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Abstract: This paper concerns an optimal control problem defined on a class of switched-
mode hybrid dynamical systems. Such systems change modes whenever the state in-
tersects certain surfaces that are defined in the state space. These switching surfaces
are parameterized by a finite dimensional vector called theswitching parameter. The
optimization problem we consider is to minimize a given cost-functional with respect
to the switching parameter under the assumption that the initial state of the system is not
completely known. Instead, we assume that the initial state can be anywhere in a given
set. We will approach this problem by minimizing the worst possible cost over the given
set of initial states using results from minimax optimization. The results are then applied
in order to solve a navigation problem in mobile robotics.  Copyright © 2006 IFAC
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1. INTRODUCTION

Over the last couple of decades, a lot of effort has been
directed towards optimal control of hybrid systems
(Branicky et al., 1998; Bemporadet al., 2002; Guia
et al., 1999; Hedlund and Rantzer, 1999; Hristu-
Varsakelis, 2001; Xu and Antsaklis, 2002; Caines and
Shaikh, 2005; Attiaet al., 2005). Hybrid systems are
complex systems that are characterized by discrete
logical decision making at the highest level and con-
tinuous variable dynamics at the lowest level. Exam-
ples when these systems arise include situations where
a control module has to switch its attention among
a number of subsystems (Lincoln and Rantzer, 2001;
Rehbinder and Sanfridson, 2000; Walshet al., 1999)
or collect data sequentially from a number of sensory

sources (Brockett, 1995; Egerstedt and Wardi, 2002;
Hristu-Varsakelis, 2001).

The type of hybrid system under consideration in this
paper can be described by the following equation

ẋ(t) ∈ { fα(x(t),u(t))}α∈A, (1)

wherex(t)∈Rn, u(t)∈Rk, and{ fα :Rn+k→Rn}α∈A

is a collection of continuously differentiable functions,
parameterized byα belonging to some given setA.
The timet is confined to a given finite-length interval
[0,T]. A supervisory controller is normally engaged
for dictating the switching law, i.e. the rule for switch-
ing among the functionsfα in the right-hand side of
(1).
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This paper addresses a particular class of hybrid sys-
tems, called switched autonomous systems, where the
continuous-time control variable is absent and the
continuous-time dynamics change at discrete times
(switching-times). For these systems, the authors have
derived gradient expressions for the cost functional
with the respect to the switching times when the ini-
tial statex0 ∈ Rn is fixed. In particular, (Egerstedt
et al., 2006) presented a gradient and an algorithm
that finds optimal switching-times, for when to switch
between a given set of modes, for the case when the
switching-times are controlled directly. Furthermore,
(Boccadoroet al., 2005a) considered the case when a
switch between two different modes occurs when the
state trajectory intersects a switching surface, defined
by g(x(t),a) = 0, and parameterized by the parameter
a. Reference (Boccadoroet al., 2005a) can be thought
of as the starting point of this paper, as we consider a
similar problem but instead of optimizing with respect
to a given fixed initial conditionx0 ∈ Rn, we will
assume that the initial state can be anywhere within
a given setS⊂ Rn. In order to find a good value of
the switching parametera, independent of where inS
we start, we will use the gradient formula presented in
(Boccadoroet al., 2005a) and find the optimala such
that we will minimize the worst possible cost for all
trajectories starting inS. Hence, we have a minimax
problem.

At this point, it should be noted that although we
will focus on the case where switches occur when
the state trajectory intersects a switching surface, the
algorithm that will be presented in order to solve the
minimax problem would also solve the free switching-
time problem with only minor modifications. Hence,
this paper presents a way to get rid of the dependence
of the initial condition under the assumption that the
initial state belongs to a given set.

Once the theoretical underpinnings have been pre-
sented, the results will be applied to a navigation prob-
lem in mobile robotics.

The robotics problem considered in this paper was
also investigated in (Boccadoroet al., 2005a), for a
fixed initial state. However, for many applications the
initial state is not known. An example of this is robotic
systems that get their position from a Global Posi-
tioning System (GPS). Typically there is a nontrivial
error associated with these systems. Hence, if the GPS
indicates that the robot is at a point(x,y) the robot
can be anywhere within the interval(x−∆,x+ ∆)×
(y−∆,y+ ∆), for some positive constant∆. As a re-
sult, solving the parameter optimization problem for a
given fixed initial state might not give a good solution
if the robot’s position is given by a GPS.

