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Abstract: In this paper we consider multi–inventory systems in presence of
uncertain demand. We assume that i) demand is unknown but bounded in an
assigned compact set and ii) the control inputs (controlled flows) are subject to
assigned constraints. Given a long–term average demand, we select a nominal flow
that feeds such a demand. In this context, we are interested in a control strategy
that meets at each time all possible current demands and achieves the nominal flow
in the average. We provide necessary and sufficient conditions for such a strategy to
exist and we characterize the set of achievable flows. Such conditions are based on
linear programming and thus they are constructive. In the special case of a static
flow (i.e. a system with 0–capacity buffers) we show that the strategy must be
affine. The dynamic problem can be solved by a linear-saturated control strategy
(inspired by the previous one). We provide numerical analysis and illustrating

examples. Copyright © 2006 IFAC
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1. INTRODUCTION

Multi–inventory systems (Hadley and Whitin,
1963) are met in several different contexts, such
as manufacturing (Boukas et al., 1995; Chase
and Ramadge, 1992), network routing (Iftar
and Davison, 1990), communications (Ephremides
and Verdú, 1989), water distribution (Larson
and Keckler, 1969), logistics and traffic control
(Moreno and Papageorgiou, 1995). Hence, their
control is of relevant economic interest. The con-

1 This paper is the conference version of (Bauso et al.,
2006). Corresponding author F. Blanchini. Tel. +39 0432
558466. Fax +39 0432 558499.

trol concerns storage and processing operations
and aims at meeting the external demand of fin-
ished products (Forrester, 1961).

In this work we simultaneously consider the two
following aspects.

• Instantaneous fluctuations — These are as-
sumed unknown due to the large number
of unpredictable factors that influence the
demand. The control must face all possible
variations, within prescribed limits, in order
to meet the demand.

• Long term information — The long–term av-
erage demand, henceforth also called nominal
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demand, should be faced, in the average, by
the nominal flow, whenever possible.

Therefore we are seeking for a stabilizing strategy
capable of balancing the flow in the long run. The
main results of the paper are reported next.

• We first consider static strategies (i.e. we
assume 0–capacity buffers). We provide nec-
essary and sufficient conditions for the exis-
tence of a strategy which is able to meet all
the possible demands and assures the desired
flow average, whenever the demand meets its
nominal average. Such a static strategy is
affine

• We characterize the set of all flows corre-
sponding to the nominal demand which can
be achieved in the average.

• We show that the very conditions, valid in
the static case, are sufficient for the existence
of a dynamic strategy, based on the feedback
of the buffer levels. The proposed feedback
strategy is a linear-saturated dynamic con-
trol.

2. PROBLEM FORMULATION

Consider the following continuous time system

ẋ(t) = Bu(t) − w(t), (1)

where x(t) ∈ IRn is a vector whose components
are the buffer levels, u(t) ∈ IRm is the controlled
flow vector, B is the controlled process matrix
and w(t) ∈ IRn is an exogenous (uncontrolled)
input, typically modeling demand, whose value is
externally determined. To model backlog x(t) may
be less than zero.

We assume that u and w are subject to the next
constraints

u(t) ∈ U = {u : u− ≤ u ≤ u+}, (2)

where u− and u+ are assigned vectors and the
expression is to be intended component-wise. We
assume that w is constrained as follows

w(t) ∈ W , (3)

where W is a polytope. We also introduce the
following assumptions.

Assumption 1. Matrix B has full row rank.

Given a vector function of time f : IR+ → IRn we
introduce the following notation

Av[f ] = lim
T→∞

1

T

T
∫

0

f(t) dt. (4)

Function Av[f ] will be referred to as the deter-
ministic average of f , henceforth the average, and
we will always assume that such a value exists
whenever considered.

Assumption 2. The set W includes w̄ = Av[w] in
its relative interior 2 .

We will consider static and dynamic stabilizing
policies for the system according to the following
definitions.

Definition 3. The function Φ : IRn → IRm is a
static balancing strategy if for u(t) = Φ(w(t)),

Bu(t) = w(t),

and u(t) ∈ U , for all w(t) ∈ W , for all t ≥ 0.

Definition 4. Given ε > 0 and a reference value x̄,
an ε-stabilizing strategy is a feedback control for
which there exists a continuous positive function
φ(t), monotonically decreasing and converging to
0 as t → ∞ such that for all w(t) ∈ W and for all
x(0), the conditions u(t) ∈ U and

‖x(t) − x̄‖ ≤ max{‖x(0)‖φ(t), ε}

hold true.

As a preliminary result, we introduce the following
basic conditions (Blanchini et al., 2000).

