫ t2

t1

ΦT
2 (s, t1)Lxx(x(s))f2(x(s))ds =

−I3 + ΦT
2 (s, t1)L

T
x (x(s))

∣
∣
∣

t2

t1

=

−I3 + ΦT
2 (t2, t1)L

T
x (x2) − K (21)

This leads to the cancellation of I3 and K in (19).

To complete, let’s compute dR(x1)/dx0. Again,
notice that x1 = x(t1) = x[t1(x0), x0], hence,

d

dx0
R(x1) =

∂R

∂x
(x1)

[
∂x1

∂t1

dt1
dx0

+
∂x1

∂x0

]

=

∂R

∂x
(x1)

[

f1(x1)
dt1
dx0

+ Φ1(t1, t0)

]

(22)

Multiplying this by pT (t1), (19) by RT from the
left and summing up we finally obtain:

dc(t1)

dx0
=

[
RT (Qf1 − ΦT

2 (t2, t1)L
T
x (x2)) + pT (t1)Rxf1

] dt1
dx0

+
[
RT Q + pT (t1)Rx

]
Φ1(t1, t0) (23)

where f1 := f1(x1), and

Q :=

∫ t2

t1

ΦT
2 (s, t1)Lxx(x(s))Φ2(s, t1)ds (24)

which is a kind of quadratic form co-costate.
Notice that the term multiplying dt1

dx0
above, is a

2 For time invariant dynamics, [ϕ(s, t + h, x) −

ϕ(s, t, x)]/h = [ϕ(s − h, t, x) − ϕ(s, t, x)]/h = −f(x(s)) +
o(h).
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scalar. So, if we know that t∗1 is a local optimum
for an evolution starting from x0, then, assuming
to start from x̃0 = x0+δx0, we simply must switch
at t∗1 + δt∗1 + o(δx0). According to (23),

δt∗1 =
−[RT Q + pT (t1)Rx]Φ1(t1, t0) δx0

RT (Qf1 − ΦT
2 (t2, t1)LT

x (x2)) + pT (t1)Rxf1

(25)

4. ENABLING CRITERIA FOR THE DESIGN
OF THE OPTIMAL SWITCHING SURFACES

To put in use Eq. (25) assume that one optimal
switching time has been derived for a certain
”sample” evolution of the system, e.g. one starting
in x̂0. Then the optimal switching surfaces are
defined by the optimal switching states yielded by
the variation on the optimal switching times when
initial conditions different than x̂0 are considered.
However, it must be paid attention to the fact that
the formula derived above works for a fixed final
time: indeed for the case of evolution ending at a
terminal manifold the following result holds,

Theorem 1. Consider a nominal and a perturbed
execution of the set χg, x(·) and y(·), respectively,
the first starting at x0 and the latter starting from
a point y0 which lies on the nominal trajectory;
i.e., assume that it exists a duration δt0 such
that y0 = ϕ1(t0 + δt0, t0, x0). Then, the following
relation holds:

t∗1(y0) = t∗1(x0) − δt0 (26)

for all δt0 < t∗1 − t0

Proof The optimal evolution may be split into
the trajectory from x0 to y0 and from y0 onwards.
Hence, by the principle of optimality, this second
branch of the evolution must be itself optimal, so
that the optimal switching state is the same. The
result follows by time-invariance of the system.

⊓⊔

Remark 1. Theorem 1 easily extends to negative
δt0, i.e., if y0 is chosen such that the evolution
starting from y0 will reach x0 we must add the
time needed to reach x0 from y0 to the optimal
(nominal) switching time. ⊓⊔

In case of fixed terminal time the optimal switch-
ing state may vary because the perturbed trajec-
tory described in Theorem 1 above, switching at
t∗1 − δt0, reaches the point x(t2) (of the nominal
trajectory) at time instant t2−δt0, thence ”visits”
additional states from t2−δt0 to t2 (in other words
x̃(·)(t2−δt0,t2] is a set of states not visited by x(·)).
Such remnants of the perturbed trajectory add
further costs, so that two different trajectories,
even if the starting point of one of them lies in the

trajectory of the other, cannot really be properly
compared, in terms of optimal switching states.

