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Abstract: Embedded systems and their corresponding hybrid models are pervasive in
engineering applications, therefore, systematic mathematical analysis using these models
has become an important research area. Our approach to hybrid modeling with Hybrid
Bond Graphs allows for seamless integration of physical system principles with discrete
computational structures, but simulating the hybrid behaviors can be difficult and com-
putationally expensive. In this paper, we develop a methodology that transforms Hybrid
Bond Graphs into computational block diagrams and incrementally modifies the block
diagram when mode changes occur. This forms the basis for a computationally efficient
hybrid simulation algorithm. Copyright © 2006 IFAC
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1. INTRODUCTION

Modeling and simulation play a central role in the
design and operation of modern engineering systems
that are made up of a large number of interacting
components. Many of these systems are hybrid, i.e.,
they combine continuous and discrete behaviors. Hy-
brid simulation schemes must correctly handle dis-
crete mode transitions that involve model reconfigu-
ration and discontinuous updates to the system state
variables. Recent research has begun to address the
mathematical complexity of hybrid system simulation
schemes [1].

A particularly intuitive physics-based modeling par-
adigm are Bond Graphs (BGs) [9]. They provide a
uniform lumped parameter, energy-based topological
framework across multiple physical domains (e.g.,
electrical, fluid, mechanical, and thermal). Hybrid
Bond graphs (HBGs) extend the BGs by incorporating
local switching functions that enable the reconfigu-
ration of energy flow paths in the model ([15]). This
allows for seamless integration of energetic modeling
and model reconfiguration to handle hybrid behaviors.

The inherent causal structure in BG models provides
the basis for efficient conversion of BGs to computa-
tion models (e.g., [3, 9]). For HBGs, the computation
model is more complex because junction switching
during behavior generation results in dynamic updat-
ing of the causal assignments and the computational
structure during execution. This paper presents an ef-
ficient method for constructing a simulation model for
HBGs. Specifically, we create block diagram models,
where run time changes in model configuration are
handled by reconfiguring the data flow through the
blocks of the model. We demonstrate the technique
by creating a computational model in a commercially
available simulation environment.

The choice of block diagram models is motivated by
our work on simulation testbeds for fault detection and
isolation and integrated systems health monitoring.
For these applications, the simulation environment has
to be designed in a way that component parameters
in the model can be accessed and changed at run
time to emulate degradations and faults in the system.
The change profile for the parameters can take on
a number of time-varying forms. In our work, the
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component parameters are in 1-1 correspondence with
BG parameters. and they map directly to individual
blocks in the BG model.

2. HYBRID BOND GRAPHS (HBG) OVERVIEW

BGs are topological models that represent energy
exchange pathways in physical processes [9]. The
generic elements in BGs are energy storage, dissipa-
tive, transformation, and input-output elements. The
dynamics of physical system behavior is captured by
the transfer of energy between the components via
the connected bonds and two idealized connections,
called the 0- (common effort) and the 1- (common
flow) junctions.

Introducing discrete behavior into continuous BGs has
been investigated by several researchers [4, 11, 19].
HBGs introduce discrete changes in system configu-
ration as idealized controlled junctions with two states
on and off [15]. A Finite State Machine (FSM) im-
plements the junction control specification. When the
controlled junction is on, it behaves like a conven-
tional junction. In the off state, all bonds incident on
the junction are de-activated by enforcing a 0 effort
or flow at the junction. Fig. 1 illustrates the discrete
behavior of a controlled 1-junction. The system mode
at any time is determined by a parallel composition of
modes of the individual switched junctions.

To illustrate the concepts developed in this paper, we
will use the bond graph model illustrated in Fig. 2.
The system has a single source of effort, v(t), that can
be switched on or off, two capacities, C1 and C2, two
inertias, L1 and L2, and two dissipators, R1 and R2.
The switching junctions in the HBG (1a and 1b) are
indexed with a subscript, and have a FSM (with the
same subscript) attached with a dotted line. Two-port
TF- and GY-elements are not included in our model,
but they do not explicitly influence the causality in the
system.