Theorem 5. For the considered system

i there exists a static balancing strategy as in
Definition 3 if and only if

W ⊆ BU ; (5)

ii there exists a feedback stabilizing strategy as
in Definition 4 if and only if

W ⊆ int{BU}. (6)

Henceforth, we assume that the appropriate nec-
essary and sufficient condition is met (depend-
ing on which kind of strategy we are consider-
ing). Assume to apply either a balancing or an
ε-stabilizing strategy. As a consequence, x(t) re-
mains constant or bounded. Then, by integrating
(1) we have that, necessarily,

lim
T→∞

1

T

T
∫

0

[Bu(t) − w(t)] dt = lim
T→∞

1

T
[x(t) − x(0)] = 0,

which implies that the average value of w is equal
to the average value of Bu

B Av[u(t)] = Av[w(t)]. (7)

2 we mean that w̄ is an interior point of W with respect to
the smallest linear subspace including it, for instance given
a vector v 6= 0, 0 is in the relative interior of a segment
joining v and −v
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Formally, the problem is the following.

Problem 6. Assume that the average w̄ ∈ W is
given. Consider the feasible flow ū ∈ U such that

Bū = w̄.

Provide a yes–no answer to the question: does
there exist a static balancing (or dynamic ε–
stabilizing) strategy such that whenever Av[w] =
w̄ then Av[u] = ū? In the case of a positive answer
we will say that ū is achievable.

In the following sections we will solve construc-
tively the problem for both static and dynamic
strategies.

3. STATIC STRATEGIES

In this section we consider the case in which the
controlled flow is a function of the demand w so
that Bu(t) = w(t).

For the simple notations we work under the fol-
lowing assumption.

Assumption 7. The nominal average “demand” is
zero, i.e. w̄ = Av[w] = 0 ∈ W .

Then we can translate the problem by writing the
new model

ẋ(t) = B(u(t)−u0)− [w(t)− w̄] = Bδu(t)− δw(t)

and by translating the constraints as

u− − u0 ≤ δu(t) ≤ u+ − u0, δw(t) ∈ W − w̄.

where Av[δw] = 0.

Theorem 8. Under Assumption 1 and 2 let condi-
tion (5) be satisfied. Then there exists a static bal-
ancing strategy that achieves the average Av[u] =
0 whenever Av[w] = 0 if and only if there exists a
“tall” matrix D m × n such that

BD = I (8)

u− ≤Dw(i) ≤ u+, i = 1, . . . , s. (9)

where w(i) are the vertices of W . Moreover, if such
necessary and sufficient conditions are satisfied,
then the static strategy is linear

u(t) = Dw(t). (10)

PROOF. See the proof in (Bauso et al., 2006). 2

The previous theorem allows us to check a single
candidate ū we fixed to zero. We can now charac-
terize the set of achievable average flows, namely
the set of all vectors such that Av[w] = 0 implies
Av[u] = ū ∈ U .

Corollary 9. The set of all achievable average
flows, provided that a suitable static balancing
strategy is applied, is made up by all the vectors
ū ∈ ker[B] such that there exists a matrix D,
m × n, with

BD = I (11)

u− ≤Dw(i) + ū ≤ u+, i = 1, . . . , s. (12)

In this case the static strategy is affine

u = Dw + ū.

PROOF. It follows immediately from the theorem
by applying the translation u − ū. 2

We have seen that as long as a strategy achieving
the average exists, this has to be linear (or affine
taking into account possible translations on w).

4. DYNAMIC STRATEGIES

Here we show how to achieve an average flow by
a dynamic stabilizing strategy. show, in the next
subsection, that conditions (8) and (9) are suffi-
cient for the existence of a dynamic ε–stabilizing
strategy of the form

ẏ(t) = f(y(t), x(t), w(t))
u(t) = g(y(t), x(t), w(t)).

(13)

To provide results about necessity of (8) and (9)
we need to better characterize the class of dy-
namic strategies by additional assumptions (see,
e.g., (Bauso et al., 2006)).

4.1 Sufficiency of the conditions

Let assumptions (8) and (9) be satisfied and
consider the corresponding matrix D. Equation
(8) means that D is a right inverse of B and it
is a standard property of linear algebra that this
is equivalent to the existence of two matrices C
and F which “square” B and D producing two
matrices inverse to each other, namely such that

[

B
C

]

[

D F
]

= I. (14)

Consider the following augmented system

ẋ(t) = Bu(t) − w(t)
ẏ(t) = Cu(t).

(15)

The additional dynamic variable ẏ(t) = Cu(t) has
the goal of keeping trace of the load unbalancing
with respect to the desired average 0.

79



The first step is to show that under (8) and (9),
the extended system (15) satisfies the stabilizabil-
ity conditions (6) as well (in the extended state–
space), precisely for all w ∈ W there exists u ∈ U
such that

[

w
0

]

=

[

B
C

]

u,

or equivalently that, for all w ∈ W , there exists
u ∈ U such that

u =
[

D F
]

[

w
0

]

= Dw.

The existence of such u is an immediate conse-
quence of (9). Indeed, it is easy to verify that, if
W ∈ int{BU}, then the u which corresponds to
w is in the interior of the extended set. Then the
problem can be solved as follows.

• Determine D such that (8) and (9) are satis-
fied.

• Determine C and F such that (14) is satis-
fied.

• Design a control which stabilizes (15).

Observe that Theorem 5 applied to the extended
system (15) guarantees the existence of such a
stabilizing control.