This point is evident also from (25): take an i.c.
y0 = ϕ1(t0 + δt0, t0, x0) very close to x0, so that
δx0 = f1(x0)δt0 + o(δt0). Substituting such δx0

in (25), we have that its numerator (plus higher
order terms) is:

−[RT Q + pT (t1)Rx]Φ1(t1, t0)δx0 =

−[RT Qf1 − pT (t1)Rxf1]δt0 (27)

where Φ1(t1, t0)f1(x0) = f1(x1) is due to the fact
that vector fields obey their variational dynam-
ics 3 . Hence,

δt∗1 =
−[RT Qf1 + pT (t1)Rxf1] δt0

RT (Qf1 − ΦT
2 (t2, t1)LT

x (x2)) + pT (t1)Rxf1

(28)

In this case, condition (26) is equivalent to δt∗1 =
−δt0, and for this to be verified, denominator
and numerator should have had the same terms,
opposed in sign. Here, the only term making the
difference, preventing (26) to hold (as expected)
is

−RT ΦT
2 (t2, t1)L

T
x (x2). (29)

Remark 2. Notice, however, that for a case similar
to those considered in (Giua et al., 2001), where
the the final dynamic mode is linear, stable and
the terminal time tends to infinity, we have that
the additional term (29) vanishes. Accordingly,
optimal switching surfaces are well defined also
for such situations, and could be possibly charac-
terized using (25).

In summary, in force of Theorem 1 and Remark
2, the objective to characterize optimal switch-
ing surfaces independent of the initial conditions
should be pursued considering evolutions ending
at terminal manifolds or those evolutions of the
family χt with the restrictions illustrated above,
since in such cases variations in the switching
times define soundly optimal switching states as
well.

Theorem 1 and the discussion that follows, also
give an hint about the set of initial conditions
that should be considered to set such procedure.
Indeed, it seems reasonable account only for that
set of initial conditions which are transversal to
the flow defined by the vector field of the initial
dynamics (here f1) which contains x̂0. Such set
of initial condition is a surface itself and can be
described by s(x) = 0 where s is a R-valued
function such that s(x̂0) = 0 and such that sx(x)
is collinear with f1(x), so that s would be a kind

3 Indeed, the variational system ż(t) =
∂f(x(t))

∂x
z(t) has

the solution z(t) = f(x(t)), which can be seen from the
chain rule ḟ = fxf
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of potential of the vector field f1. This choice is
justified by the fact that the components of the
variation δx0 on some x0 which are tangent to
the flow yield no difference on the optimal switch-
ing state, hence giving no relevant information to
the construction of a switching surface which is
optimal for the executions determined by any pos-
sible initial condition (i.e., the optimal switching

surface).

5. CONCLUSION AND FUTURE WORKS

This paper presents the first steps to design a new
method to determine optimal switching surfaces
for hybrid systems with autonomous modes. The
idea is to characterize the variations in the op-
timal switching times corresponding to variations
in the initial conditions, and to apply this formula
for transverse shifts in the initial conditions, ac-
cording to the considerations following the result
stated in Theorem 1.

At the time of the first submission the formula
relative to evolutions ending at a terminal man-
ifold was not given, but successive studies led to
its derivation. This new result, together with the
analysis carried out in this paper, which identi-
fied those situations where an optimal switching
surface independent of initial condition is well
defined, allows to pursue the program, outlined
above, based on the investigation of the effect of
transverse variations in the initial condition on the
switching states.

Future work will be devoted to further character-
ize the analytical properties of optimal switching
surfaces, and develop efficient numerical proce-
dures to generate the optimal switching surfaces,
in force of the results given here.
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