Computation and analysis with BG models is facil-
itated by the determination of causality, i.e., the in-
put/output relationship between the effort and flow
variables corresponding to BG elements. A standard
algorithm for assigning causality to bonds is the Se-
quential Causality Assignment Procedure (SCAP) [9].
Modified causality assignment algorithms have been
developed in other work [19].

Fig. 2 shows the causality information for configura-
tion with both junctions on. All of the components
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Fig. 1. Controlled junction as a Finite State Machine.
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Fig. 2. Example system Hybrid Bond Graph.

in this model are in integral causality, which means
that the constituent relations of the energy storage
elements is formulated in their integral form (as op-
posed to the derivative form). In this paper, we make
the assumption that all components will be in integral
causality, and issues in dealing with derivative causal-
ity are discussed in section 5.

3. HBG COMPUTATIONAL MODEL

Computation models for continuous dynamic sys-
tems are represented by ordinary differential equa-
tions (ODEs), differential algebraic equations (DAEs),
block diagrams (transfer functions), and signal flow
graphs. In this work for the reasons described earlier,
we adopt the block diagram representation.

3.1 Creating a causal model: Block Diagrams

We introduce the notion of a determining bond asso-
ciated with every active (i.e., on) HBG junction. By
definition, every active 0- (1-) junction in a valid bond
graph will have one bond that determines the value of
the effort (flow) for that junction. We label that bond
as the determining bond for the particular junction. All
other bond effort (flow) values are dependent and set
equal to this effort (flow) value. Similarly, the flow
(effort) value on a determining effort (flow) bond is an
algebraic sum of the flow (effort) values of the other
bonds that are connected to this 0- (1-) junction.

The determining bond plays a crucial role in mapping
a HBG to a block diagram structure. Fig. 3 illustrates
the mapping of a BG junction to a computational
structure. The determining bond on the 1-junction,
labeled with a 1, sets the flow at the junction (i.e.,
f2 = f3 = f1), and computes the dependent effort
from the independent ones (i.e., e1 = - e2 - e3).
The inputs to the adder blocks must carry appropriate
signs depending on the orientation of the bond. In
general, the algebraic constraints at a junction are of
two forms, an equality constraint, represented by a dot,
and a summation constraint, represented by an adder
block. These relations are illustrated for both 0- and 1-
junctions in Fig. 3.

Converting a BG model to a block diagram is a
straightforward procedure when there are no algebraic
loops and no elements are in derivative causality. First,
each bond is replaced by two links, i.e., the effort and
flow variables for the bond. Next, each junction is
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Fig. 3. Computational structures for bond graph junc-
tions.

replaced by the algebraic constraints they impose (see
Fig. 3). The individual blocks for the other elements
are now connected using the algebraic constraints im-
posed by the junctions. The choice of block depends
on the assigned causality. The 1-1 mapping from bond
graph elements to corresponding block diagram frag-
ment can be found in most bond graph texts (e.g.,
see [9]).

The determining bonds establish the independent ef-
fort (flow) variables and the form of the algebraic
equation for the corresponding flow (effort) variables
at 0- (1-junctions). Therefore, the determining bond
sets the block diagram structure, i.e., the direction of
flows and efforts through the blocks. In our example,
the determining bond for the leftmost 1-junction is
bond 2, therefore, f2 is the driving flow, and it es-
tablishes f1 = f2. In addition, this also sets e2 = e1.
The rest of the link and junction connections can be
derived in a similar manner. Fig. 4 shows the resulting
block diagram for our example system.
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Fig. 4. Example HBG to block diagram conversion
with both junctions active. The dotted circles
encompass the original bond graph junctions and
elements.

3.2 Efficient model transformation

For HBGs, the block diagram structure must handle
junction switching. This is realized functionality as
a control flow graph that dynamically reconfigures
the computational block diagram when mode switches
occur. If derivative causality was allowed, additional
computational structures would be needed to update
the system state at mode transitions.

