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Università degli Studi di Firenze

∗∗Dipartimento di Elettronica, Informatica e Sistemistica
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Abstract: This paper proposes a centralized solution to the problem of formation
reconfiguration and keeping for fleets of satellites in the presence of persistent
disturbances and under input-saturation and formation accuracy constraints.
Relative position and attitude dynamics are considered. For suitable initial
conditions the proposed control scheme produces system evolutions that fulfill the
coordination constraints at any time and satisfy desirable control performance.
This is accomplished by using a bank of Command Governor units in a hybrid
framework. An example is provided in order to exhibit the effectiveness of the
technique. Copyright © 2006 IFAC
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1. INTRODUCTION

In recent years an increasing number of space
missions have used small satellites. As a conse-
quence of the significant reduction of the costs
related to launches, maneuvers and maintenance,
it is expected that a great deal of the future space
systems will be based in fleets of micro-satellites
(Esper et al., 2003). Indeed, it can increase the
overall efficiency, performance and survivability,
in comparison to single, large vehicles, even in the
presence of large instrumentation and payloads.
The aim of the present work is to propose a
control technique for relative positions and atti-
tudes in a fleet of micro-satellites with respect
to a formation center, using a leader-following
approach. The geometry of a formation can be

1 Via S. Marta, 3 - 50139 Firenze, Italy - {bacconi,
mosca}@dsi.unifi.it
2 Via P. Bucci, 41C - 87037 Arcavacata di Rende (CS)
Italy - casavola@deis.unical.it

subject to changes, and the relative states of
the satellites can be required to fulfill stringent
accuracy constraints. Thus, constrained control
techniques might be necessary (Yeh et al., 2000).
Moreover, actuator saturation is inevitably present
and has to be taken into account with small space
vehicles, since small size thrusters cannot supply
large torques (Hu and Lin, 2001).
Several control techniques based on convex op-
timization have been proposed to face this kind
of problems, see e.g. (Tillerson et al., 2002).
However, a control strategy based on conceptual
tools of model-based predictive control (MPC)
(Manikonda et al., 1991; Mayne et al., 2000) ap-
pears particularly suitable. In this work we con-
sider one of the simplest MPC techniques referred
as the command governor approach (Bemporad
et al., 1997; Casavola et al., 2000; Casavola et
al., 2006). It consists of adding to a primal com-
pensated system a nonlinear device, called Com-
mand Governor (CG), whose action is based on
the current state, set-point, and the prescribed
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constraints. The CG selects at each time instant
a virtual sequence among a family of linearly
parameterized command sequences, by solving a
convex constrained quadratic optimization prob-
lem, and feeds the primal system according to a
receding horizon control philosophy.
In (Bacconi et al., 2004) we illustrated the ad-
vantages related to this approach with respect
to others MPC control techniques. There, we as-
sumed small angular displacements between the
satellites and the formation center. However, this
is acceptable only in the presence of small an-
gle maneuvers. Here, we remove this assumption
and describe the attitude of each member of the
fleet by a nonlinear model. Since single CG based
control laws cannot handle the complete range
of possible angles, we consider a bank of con-
trollers, each one designed with respect to a pre-
established orbital reference frame. A centralized
hybrid control scheme is then adopted.
Thus, the whole scheme retains the properties of
a supervisory switching control and the presence
of the CGs aims at enlarging the dynamic range
where each compensated system can operate lin-
early. Moreover, the CGs do not modify the primal
control system dynamics, since they operate only
on the input signal, whenever necessary.
This produces a particularly simple structure,
especially suitable for small formations. On the
other hand, with large signals, there is a perfor-
mance degradation. However, in the presence of
limited computing power and energy, when the
direct use of a bank of predictive controllers is not
allowed, since it requires a quite massive amount
of flops per sampling time, the use of the present
CG hybrid schemes is widely justified.
The paper is organized as follows: in section 2 the
mathematical model of the satellites is described.
In section 3 the control problem is stated. The
Command Governor approach and some varia-
tions suitable for the problem at hand are de-
scribed in section 4. Moreover, a hybrid CG tech-
nique is stated in section 5 and a supervisory
switching logic is introduced as well. Finally, in
section 6 an example is presented where a coor-
dinated large angle maneuver is requested to a
couple of micro-satellites in an Earth Observation
mission.

