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Abstract: This paper concerns an optimal control problem defined on a class of switched-
mode hybrid dynamical systems. Such systems change modes whenever the state in-
tersects certain surfaces that are defined in the state space. These switching surfaces
are parameterized by a finite dimensional vector calledsthigching parameterThe
optimization problem we consider is to minimize a given cost-functional with respect

to the switching parameter under the assumption that the initial state of the system is not
completely known. Instead, we assume that the initial state can be anywhere in a given
set. We will approach this problem by minimizing the worst possible cost over the given
set of initial states using results from minimax optimization. The results are then applied

in order to solve a navigation problem in mobile robotics. Copyright © 2006 IFAC
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1. INTRODUCTION sources (Brockett, 1995; Egerstedt and Wardi, 2002;
Hristu-Varsakelis, 2001).

Over the last couple of decades, a lot of effort has beenTh ¢ f hvbrid svst q ideration in thi
directed towards optimal control of hybrid systems € type of hybrid Systém under consideration in this

(Branicky et al, 1998: Bemporadt al, 2002; Guia paper can be described by the following equation

et al, 1999; Hedlund and Rantzer, 1999; Hristu-

Varsakelis, 2001; Xu and Antsaklis, 2002; Caines and X(t) € {fa(X(t),u(t))}aea, (1)
Shaikh, 2005; Attieet al, 2005). Hybrid systems are

complex systems that are characterized by discretewherex(t) € R", u(t) € R, and{ fg : R™* — R"} 4
logical decision making at the highest level and con- is a collection of continuously differentiable functions,
tinuous variable dynamics at the lowest level. Exam- parameterized byr belonging to some given sét
ples when these systems arise include situations wher& he timet is confined to a given finite-length interval
a control module has to switch its attention among [0,T]. A supervisory controller is normally engaged
a number of subsystems (Lincoln and Rantzer, 2001;for dictating the switching law, i.e. the rule for switch-
Rehbinder and Sanfridson, 2000; Walshal., 1999) ing among the function$, in the right-hand side of
or collect data sequentially from a number of sensory (1).
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This paper addresses a particular class of hybrid syspresented in Section 4 and conclusions are given in
tems, called switched autonomous systems, where theSection 5.

continuous-time control variable is absent and the

continuous-time dynamics change at discrete times

(switching-time} For these systems, the authors have 2. PROBLEM FORMULATION & PREVIOUS
derived gradient expressions for the cost functional RESULTS

with the respect to the switching times when the ini-

tial statexo € R" is fixed. In particular, (Egerstedt The state trajectory of the underlying system is given
et al, 2006) presented a gradient and an algorithm py the following equation

that finds optimal switching-times, for when to switch )

between a given set of modes, for the case when the X(t) = fix(t), t € [ti-1, 7)), i € {1,....,N+1}, (2)
switching-times are controlled directly. Furthermore, where we assume that the system switcNeimes.
(Boccadoreet al, 200%) considered the case when a The modal functions are chosen from a given set
switch between two different modes occurs when the {fa}aca. However, we assume that the switching

state trajectory intersects a switching surface, definedtimes are not controlled directly. Instead, a switch oc-
by g(x(t),a) = 0, and parameterized by the parameter curs whenever the state trajectory intersecssvich-

a. Reference (Boccadoet al, 200%) can be thought  ing surface. This problem was initially considered in
of as the starting point of this paper, as we consider a(Boccadoroet al, 200%) for a fixed initial state.
similar problem but instead of optimizing with respect e will follow the presentation of (Boccadoret

to a given fixed initial conditiorxp € R", we will gl 200%) in order to set the stage for our mini-

assume that the initial state can be anywhere within max pr0b|em when the initial state in not Comp|ete|y
a given setSC R". In order to find a good value of known.