Given a HBG with n switching junctions, there are
potentially 2n unique possible switching junction con-
figurations. Pre-enumeration of all block diagram con-
figurations offline and then selecting the appropriate
one at run-time when junction configurations change

is exponential in the number of switching junctions,
and clearly a waste of space. On-line construction of
the complete block diagram after each junction switch
is space-efficient but wasteful in terms of computation
time. Our solution to this problem is to construct a
structurally adaptable block diagram model, and up-
date the data flow paths through this model to match
the causal structure when a junction switch occurs.
Since we make the assumption that the system remains
in integral causality, we exploit the locality principle
for the propagation of causality changes through the
model. This scheme may be combined with a caching
mechanism that avoids having to recalculate causal
assignment updates for discrete modes that have oc-
curred previously.

3.3 Run-time operation

When junction switches occur in a HBG model the
following changes are made to the existing block
diagram to generate the block diagram for the new
mode.

(1) Update the active HBG structure based on the
junctions that change state. This procedure is
described in Section 2.

(2) Evaluate the changes in the determining bonds
for the junctions in the HBG structure, and prop-
agate these changes to derive the block diagram
structure for the new mode.

We illustrate the structural changes that result when
the determining bond changes at a junction using our
example. Consider the 1a junction switching from on
to off (Fig. 5). This event requires a new determin-
ing bond for the neighboring 0-junction. Since we
assume preferred causality assignments, the I-element
on this junction cannot switch its causal stroke, there-
fore, bond 4 must become the determining bond. This
propagates to the adjacent 1-junction, and further until
the 1-junction labeled 1b, where the R-element ab-
sorbs the change by switching its causality assign-
ment. Fig. 6 shows the resulting block diagram after
the mode switch.

If the determining bond at a switching junction does
not change, the effects of the mode switch do not
propagate to adjacent junctions. For example, when
the 1-junction labeled 1b is switched off the determin-
ing bond for the adjacent 0-junction does not change.
Consequently, there are no additional changes to the
block diagram.
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Fig. 5. HBG for the example system with junction 1a
off.
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These examples illustrating the different effects of
mode changes on determining bonds, indicate that
an efficient scheme for incremental block diagram
updating can be developed. The following lemmas
make this explicit.

Lemma 1. Consider a junction switching from on to
off or off to on. If the switch does not cause any change
in the determining bond at its adjacent junctions, the
only change in the junction structure of the block
diagram is within the switching junction itself.

Lemma 2. Consider a junction switching from on to
off or off to on. If the switch changes the determining
bond at an adjacent junction, the change must be
propagated, and the block diagram must be updated
correspondingly.

Lemma 3. Consider two or more junctions switching
simultaneously. Valid causal assignments are obtained
regardless of the order in which the switches are
evaluated.

The proofs for these lemmas are easily derived. Ex-
ploiting the fact that causality assignments determine
the signal flow for the block diagram model, and that
changes in causality have corresponding changes in
the block diagram, we can minimize the computations
required to generate an updated block diagram after a
mode switch by identifying the points at which these
will cause changes in the block diagram configura-
tion, and then propagating these changes locally. This
contrasts with the approach where one would rebuild
the block diagram structure from scratch when mode
changes occur. A general algorithm for our incremen-
tal updating procedure is described next.

A mode change is described by one or more junc-
tions switching their state. When a 0- (1−) junction
is deactivated, it provides a zero effort (flow) source
with the causal strokes on each of the bonds away
from (toward) the junction. When a junction is re-
activated, it functions as a normal junction and its de-
termining bond is updated. When a junction switches
on or off, there are two possibilities: (i) the junction
switching its state does not change the determining
bond at any of its adjacent junctions, (ii) the switch
changes the determining bond at an adjacent junction
(Algorithm 1). For case (ii), if the adjacent junction
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Fig. 6. Block diagram for the example system with
junction 1a off.

contains a R-element and it’s causality may be flipped
to remove an extra determining bond or create a new
determining bond, the propagation stops. Otherwise,
the bond connected to another adjacent junction has
to be flipped, and the propagation continues. Algo-
rithm 2 describes the iterative causality propagation
scheme that calls the JunctionUpdate algorithm. An
initial causal assignment is generated before entering
the mode switch event loop.