2. MATHEMATICAL MODEL

We consider a formation of micro-satellites in
LEO orbit, using a description based on the leader
following approach. The mathematical model of
each member of the formation must consequently
describe the attitude of a reference frame {B}
fixed on the vehicle’s body, with respect to an ap-
propriately defined orbiting reference frame {O}
and the position of {B} into another, possibly

coinciding with {O}, orbiting reference frame {C}
(Fig. 1). The latter is assumed to be centered on

Fig. 1. Reference frames.

an orbiting point, intended as the formation cen-
ter (virtual satellite). In this paper, the formation
center reference frame {C} is selected with the
first axis in the opposite direction of Earth center.
The second axis is assumed aligned with the orbit
and the third axis completes an orthonormal right
oriented versors set. Moreover, it is assumed no
rotational motion of {O} in {C}.
We introduced a linear model for the attitude of
each member of the fleet in (Bacconi et al., 2004)
by means of the Euler’s angles θi describing
the orientation of {O} in the body frame {B}
(Sidi, 1997), under the hypothesis of small angle
maneuvers. Following the same procedure, the
absolute angular velocity of {B} can be rewritten
as the sum of the velocity of {B} with respect
to {O} and the velocity of {O} with respect to
ECI, defined as ωo = [0, 0, ω0]′ (all the variables
expressed in {B} coordinates):

ωb = ωbo + ωo = ωbo′′ + ωo′′o′ + ωo′o + ωo

with O′ and O′′ the reference frames obtained
from O after a sequence of rotations of angles
θ1 and θ2, respectively. By means of the rotation
matrix Rbo, that leads {O} coinciding with {B},
we obtain (Bacconi et al., 2004)

ωbo =
[
s3θ̇2 + c2c3θ̇1, c3θ̇2 − c2s3θ̇1, θ̇3 + s2θ̇1

]

(1)
For brevity we have replaced sin(θi) = si and
cos(θi) = ci. Furthermore, also ωo needs to be
expressed in body coordinates. On this subject,
notice that ωo = ωc. Hence,

ωo = Rbo(Roc · [0, 0, ω0]′)

with Rbo and Roc the two rotation matrices that
lead {C} coinciding with {O} and then {O}
coinciding with {B}. Now, since both the velocity
ω0 of {C} in ECI and the attitude of {O} in {C}
are assumed constant and known, we can define
the angular velocity of {C} in {O} coordinates as

ωR = Roc · [0, 0, ω0]′

Consequently

ωo = RboωR = Rbo · [ωR1, ωR2, ωR3]′

It follows that ωo corresponds to:
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c2c3ωR1 + (c1s3 + s1s2c3)ωR2 + (s1s3 − c1s2c3)ωR3

− c2s3ωR1 + (c1c3 − s1s2s3)ωR1 + (s1c3 + c1s2s3)ωR3

s2ωR1 − s1c2ωR2 + c1c2ωR3




(2)
Finally, adding (1) and (2), taking the first deriv-
ative of ωb and substituting into the well known
Euler’s equations, yields to a nonlinear model θ̈ =
f(θ, θ̇, ωR, τ). We do not assume small angular
deviation between the formation center {C} and
{B}. On the other hand we assume small angles
between {O} and {B} aiming at describing all
the possible attitudes of a member of the fleet
with a suitable set of frames {Oi}. As will be de-
scribed in Sect. 5, it allows at addressing the whole
problem in a hybrid framework. Thus, considering
cos(θi) ' 1, sin(θi) ' θi, and disregarding non-
linear terms, the Euler’s equations become

θ̈1 =(ω2
R3 − ω2

R2)J1θ1 + ωR3(1 + J1)θ̇2 + ωR1ωR2J1θ2

+ ωR2(J1 − 1)θ̇3 − ωR1ωR3J1θ3 + τ1 + M1

θ̈2 =ωR3(J2 − 1)θ̇1 − ωR1ωR2J2θ1 + (ω2
R1 − ω2

R3)J2θ2

+ ωR1(1 + J2)θ̇3 + ωR2ωR3J2θ3 + τ2 + M2

θ̈3 =ωR2(1 + J3)θ̇1 + ωR1ωR3J3θ1 + ωR1(J3 − 1)θ̇2

− ωR2ωR3J3θ2 + (ω2
R2 − ω2

R1)J3θ3 + τ3 + M3

(3)
where Ji = (Ij − Ik)/Ii (i, j, k ∈ 3, i 6= j 6= k
and Ii are the principal moments of inertia of the
spacecraft).
It can be rewritten in a more compact way, that
will be useful in the following, as