the switching parametex, independent of where i8 o )

we start, we will use the gradient formula presented in W& assume that the switching times and the modal
(Boccadoreet al, 200%) and find the optimak such functions are determined recursively in the following
that we will minimize the worst possible cost for all W&y Givenfi andti_1 > 0 for somei = 1,2,..., let

trajectories starting itS. Hence, we have a minimax () C A be a given finite set of modes, labellete
problem. set of modes enabled by. Hence, there might be a

restriction on the mode sequence. For ewery A(i),
At this point, it should be noted that although we we let S, ¢ R" be then — 1 dimensional surface

will focus on the case where switches occur when enabling the switch to mode. Then, the next switch
the state trajectory intersects a switching surface, thejs defined by

algorithm that will be presented in order to solve the )

minimax problem would also solve the free switching- G=min{t > Ti-1 © X(t) € UgeaiS) ()
time problem with only minor modifications. Hence, and we note that it is possible to haxe= o. If T; < o
this paper presents a way to get rid of the dependencehen we pickd € A(i) such thak(t;) € S3, and we set
of the initial condition under the assumption that the f,,, — f5. The system is initialized by setting = 0

initial state belongs to a given set. and choosing what mode the system should start with.

Once the theoretical underpinnings have been pre-The time when the state trajectory intersects a surface
sented, the results will be applied to a navigation prob- definest;, and the index of the surfacg defines
lem in mobile robotics. fi.1. In this paper, the surfac& are defined by the

s Solution points of parameterized equations frfito

R. We denote the parameter layand suppose that

a € R¥ for some integek > 1. For everya € A, we

let gq : R" x RK — R be a continuously differentiable

The robotics problem considered in this paper wa:
also investigated in (Boccadoet al, 200%), for a
fixed initial state. However, for many applications the
initial state is not known. An example of this is robotic i i i K
systems that get their position from a Global Posi- function. For a given fixed value @ € R*, denoted
tioning System (GPS). Typically there is a nontrivial N€re byaq, the switching curveS, is defined by
error associated with these systems. Hence, if the GPghe solution pointsc of the equationgy (x,aq) = 0.
indicates that the robot is at a poifit,y) the robot ~ NOte that under mild as_sumptm:]rs, is a smooth
can be anywhere within the intervat — A, x4 A) x (n—1) dimensional manifold ink", andaq can be
(y—A,y+A), for some positive constadt As a re- wewgd as acon_trol parar_neter of t_he surface. Us_lng the
sult, solving the parameter optimization problem for a €rminology defined earlier, we will replace the index
given fixed initial state might not give a good solution @ PY; thus,Si is the solution set of the equation

if the robot’s position is given by a GPS. gi(xa) =0, (4)

The outline of this paper is as follows: In Section which is parameterized by the control variable R.
2, the problem at hand is introduced together with To summarize, the system changes dynamics when-
some previous results relating to the gradient formula. ever the state trajectory intersect a switching curve

Section 3 presents our solution using a minimax strat-g(x, a) = 0 parameterized by a control variakde as
egy. Simulation results for the robotics application are j||lustrated in Figure 1.

96



g(z,a) =0 g Y99 -
) mﬁ)—“—EREYMﬁMTMﬁLI—LHWN
' (10)

Proof: See (Boccadoret al,, 200%).

&= fiy1(z(t)) Having presented the expression for the gradient, as
derived in (Boccadoret al., 200%), we can now pro-
ceed to present the minimax solution to our switching
surface parametrization problem.

&= fi(x(t))

Fig. 1. Mode switching occur when the state trajectory 3. MINIMAX OPTIMIZATION

intersect a switching surface. In this case, the

switching surface is a circle parameterized by the Gjven a set of possible initial poin8c R", a set of

radiusa. switching surfaces parameterized by some veator
and an instantaneous cdstthe total cost, starting at
Xo € S, is given by

Jo(a) = | " Loxt))dt, (11)

whereT is a fixed final time and subscrigg indicates
the initial condition. Our problem, denoted By, can
be stated as

In order to minimize a cost criterion of the form

I= /0 L xt, )

wherelL : R" — R, we need to determine the opti-
mal switching surface parameteassince the state
trajectory depends oa. To this end, (Boccadoret

al., 200%) presented an expression of the gradient of
the cost functional with respect to switching surface Ps: Given a set of initial states S and a set of switching
parametera. This gradient was presented under the surfaces parameterized by a, find the surface parame-
assumption that the functiorfs, g;, i =1,...,N+1, ter a such that