The outline of this paper is as follows: In Section
2, the problem at hand is introduced together with
some previous results relating to the gradient formula.
Section 3 presents our solution using a minimax strat-
egy. Simulation results for the robotics application are

presented in Section 4 and conclusions are given in
Section 5.

2. PROBLEM FORMULATION & PREVIOUS
RESULTS

The state trajectory of the underlying system is given
by the following equation

ẋ(t) = fi(x(t), t ∈ [τi−1,τi)), i ∈ {1, . . . ,N+1}, (2)

where we assume that the system switchesN times.
The modal functions are chosen from a given set
{ fα}α∈A. However, we assume that the switching
times are not controlled directly. Instead, a switch oc-
curs whenever the state trajectory intersects aswitch-
ing surface. This problem was initially considered in
(Boccadoroet al., 2005b) for a fixed initial state.
We will follow the presentation of (Boccadoroet
al., 2005b) in order to set the stage for our mini-
max problem when the initial state in not completely
known.

We assume that the switching times and the modal
functions are determined recursively in the following
way. Given fi andτi−1 > 0 for somei = 1,2, . . ., let
A(i) ⊂ A be a given finite set of modes, labelledthe
set of modes enabled by fi . Hence, there might be a
restriction on the mode sequence. For everyα ∈ A(i),
we let Sα ⊂ Rn be the n− 1 dimensional surface
enabling the switch to modeα. Then, the next switch
is defined by

τi = min{t > τi−1 : x(t) ∈ ∪α∈A(i)Sα} (3)

and we note that it is possible to haveτi = ∞. If τi < ∞
then we pickα̃ ∈ A(i) such thatx(τi) ∈ Sα̃ , and we set
fi+1 = fα̃ . The system is initialized by settingτ0 = 0
and choosing what mode the system should start with.

The time when the state trajectory intersects a surface
definesτi , and the index of the surfaceSα̃ defines
fi+1. In this paper, the surfacesSα̃ are defined by the
solution points of parameterized equations fromRn to
R. We denote the parameter bya and suppose that
a ∈ Rk for some integerk≥ 1. For everyα ∈ A, we
let gα : Rn×Rk → R be a continuously differentiable
function. For a given fixed value ofa ∈ Rk, denoted
here by aα , the switching curveSα is defined by
the solution pointsx of the equationgα(x,aα) = 0.
Note that under mild assumption,Sα is a smooth
(n− 1) dimensional manifold inRn, andaα can be
viewed as a control parameter of the surface. Using the
terminology defined earlier, we will replace the index
α by i; thus,Si is the solution set of the equation

gi(x,ai) = 0, (4)

which is parameterized by the control variableai ∈Rk.
To summarize, the system changes dynamics when-
ever the state trajectory intersect a switching curve
g(x,a) = 0 parameterized by a control variablea, as
illustrated in Figure 1.
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ẋ = fi(x(t))

ẋ = fi+1(x(t))

g(x, a) = 0

a

Fig. 1. Mode switching occur when the state trajectory
intersect a switching surface. In this case, the
switching surface is a circle parameterized by the
radiusa.

In order to minimize a cost criterion of the form

J =
∫ T

0
L(x(t))dt, (5)

whereL : Rn → R, we need to determine the opti-
mal switching surface parametersa since the state
trajectory depends ona. To this end, (Boccadoroet
al., 2005b) presented an expression of the gradient of
the cost functional with respect to switching surface
parametera. This gradient was presented under the
assumption that the functionsfi , gi , i = 1, . . . ,N + 1,
andL where continuously differentiable with respect
to all its variables. Furthermore, it was assumed thatfi
i = 1, . . . ,N+1, was uniformly Lipschitz.

We definexi = x(τi), and the termsRi andLi by

Ri = fi(xi)− fi+1(xi), (6)

and

Li =
∂gi

∂x
(xi ,ai) fi(xi), (7)

where we recognizeLi as the Lie derivative ofgi in the
direction of fi .