θ̇ = Φθθ + Gθ(τ + M) (4)

introducing θ = [θ̇1 θ1 θ̇2 θ2 θ̇3 θ3]′ as the state
space vector corresponding to the Euler’s angles,
τ = [τ1 τ2 τ3]′ as the control torques vector and
M = [M1 M2 M3]′ as the disturbance torques
vector.
Next, we consider the position model of each
member of the formation. We take into account
fleets of micro-satellites in low orbits and close
proximity. Thus, the motion of each spacecraft
with respect to the formation center, can be de-
scribed by the Hill’s equations (Sidi, 1997; Tiller-
son et al., 2002). They consist in the following
linear model

mp̈1 = 3ω2
0mp1 + 2ω0mṗ2 + f1 + n1

mp̈2 = −2ω0mṗ1 + f2 + n2

mp̈3 = −ω2
0mp3 + f3 + n3

(5)

where m is the mass of the satellite. For simplicity,
acting as above, we summarize (5) in the state
space equation

ṗ = Φpp + Gp(f + n) (6)

where p = [ṗ1 p1 ṗ2 p2 ṗ3 p3]′ is the state space
vector corresponding to the relative-coordinates
of the satellite, f = [f1 f2 f3]′ are the actuator
forces acting along the positive axes directions and
n = [n1 n2 n3]′ are the components of disturbance
forces.

It is worth pointing out that here, with the as-
sumption of small displacements between {B}
and {O}, there is no difference in representing
inputs and disturbances either in body or orbital
coordinates. Moreover, we neglect the effects of
components p1 6= 0 on the angular velocity. Hence,
ω0 is assumed constant.

3. PROBLEM FORMULATION

Combining equations (4) and (6) gives a linear
time-continuous system:

ṡ = Acs + Bc(u + ξ) (7)

where s = [p′ θ′]′ ∈ IR12, u = [f ′ τ ′]′ ∈ IR6,
ξ = [n′ M ′]′ ∈ IR6 and matrices Ac and Bc direct
consequence. Hence, with sampling period T , the
ZOH sampled dynamical model of each satellite
takes the form

s(t + 1) = As(t) + B(u(t) + d(t)) (8)

where d(t) represents relative disturbance forces
and torques accumulated during a sampling pe-
riod.
The objective of the control problem is to drive
each component of the fleet to a desired position
and attitude defined in {C} along a pre-specified
path. Notice that it encompasses collision avoid-
ance constraints. Further, maneuvers are made
thanks to a combination of small jet actuators
subject to input saturation constraints of the form

|ui(t)| ≤ uimax , i = 1, · · · , 6 (9)

Furthermore, we want to handle formation accu-
racy constraints, i.e. state-related constraints

|yi(t)− ri(t)| < ε, i = 1, · · · , 6 (10)

∀ t ∈ ZZ+, with r the reference signal and y
some suitably selected output. Consequently, we
propose a control strategy based on a Command
Governor approach. It consists in designing a pri-
mal control law that does not take the constraints
into account, and an external unit capable of tak-
ing care of constraints fulfillment by modifying,
whenever necessary, the reference. Since the pri-
mal controller is designed for the linear model (8),
any simple control strategy can be selected. In this
paper we solve the unconstrained control prob-
lem using a simple linear quadratic LQ regulator
(Mosca, 1995). Therefore, our attention can be
focused on the closed-loop unconstrained system

{
x(t + 1) = Φx(t) + Gr(t) + Gdd(t)

y(t) = Hyx(t)
(11)

4. COMMAND GOVERNOR APPROACH

The basis theory related to Command Governor
is extensively described in (Bemporad et al., 1997;
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Casavola et al., 2000; Albertoni et al., 2003) and
(Bacconi et al., 2004). Briefly, the closed-loop
state-space description of a plant regulated by a
primal controller and CG unit is




x(t + 1) = Φx(t) + Gg(t) + Gdd(t)
y(t) = Hyx(t)
c(t) = Hcx(t) + Lg(t) + Ldd(t)

(12)

In particular, x(t) ∈ IRn is the state which in-
cludes plant and compensator states (if any),
g(t) ∈ IRm, which would be typically g(t) = r(t)
if no constraints were present (no CG present),
is the CG output, viz. a suitably modified ver-
sion of the reference signal r(t) ∈ IRm. Moreover,
d(t) ∈ IRnd is an exogenous disturbance satisfying
d(t) ∈ D, ∀ t ∈ ZZ+, with D a specified convex and
compact set such that 0nd

∈ D, y(t) ∈ IRm is the
output, viz. a performance related signal which is
required to track r(t) and c(t) ∈ IRnc is the vector
to be constrained.
The main idea of the CG technique is to choose
at each time instant a constant virtual command
v(·) ≡ w, with minimal distance from the refer-
ence of value r(t), such that the corresponding
virtual evolution fulfill the constraints with a cer-
tain margin δ over a semi-infinite horizon. It can
be summarized in the following problem: solve

g(t) = arg min
w∈V(x(t))