andL where continuously differentiable with respect
: . ; max{J(a) | xe S 12
to all its variables. Furthermore, it was assumed that (@) | 4 12)
i =1,...,N+1, was uniformly Lipschitz. is minimized.
We definex; = x(1;), and the term&, andL; by As mentioned earlier, the theory of minimax optimiza-
tion and consistent approximations (Polak, 1997) will
R = fi(x) — fita(X), (6)  be utilized in order to implement and solve this prob-
and lem.
L= 29 % a)fi(x), (7y  Given aset of possible initial stat€s- R", we will
ox choose a sequence of sets of initial poitX;}” .
where we recognizk; as the Lie derivative dfj in the This sequence will satisfy the following three condi-
direction of f;. tions: Firstly,Xj C S i=1,2...; secondly, the num-

ber of elements irX; is bigger than the number of
elements inX;_y; thirdly, every point inS will be
arbitrarily close to a point ifXj, asi goes to infinity.
Choosing{X} 4 in this way enables us to find the
solution to (12) by solving a sequence of optimization

Now, in order to ensure that the gradient exists, the
following assumption is presented;

Assumption 1.Foralli=1,...,N, Lj #0.

Given Assumption 1, reference (Boccadogb al, problems, each one with a different set of initial states.
tzi\(/)g%i) derived the following expression for the deriva- For eachX; we will find the optimal switching param-

da - etera? that minimizesmax{J(a;) | x € X;} through

a gradient descent algorithm, as described below. Af-
ter we have found the optimad?, we will solve
max{J(ai+1) | X € Xj11} by initializing a1 to a’.
This gives a good starting point for the gradient de-
scent algorithm.

Proposition 2.1.The following equation is in force,

dJ 1 o 99
da_ L p(T") E()ﬁaal)' (8)
where the costate equation is given by
For eachX; we will find the optimala® by exe-
_ ofiia T IL T cuting the following gradient descent algorithm with
t)=-— ( X (x(t), )) (t)— (0x(x( ))) ; Armijo step size (Armijo, 1966). We assume thgt
) haveN(i) elements, i.eXj = {X,..., Xy} for some
te[n, i), i=1,...,N, © X1, XN(D) in Sc R".

with terminal conditiorp” (ty) = Owhen the finaltime ~ Algorithm 3.1 Gradient Projection Algorithm with
is fixed, and reset conditions Armijo Stepsize
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Given: The Armijo constantsr, 3 in (0,1). Two con-
stantsd > 0, ande > 0 and the set of initial points
X={x,...,.xn} C S

Initialize: Choose a feasible initial guess on the
switching surface parametar

Step | Calculate the maximum cost for the given set
of initial states, denoted

F(X,a) = m)?x{Jx(a)|x e X}, (13)

whereJy is given by (11). Let (X, a) denote the index
set ofactive constraintsi.e.

I(X,a)={je{1,....,N} | F(X,a) - Jj(a) < &}.
(14)
Calculate the generalized gradient
OF(X,a) =con{Jj(a) [ j € 1(X,a))},  (15)

whereconvdenotes theonvex hull Find the point in
JdF (X,a) closest to the origin and denote it Iy If
[|h|| < & then STOP. Else, goto Step II.

Step It Calculate the step-lengtt according to
Armijo’s rule i.e.

A = max{z=p%k>0]|
F(X,a—zh —F(X,a) < —az|h||?}.

Updatea according tea=a— Ah, goto Step I. ™

A few remarks concerning Algorithm 3.1 are due.
Remark 3.1.The index set of active constraint$X, a),

is introduced in order to determine what initial states
in X we should take into consideration for a giveenf

Remark 3.2.In order to find the optimad for a given

set of initial states, we would have to set the constants
d ande to 0. However, doing this when we solve for

a sequence of initial state$X;}” ;, would not give
any additional benefit, instead we only require that for
each consecutive problem we will soh@&ande will
decrease, and in the limit whan— o, they will be
zero.

Remark 3.3.Solving for h is a standard quadratic
optimization problem over a convex set, and can be
solved using a variety of optimization algorithms.

Remark 3.4.In the robotics example presented in
Section 4, a simple constraint is introduced an
Hence we need to initializeto be in the set of feasible
points.

In order to illustrate the calculation df, a simple
example is presented. Assume that we have four dif-
ferent initial statesy; throughx, in R2. In Figure 2,
their respective gradients are plotted and it is assumed
thatx; throughxs are active initial states for the given
switching surface parametar The shaded region in
Figure 2 corresponds to the convex hull of the gra-
dients of the active initial states, aihds the closest
vector in this set from the origin.