Now, in order to ensure that the gradient exists, the
following assumption is presented;

Assumption 1.For all i = 1, . . . ,N, Li 6= 0.

Given Assumption 1, reference (Boccadoroet al.,
2005b) derived the following expression for the deriva-
tive dJ

dai
.

Proposition 2.1.The following equation is in force,

dJ
dai

=− 1
Li

p(τ+
i )Ri

∂gi

∂ai
(xi ,ai). (8)

where the costate equation is given by

ṗ(t) =−
(

∂ fi+1

∂x
(x(t), t)

)T

p(t)−
(

∂L
∂x

(x(t))
)T

;

t ∈ [τi ,τi+1), i = 1, . . . ,N, (9)

with terminal conditionpT(tN) = 0when the final time
is fixed, and reset conditions

p(τ−i ) = (I − 1
Li

Ri
∂gi

∂x
(xi ,ai))T p(τ+

i ), i = 1, . . . ,N.

(10)

Proof: See (Boccadoroet al., 2005b).

Having presented the expression for the gradient, as
derived in (Boccadoroet al., 2005b), we can now pro-
ceed to present the minimax solution to our switching
surface parametrization problem.

3. MINIMAX OPTIMIZATION

Given a set of possible initial pointsS⊂ Rn, a set of
switching surfaces parameterized by some vectora,
and an instantaneous costL, the total cost, starting at
x0 ∈ S, is given by

Jx0(a) =
∫ T

0
L(x(t))dt, (11)

whereT is a fixed final time and subscriptx0 indicates
the initial condition. Our problem, denoted byPS, can
be stated as

PS: Given a set of initial states S and a set of switching
surfaces parameterized by a, find the surface parame-
ter a such that

max{Jx(a) | x∈ S} (12)

is minimized.

As mentioned earlier, the theory of minimax optimiza-
tion and consistent approximations (Polak, 1997) will
be utilized in order to implement and solve this prob-
lem.

Given a set of possible initial statesS⊂ Rn, we will
choose a sequence of sets of initial points,{Xi}∞

i=0.
This sequence will satisfy the following three condi-
tions: Firstly,Xi ⊂ S i = 1,2. . .; secondly, the num-
ber of elements inXi is bigger than the number of
elements inXi−1; thirdly, every point inS will be
arbitrarily close to a point inXi , asi goes to infinity.
Choosing{Xi}∞

i=0 in this way enables us to find the
solution to (12) by solving a sequence of optimization
problems, each one with a different set of initial states.

For eachXi we will find the optimal switching param-
eterao

i that minimizesmax{Jx(ai) | x ∈ Xi} through
a gradient descent algorithm, as described below. Af-
ter we have found the optimalao

i , we will solve
max{Jx(ai+1) | x ∈ Xi+1} by initializing ai+1 to ao

i .
This gives a good starting point for the gradient de-
scent algorithm.

For eachXi we will find the optimal ao
i by exe-

cuting the following gradient descent algorithm with
Armijo step size (Armijo, 1966). We assume thatXi

haveN(i) elements, i.e.Xi = {x1, . . . ,xN(i)} for some
x1, . . . ,xN(i) in S⊂ Rn.

Algorithm 3.1 Gradient Projection Algorithm with
Armijo Stepsize
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Given:The Armijo constantsα,β in (0,1). Two con-
stantsδ > 0, andε > 0 and the set of initial points
X= {x1, . . . ,xN} ⊂ S.
Initialize: Choose a feasible initial guess on the
switching surface parametera.
Step I: Calculate the maximum cost for the given set
of initial states, denoted

F(X,a) = max
x
{Jx(a)|x∈ X}, (13)

whereJx is given by (11). LetI(X,a) denote the index
set ofactive constraints, i.e.

I(X,a) = { j ∈ {1, . . . ,N} | F(X,a)−Jj(a) < ε}.
(14)

Calculate the generalized gradient

∂F(X,a) = conv{∇Jj(a) | j ∈ I(X,a))}, (15)

whereconvdenotes theconvex hull. Find the point in
∂F(X,a) closest to the origin and denote it byh. If
||h||< δ then STOP. Else, goto Step II.
Step II: Calculate the step-lengthλ according to
Armijo’s rule i.e.