‖w − r(t)‖2Ψ (13)

at any time instant. Here, Ψ = Ψ′ > 0p, ‖w‖2Ψ :=
x′Ψx and V(x(t)) is the set of signals w such
that the virtual evolution of the system satisfy
the constraints for any time instant. Such a com-
mand is applied, a new state is measured and the
procedure is repeated.
It has been shown in (Bemporad et al., 1997)
that the problem is convex, the minimizer in (13)
uniquely exists at each t ∈ ZZ+ and the overall
system is asymptotically stable.
Moreover, in order to accommodate constraints in
the form of (10) that transform the third equation
in (12) in

c(t) = Hcx(t) + Lgg(t) + Ldd(t) + Lrr(t) (14)

we introduced in (Bacconi et al., 2004) a suitable
parameterization of the reference trajectory

α(t) = α(t− 1) + ∆(t) ∆(t) ∈ [0, 1] (15)

with r(α(t)) any point ∈ Rm between r(t−1) and
r(t) along the reference trajectory. In particular,
g(t) = r(α(t)) corresponding to the nominal point
r(t) in the reference trajectory, when ∆(t) = 1, i.e.
no constraints present.
The new system, arising from (12) after the intro-
duction of (15) is




x(t + 1) = Φx(t) + Gr(α(t)) + Gdd(t)
y(t) = Hyx(t)
c(t) = Hcx(t) + Lr(α(t)) + Ldd(t)
α(t) = α(t− 1) + ∆(t)

(16)

where L = Lg +Lr. Therefore, the CG problem is

∆(t) := arg max
r(α(t−1)+∆)∈V(x(t))

∆

w(t) := r(α(t− 1) + ∆(t))
(17)

and all the properties pertaining the CG approach
described above are restored.
Finally, notice that for the problem at hand,
attitude paths are defined in combination with
position paths. Thus, the applied control law has
to select the most restrictive ∆ between the one
resulting from the attitude maneuver and the one
resulting from the position maneuver.

5. HYBRID COMMAND GOVERNOR

The assumption of small angles, that leads to
system (3), might not match with some demand-
ing applications. Experimental results show that
the linearized models have significant discrepancy
with respect to non linear models for deviations
of Euler’s angles larger than 10 degrees.
Hence, when the small-angles assumption does not
hold, we propose the use of a bank of linearized
models in the form of (3), each one representing
the attitude relative to a specific reference frame
{Oi}, described in {C} by a rotation matrix Roic.
The position components are not affected by this
problem and just one single model can be used
along with each member of the given set of atti-
tude models.
Consequently, referring to each vehicle in the fleet,
a single CG unit can be designed for each lin-
earized model and a suitably designed supervisory
unit can take care of orchestrating the switching
among the CG candidates during the on-line oper-
ations. The overall technique il termed hybrid CG
control scheme (HCG). A similar approach have
been previously used in (Albertoni et al., 2003).
In order to provide a control law for every possible
situation, it requires a correct definition of the
linearized systems.
Consider the following set of reference set-points
r which are desired to be tracked without offset

r ∈ Ξ ⊂ IRm

Assume that Ξ 6⊂ Wδ, where Wδ is the set
of signals w such that the steady state virtual
evolution of the system satisfy the constraints
with a margin δ (Bemporad et al., 1997). Thus,
the requirement that all set-points in Ξ will be
tracked without error cannot be satisfied. A way
to overcome this limitation is that of covering the
set Ξ with a collection of Wδ

i , i = 1, · · · , l with
overlapping interior corresponding to l different
CGs such that

Ξ ⊂
l⋃

i=1

Wδ
i (18)
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and Interior{Wδ
i ∩ Wδ

j } 6= 0, for at least a pair
(i, j) ∈ {1, . . . l}. Clearly, CGi operates properly
when initial and final set-points belong to Wδ

i . If
the final set-point belongs to a different set Wδ

j ,
a procedure for switching between CGi and CGj

has to be defined. To this end, let us consider
the output admissible set Zδ

i ⊂ IRm× IRn for
CGi. It consists of the set of all pairs [r, x]′ whose
evolutions satisfy the constraints for all t ∈ ZZ+.
Hence, we can define the set of all states which can
be steered to feasible equilibrium points without
constraints violation

X δ
j := {x ∈ IRn :

[
w
x

]
∈ Zδ

i for at least one w}

Now, if (i, j) is such that Interior{Wδ
i ∩ Wδ

j } 6=
0 then also Interior{X δ

i ∩ X δ
j } 6= 0. Thus, one

can a-priori define a convenient transition refer-
ence rij ∈ Interior{Wδ

i ∩ Wδ
j } such that xij ∈

Interior{X δ
i ∩ X δ

j }, where xij is the equilibrium
disturbance-free steady-state corresponding to rij