Having presented Algorithm 3.1 and the remarks that
follow it, we are now in the position to present Algo-
rithm 3.2 that will solve problenks.

Algorithm 3.2 Minimax optimization for unknown
initial state:

the index of an initial state is in the index set, then the Gjyen A sequence of initial set§X;}*, € SC R
gradient of the cost associated with that initial state is whereX; = {x,..., %y} andN(i) > II\](i —1). Two

current in the calculation of the generalized gradient, positive sequence; }* o and{4 }™ , such thatin the

JF(X,a). If € =0 in (14), i.e., we only optimize

limit wheni — o0, both are0.

with respect to the initial state corresponding to the |nit- Seti — 0 pick a feasible initial guess .

maximal cost, it is conceivable that we can only take

Step I: Use Algorithm 3.1 to optimize ovea with

a very small descent step since the index set changes; _ Xi, 8 = &, € = &. Initialize a with &_1 if i £ 0

whena changes.

Y

YV, A

Vi,

Va,

Vg,
Fig. 2. Calculation ot given four initial states and

their respective gradients, throughxs are active
initial states.
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and withag if i = 0.
Step Il: Seta; to a given from Algorithm 3.1. Increase
i by one, goto Step I.

4. NUMERICAL EXAMPLE

In order to show the usefulness of Algorithm 3.2,
we consider a mobile robot navigation problem. The
task of the robot is to get to a goal poirg € R?
while avoiding an obstacle located &, € R?. It

has to do this by switching between two different
behaviors, ongo-to-goaland onenbstacle-avoidance
behavior. These different behaviors are denoted by
fy and f, respectively. We model the robot having
unicycle dynamics

%1 = veog ),
Xp = vsin(),

(p = fq(xlaXZa (p)7

(16)



where (x1,%2) is the position of the robotgp is its GPS is0.5 meters (note that GPS do not give the
heading, andy € {g,0} is the current behavior the direction of a stationary robot). In order to simplify
robot evolves according to. We assume that the trans-our exposition, we assume that the robot is always
lational velocityv is constant. Our control variable directed towards the goal, hence we will only show
is then given by the switching surface parameters ofthe (x1,x2) components inX;, i = 0,1,2. This is a

the goal and avoid obstacle guards that dictate whatreasonable assumption if the robot can see the goal,
behavior the robot should evolve according to. A stan- which we assume.

dard pair of *approach-goal” and "avoid-obstacle” be- p, o the error in the GPS reading, the robot can

haviors are given by be anywhere in the interval0.5,—0.5] x [0.5,0.5].
Therefore we initialize Algorithm 3.2 with only one
fo(x1.%2,9) = cg(@—9), (17)  initial state, Xo = (0,0)T, and we then extend the
fo(X1,X2, @) = Co(TT+ @op— ). (18) set of initial states, in a somewhat arbitrary fashion,

as shown in Figure 3. In this example, we stop the
Here, ¢y and ¢, are the gains associated with each algorithm after its third iteration, i.e. whefh|| < &,
behavior, andg, and @, are the angles to the goal  therefore we do not defir; fori =3,4,....
and nearest obstacle respectively. Both of these angles

are measured with respect to tkaxis and can be The switching surfaces for when to switch fraigito
expressed as fo, and when to switch fronf, to fy, are given by

two circles with radiusy anday respectively, where
we requirea; < ap. Both circles are centered at the

—X
= arCta“ﬁXgZi_Xz)y (19)  obstaclex, = (2,1.25)". At this point it should be
"o _Xl noted that having circular guards might not correspond
Pop = arctar(ML (20) to an optimal guard shape.
Xob, — X1

_ We initialize a to be (1,1.5)T and for the constants
where (Xg,,Xg,) and (Xon,; Xob,) are the Cartesian co- i | we setp = 0.01, a = 10 andB = 0.1 and we
ordinates of the goal and the nearest obstacle respecgge cg = Co = 1 for the feedback gains in (17) and
tively. (18). The velocity of the robot is set o= 0.5 and
the goal is located aty = (4,4)T. For the constants
in the Armijo procedure, we use = 3 = 0.5. The

2 2 2 2 2
05F X X X X X ] : H i A 5]71 i
sequences o andesiJ used is given by; = = with
— P —
, ) ) ) , d = 0.25, andej = 5= with §=0.1
X o [m [m X
max(Jxlx] X)
1
2 1 0 1 2
> 0 X o (¢} [m] X
2 1 1 1 2
X ] o ] X
2 2 2 2 2
-05r X X X X X
-0.5 (3 0.5
X
Fig. 3. Initial states used¥; contains the points with
indexi,i—1,...,0.