λ = max{z= β k; k≥ 0 |
F(X,a−zh)−F(X,a)≤−αz||h||2}.

Updatea according toa = a−λh, goto Step I.

A few remarks concerning Algorithm 3.1 are due.

Remark 3.1.The index set of active constraints,I(X,a),
is introduced in order to determine what initial states
in X we should take into consideration for a givena. If
the index of an initial state is in the index set, then the
gradient of the cost associated with that initial state is
current in the calculation of the generalized gradient,
∂F(X,a). If ε = 0 in (14), i.e., we only optimize
with respect to the initial state corresponding to the
maximal cost, it is conceivable that we can only take
a very small descent step since the index set changes
whena changes.

∇Jx1

∇Jx2

∇Jx3

∇Jx4

x

y

h

Fig. 2. Calculation ofh given four initial states and
their respective gradients.x1 throughx3 are active
initial states.

Remark 3.2.In order to find the optimala for a given
set of initial states, we would have to set the constants
δ andε to 0. However, doing this when we solve for
a sequence of initial states,{Xi}∞

i=0, would not give
any additional benefit, instead we only require that for
each consecutive problem we will solve,δ andε will
decrease, and in the limit wheni → ∞, they will be
zero.

Remark 3.3.Solving for h is a standard quadratic
optimization problem over a convex set, and can be
solved using a variety of optimization algorithms.

Remark 3.4.In the robotics example presented in
Section 4, a simple constraint is introduced ona.
Hence we need to initializea to be in the set of feasible
points.

In order to illustrate the calculation ofh, a simple
example is presented. Assume that we have four dif-
ferent initial states,x1 throughx4 in R2. In Figure 2,
their respective gradients are plotted and it is assumed
thatx1 throughx3 are active initial states for the given
switching surface parametera. The shaded region in
Figure 2 corresponds to the convex hull of the gra-
dients of the active initial states, andh is the closest
vector in this set from the origin.

Having presented Algorithm 3.1 and the remarks that
follow it, we are now in the position to present Algo-
rithm 3.2 that will solve problemPS.

Algorithm 3.2 Minimax optimization for unknown
initial state:
Given: A sequence of initial sets{Xi}∞

i=0 ∈ S⊂ Rn,
whereXi = {x1, . . . ,xN(i)} andN(i) > N(i−1). Two
positive sequences{εi}∞

i=0 and{δi}∞
i=0 such that in the

limit when i → ∞, both are0.
Init: Seti = 0, pick a feasible initial guess ona0.
Step I: Use Algorithm 3.1 to optimize overa with
X = Xi , δ = δi , ε = εi . Initialize a with ai−1 if i 6= 0,
and witha0 if i = 0.
Step II:Setai to a given from Algorithm 3.1. Increase
i by one, goto Step I.

4. NUMERICAL EXAMPLE

In order to show the usefulness of Algorithm 3.2,
we consider a mobile robot navigation problem. The
task of the robot is to get to a goal pointxg ∈ R2

while avoiding an obstacle located atxob ∈ R2. It
has to do this by switching between two different
behaviors, onego-to-goaland oneobstacle-avoidance
behavior. These different behaviors are denoted by
fg and fo respectively. We model the robot having
unicycle dynamics





ẋ1 = vcos(φ),
ẋ2 = vsin(φ),
φ̇ = fq(x1,x2,φ),

(16)
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where (x1,x2) is the position of the robot,φ is its
heading, andq ∈ {g,o} is the current behavior the
robot evolves according to. We assume that the trans-
lational velocity v is constant. Our control variable
is then given by the switching surface parameters of
the goal and avoid obstacle guards that dictate what
behavior the robot should evolve according to. A stan-
dard pair of “approach-goal” and “avoid-obstacle” be-
haviors are given by

fg(x1,x2,φ) = cg(φg−φ), (17)

fo(x1,x2,φ) = co(π +φob−φ). (18)

Here, cg and co are the gains associated with each
behavior, andφg and φob are the angles to the goal
and nearest obstacle respectively. Both of these angles
are measured with respect to thex-axis and can be
expressed as

φg = arctan(
xg2−x2

xg1−x1
), (19)

φob = arctan(
xob2−x2

xob1−x1
), (20)

where(xg1,xg2) and(xob1,xob2) are the Cartesian co-
ordinates of the goal and the nearest obstacle respec-
tively.