Here we propose a new strategy based on a vari-
able transformation. In the following we exploit
(for the first time) the structure of the set U .
Consider the new variable z(t) defined as

z(t) =
[

D F
]

[

x(t)
y(t)

]

,

[

x(t)
y(t)

]

=

[

B
C

]

z(t)

This variable satisfies the equation

ż(t) = u(t) − Dw(t). (16)

The new system (16) is decoupled in its state
variable, precisely it is equivalent to

żi(t) = ui(t) − Diw(t), (17)

where we have denoted by Di the ith row of D
and where u−

i ≤ ui ≤ u+
i . Denote by

ρ−i = min
w∈W

Diw,

ρ+
i = max

w∈W
Diw,

The stabilizability conditions are equivalent to the
fact that for all w ∈ W

u−

i < ρ−i < ρ+
i < u+

i .

Henceforth, without restriction, we consider the
single–buffer case, namely the scalar system

ż(t) = u(t) − r(t),

with

ρ− ≤ r(t) ≤ ρ+, u− ≤ u(t) ≤ u+.

Define the saturated control (see Fig. 1)

u(t) = sat[u−,u+](−κz(t)) (18)

with κ > 0 and where

sat[α,β](ζ) =







β, if ζ > β,
ζ, if α ≤ ζ ≤ β,
α, if ζ < α.

We will use the same notation (18) for the
multi–input control derived applying the formula
component–by–component. Note that this control

+u

u

u /κ+
κu /

u

z

Fig. 1. The function (18)

function is Lipschitz continuous. For κ → ∞, the
control (18) converges to the bang bang control

bb[u−,u+](ζ) =







u+, if ζ > 0,
0, if ζ = 0,
u−, if ζ < 0,

which is of the type considered in (Blanchini et
al., 2000).

Theorem 10. The variable z(t) with the control
(18) converges to the interval [−u+/κ,−u−/κ]
(which includes 0 as an interior point). Therefore
the global system converges to the corresponding
hyper–box (i.e. that delimited by −u+

i /κ ≤ zi ≤
−u−

i /κ, i = 1, 2, . . . , m).

PROOF. The proof derives from the fact that, for
z ≥ −u−/κ, we have that the control is saturated
to its lower level u = u−, then

ż = u− − r ≤ u− − ρ− < 0. (19)

Conversely for z ≤ −u+/κ we have that u = u+,
then

ż = u+ − r ≥ u+ − ρ+ > 0. (20)

Therefore z(t) reaches the interval in finite time
and is ultimately confined in it. 2

As a consequence of the previous theorem we
have that, choosing κ large enough, we can bound
z in an arbitrarily small interval. Therefore we
achieve ε–stability. We have now to show that the
controller so obtained satisfies the average require-
ment. Indeed variable z(t) remains bounded so
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arcs 1 2 3 4 5 6 7 8 9

upper bounds 3 2 3 3 3 3 3 5 5

Table 1. Controlled flows constraints

nodes 1 2 3 4 5

upper bounds 0 2 3 2 2

averages 0 1 2 1 1

Table 2. Demand bounds

‖z(t) − z(0)‖ ≤ ξ. By integrating (16) we have
that

1

T

T
∫

0

u(t)dt −
1

T

T
∫

0

Dw(t)dt =
z(T )− z(0)

T
→ 0

as T → ∞. This yields

Av[u] = Av[Dw],

that is all we need to claim that sufficiency of (8)
and (9) is proved.

Example 11. Let us solve Problem 6 for the sys-
tem depicted in Fig. 2 (B is then the incidence
matrix of the network). Table 1 summarizes the

2

3

4

5

18

1

2

5

6

4

7

9

3

Fig. 2. Example of a system with 5 nodes and 9
arcs.

controlled upper flows constraints (the lower con-
straints are all set to 0) whereas Table 2 the
demand bounds and the long–term average de-
mands. Now, given the nominal demand w̄ =
[0 1 2 1 1] and the nominal balancing flow ū =
[1 1 1 0 0 1 1 3 2]′ ∈ U (which is w̄ = Bū) we have
to determine whether ū is an achievable average
flow, namely, it is such that if Av[w] = w̄ then
Av[u] = ū. A possible matrix D = D̂ satisfying
(8)(9) is

D̂ =





























0 1 0 0 0
0 0 0.5 0 0

−0.1 0 0.5 0 0
−0.2 0 0 0 0

0 0 0 0 0
0 0 0.5 0 0

0.1 0 0 1 0
0.6 1 1 0 0
0.4 0 0 1 1





























. (21)

We simulate the system with dynamic strategy
(18) (we initialize x(0) = 0, y(0) = 0, and set κ =
4). Fig. 3 displays the average flow Av[δu(t)] and
the variable z(t). In agreement with the expected
results, the simulated average flow Av[u] tends to
the prescribed average flow ū and the variable z
converges to the interval [−δu+/κ,−δu−/κ] Fig. 4
shows that the fluctuations of the buffer lengths
are confined within a pre-specified neighborhoods
of 0. (we remind that x = 0 is the desired buffer
level and thus negative values do not necessarily
imply backlog).
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Fig. 3. The average flow Av[δu] with dynamic strategy (18) and κ = 4.
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Fig. 4. The buffer length x with dynamic strategy (18) and κ = 4.
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