The instantaneous calstis given by

lIxop—x)l2 . . .
L(X(t)) :p||xg—x(t)|\2+ae_ oy . (21) Fig. 4. (a) Change in maximum cost. (|| and o
i ] ) as a function of the number of gradient descent
where p is the gain of the goal attraction term, iterations in Algorithm 3.2.

is the gain of the obstacle avoidance term, ghd

is a shaping parameter that affects the range of theA plot of how the cost changes together with the norm
obstacle avoidance term. of h and ¢ is shown in Figure 4. As can be seen
in the figure, Algorithm 3.2 effectively reduces the
maximum cost for a given set of initial states. Once
the norm ofh falls below d, we updated, € and the
set of initial statesX.

For a given initial positionxy € R3 the total cost

is given by (11). However, many mobile robots get
their position from GPS readings which has an error
associated with them. In our example, we assume
that the robot get the initial positiory = (O, 0,-)T Once we have updatex]y to X after iteration three,
from the GPS and that the error associated with thewe see that the maximum of the cost increases, just
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as should be expected sinke has more initial states Boccadoro, M., Y. Wardi, M. Egerstedt and E. Verriest

thatXg. Figure 5(a) shows how the switching surface (200%). Optimal control of switching surfaces
parameters change. At the optimuan = ay, i.e. both in hybrid dynamical systemdournal of Discrete
radii are the same. Event Dynamic System$, 433-448.
Branicky, M.S., V.S. Borkar and S.K. Mitter (1998).
. Radius A unified framework for hybrid control: Model
L 2y and optimal control theoryEEE Transactions on
Laf T Automatic Contro#3, 31-45.
\ Brockett, R. (1995). Stabilization of motor networks.
B In: 35" IEEE Conference on Decision and Con-
o ST trol. pp. 1484-1488.
\’x/ Caines, P. E. and M. S. Shaikh (2005). Optimality
Lo e zone algorithms for hybrid systems computation
/\’x\ and control: From exponential to linear complex-
il /X’m/ ity. In: Proceedings of the 2005 International
ool "H‘“"‘H’\/\/ Symposium on Intelligent Control/ 13th Mediter-
- ranean Conference on Control and Automation
08, 5 3 . s . 5 s Cyprus. pp. 1292-1297.
# of iterations Egerstedt, M. and Y. Wardi (2002). Multi-process con-
trol using queuing theory. 11" IEEE Confer-
Fig. 5. Change ina = (a1,a2)" as a function of ence on Decision and Conttdlas Vegas, NV.
the number of gradient descent iterations in Al- Egerstedt, M., Y. Wardi and H. Axelsson (2006).
gorithm 3.2.a; is the radius of theobstacle- Transition-time optimization for switched-mode
avoidanceswitching surfaceg; is the radius of dynamical systemdEEE Transactions on Auto-
the go-to-goalswitching surface. matic Control51, to appear.

Guia, A., C. Seatzu and C. Van der Mee (1999).
Optimal control of switched autonomous linear
systems. In38" IEEE Conference on Decision
5. CONCLUSIONS and Contro] Phoenix, AR. pp. 1816-1821.
Hedlund, S. and A. Rantzer (1999). Optimal control
This paper presented a way of getting rid of the of hybrid systems. In38" IEEE Conference on

dependence on the initial condition when optimizing Decision and ContrglPhoenix, AR. pp. 1972—
over when to switch between different modes in a 3977.

switched-mode system. The dependence on the initialHristu-Varsakelis, D. (2001). Feedback control sys-
condition was dealt with by minimizing the switching tems as users of shared network: Communication
parameter over the maximum cost for a given set of sequences that guarantee stability 46" IEEE
initial states. The only assumption made was that the Conference on Decision and Contr@rlando,
initial state was confined to a given region in the state FL. pp. 3631-3631.

space. Lincoln, B. and A. Rantzer (2001). Optimizing linear

systems switching. In40" IEEE Conference on
Decision and Contrgl Orlando, FL. pp. 2063—

2068.
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