−0.5 0 0.5

−0.5

0

0.5

x

y

0 11

1 1 1

111

2 2

2

2

2

2222

2

2

2

2 2 2

2

Fig. 3. Initial states used:Xi contains the points with
index i, i−1, . . . ,0.

The instantaneous costL is given by

L(x(t)) = ρ||xg−x(t)||2 +αe−
||xob−x(t)||2

β , (21)

where ρ is the gain of the goal attraction term,α
is the gain of the obstacle avoidance term, andβ
is a shaping parameter that affects the range of the
obstacle avoidance term.

For a given initial positionx0 ∈ R3 the total cost
is given by (11). However, many mobile robots get
their position from GPS readings which has an error
associated with them. In our example, we assume
that the robot get the initial positionx0 = (0,0, ·)T

from the GPS and that the error associated with the

GPS is0.5 meters (note that GPS do not give the
direction of a stationary robot). In order to simplify
our exposition, we assume that the robot is always
directed towards the goal, hence we will only show
the (x1,x2) components inXi , i = 0,1,2. This is a
reasonable assumption if the robot can see the goal,
which we assume.

Due to the error in the GPS reading, the robot can
be anywhere in the interval[−0.5,−0.5]× [0.5,0.5].
Therefore we initialize Algorithm 3.2 with only one
initial state,X0 = (0,0)T , and we then extend the
set of initial states, in a somewhat arbitrary fashion,
as shown in Figure 3. In this example, we stop the
algorithm after its third iteration, i.e. when||h|| < δ2,
therefore we do not defineXi for i = 3,4, . . ..

The switching surfaces for when to switch fromfg to
fo, and when to switch fromfo to fg, are given by
two circles with radiusa1 anda2 respectively, where
we requirea1 ≤ a2. Both circles are centered at the
obstaclexo = (2,1.25)T . At this point it should be
noted that having circular guards might not correspond
to an optimal guard shape.

We initialize a to be (1,1.5)T and for the constants
in L, we setρ = 0.01, α = 10 andβ = 0.1 and we
usecg = co = 1 for the feedback gains in (17) and
(18). The velocity of the robot is set tov = 0.5 and
the goal is located atxg = (4,4)T . For the constants
in the Armijo procedure, we useα = β = 0.5. The

sequences ofε j andδ j used is given byδ j = δ j−1
2.5 with

δ0 = 0.25, andε j = ε j−1
2.5 with ε0 = 0.1

1 2 3 4 5 6 7 8

0.7

0.8

0.9

1

max(J
x
|x∈  X)

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

 

 
||h||
δ

Fig. 4. (a) Change in maximum cost. (b)||h|| andδ
as a function of the number of gradient descent
iterations in Algorithm 3.2.

A plot of how the cost changes together with the norm
of h and δ is shown in Figure 4. As can be seen
in the figure, Algorithm 3.2 effectively reduces the
maximum cost for a given set of initial states. Once
the norm ofh falls belowδ , we updateδ , ε and the
set of initial states,X.

Once we have updatedX0 to X1 after iteration three,
we see that the maximum of the cost increases, just
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as should be expected sinceX1 has more initial states
thatX0. Figure 5(a) shows how the switching surface
parameters change. At the optimum,a1 = a2, i.e. both
radii are the same.

1 2 3 4 5 6 7 8
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
Radius

# of iterations

 

 
a

1

a
2

Fig. 5. Change ina = (a1,a2)T as a function of
the number of gradient descent iterations in Al-
gorithm 3.2. a1 is the radius of theobstacle-
avoidanceswitching surface,a2 is the radius of
thego-to-goalswitching surface.

5. CONCLUSIONS

This paper presented a way of getting rid of the
dependence on the initial condition when optimizing
over when to switch between different modes in a
switched-mode system. The dependence on the initial
condition was dealt with by minimizing the switching
parameter over the maximum cost for a given set of
initial states. The only assumption made was that the
initial state was confined to a given region in the state
space.
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