(using a worst case approach). Finally, [rij , xij ]′ ∈
{Zδ

i ∩ Zδ
j } and the transfer strategy is simply

defined. Assume to be at instant t, be using CGi

and let r(t) ∈ Wδ
i , r(t + 1) ∈ Wδ

j with {Wδ
i ∩

Wδ
j } 6= 0. Hence, a possible switching logic is as

follows:
1. Solve and apply

g(t+k) = arg min
w∈Vi(x(t+k))

‖w−r(t)‖2Ψ, k = 1, . . . , k

2. At t = t + k, as soon as

x(t) ∈ Interior{X δ
i ∩ X δ

j } (19)

switch to CGj and solve

g(t) = arg min
w∈Vj(x(t))

‖w− r(t+1)‖2Ψ, t ≥ t+1+ k

The illustrated scheme, inspired by (Gilbert and
Kolmanovsky, 1999), is motivated by the fact that
for any x ∈ IRn the state evolution will enter in
Interior{X δ

i ∩ X δ
j } within a finite number of time

instants.
Finally, we propose a criterion to select the CGj

at time instant t = t + k, based on the Euclid-
ean norm between the state and the linearization
point. The supervisor switches to model Kj cen-
tered in {Oj} where CGj corresponds to

j = min
j
‖θ({Oj})− θ(t)‖ (20)

An analysis of the properties of the proposed
switching criterion is under development. Of
course, other possibilities for the switching logic
exist, which could be more effective for some ap-
plications.

6. SIMULATIONS

We refer to a reconfiguration maneuver as de-
picted in Fig. 2 regarding three vehicles orbiting

around Earth at a distance of about 600 Km
(LEO) at the velocity ω0 = 0.0011 rad/s. They
could form, as an example, an Earth Observing
System with two slaves satellites pointing to a
master, e.g. number III. For each micro-satellite

Fig. 2. Reconfiguration maneuver.

of the formation, we assume m = 150 Kg and
I = diag(35, 16, 25) Kg ·m2. Further the following
saturation constraints are supposed: |f |max = 5 ·
10−2N , |τ |max = 2 · 10−3Nm. The maximum
amplitudes of disturbances are assumed to be
|n|max = 6 · 10−3N and |M |max = 2 · 10−4Nm
and a value of δ = 10−4 is selected.
Besides saturation constraints we want to consider
accuracy constraints |pi(t) − ri(α(t))| < 0.5 m
for each of the position components and |θi(t) −
ri(α(t))| < 0.1 deg for each of the attitude com-
ponents.
The results of the application of the hybrid CG
controller to the first satellite are illustrated in
Fig. 3 and 4 (constraint boundaries in horizontal
dash lines and instants of switching in vertical
dash lines). Figures related to the second satellite
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Fig. 3. Relative position, control force and error in
coordination accuracy for p2(t) under HCG.

are mirror images. The constraints that influence
the values of ∆(t) (17) are the ones related to
the position accuracy. This is evident in Fig. 3
and Fig. 4 (bottom). Input forces and torques,
on the contrary, take values close to zero during
the entire reconfiguration. In the present simula-
tion, a different linear model has been associated
to the system, for Euler’s angles of (0, 0, 0) rad,
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Fig. 4. Euler’s angle, control torque and error in
coordination accuracy for θ3(t) under HCG.

(0, 0, 20) rad, (0, 0, 40) rad and so on.
Notice that, because of the use of the CG, the ref-
erence trajectory is tracked with a speed typically
lower than the planned velocity. This is evident in
Figs. 3 and 4.
If the hybrid CG scheme is not used, the formation
accuracy constraints related to the position are
not fulfilled.

7. CONCLUSIONS

The problem of reconfiguration for fleets of satel-
lites subject to persistent disturbances and under
input saturation and coordination accuracy con-
straints has been addressed.
The proposed control scheme is based on a bank
of controllers composed by primal LQ control laws
and nonlinear Command Governor units. The LQ
controllers compensate the system without taking
into account the presence of constraints whereas
the CGs are used to generate a suitably modified
version of the reference signal, capable of pro-
ducing evolutions that fulfill the constraints at
each time instant. A supervisory unit has been
presented, capable of switching between the CG
units of the bank, according to the attitude of the
satellites.
Finally, the algorithm has been applied to recon-
figure an Earth Observing System, forcing two
satellites to cover a pre-specified trajectory de-
fined with respect to a third one, fulfilling on it
some accuracy constraints and preventing input
saturation from occurring.
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