Algorithm 1 JunctionUpdate
1: if InvalidCausality then
2: if NumDeterminingBonds=2 then
3: if DeterminingBond=R-element then
4: Change the R-element’s causality
5: else
6: Change causality of an unchanged adja-

cent junction
7: Call JunctionU pdate on adjacent junction
8: end if
9: else

10: if R-element at junction then
11: Change the R-element’s causality
12: else
13: Change the causality of a previously un-

changed adjacent junction
14: end if
15: end if
16: end if

Algorithm 2 Causality Propagation
1: Initial Causality Assignment
2: Find determining bonds
3: loop
4: if ModeSwitch then
5: Update causality of bonds at the switching

junction
6: for all causality changes at adjacent junc-

tions do
7: Call JunctionU pdate on adjacent junc-

tion(s)
8: end for
9: end if

10: end loop

4. IMPLEMENTATION

For this work we implement the block diagram sim-
ulation models using Simulinkr[13]. The Simulink
environment provides all the primitives to implement
the block diagram structure for a bond graph, and the
bond graph elements. For hybrid junctions, we must
implement the control structure as well as the data-
flow structure. Rather than implementing a switch-
ing junction using discrete Simulink blocks, or us-
ing Stateflow extensions to Simulink, we implement
the switching junction as custom written S-functions
in C/C++. The S-function implements the dataflow
machinery for the junction, as well as the evaluation
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of the control specification for the junction. For each
bond connected to the junction, the S-function adds an
input/output signal pair. The mapping of these signals
to the effort/flow variables is determined dynamically
by Algorithms 1 and 2. Note that we rely directly on
the capabilities of the Simulink environment to detect
the zero crossings, which define the mode changes.

An S-function obtains its current determining bond
from a global data structure, which is updated at
each junction switch. This data structure is updated
by the control structure, represented explicitly in the
Simulink model as the CausalityUpdate block. The
CausalityUpdate block, when triggered by a junction
switch, executes the CausalityPropagation algorithm
that may reconfigure the junction input-output rela-
tions by updating the global data structure. Thus the
physical structure of the Simulink model remains sta-
tic, and all dynamic updates to the data flow through
the Simulink model are handled by the C/C++ code
that implements the controlled junctions.

The simulation model is created programmatically us-
ing the process described above through the Simulink
Application Programming Interface. In other work, we
have developed a physical system modeling environ-
ment that supports the building of HBG models [12].
An automatic model translation procedure creates the
builder network that is then passed to the Simulink
code generator. The Simulink model for the example
(Fig. 2) is shown in Fig. 7.
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Fig. 7. Example system generated Simulink model.

The simulation results for the example system are
shown in Fig. 8. All four configurations of the bond
graph are visited, and the efforts and flows are graphed,
along with the switching junction state.
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Fig. 8. Simulation outputs for a simple control se-
quence through each discrete state.

5. RELATED WORK

The concept of a determining bond introduced in
this paper builds up on the methods presented in [9]
on the efficient derivation of analytic and simulation
models from BGs by exploiting the inherent causal-
ity relations in the underlying BG model. Extensions
to hybrid systems have been studied by a number
of researchers (e.g., [5, 2, 17, 10]), but few have
discussed efficient methods for reassigning causality
and regenerating the computational model at runtime
when junction switches occur. As we have discussed
earlier, our focus is on block-diagram based simula-
tion models to facilitate component-oriented diagnos-
tic analysis of systems [14]. [18] have looked at the
notion of switching power junctions, and the explicit
switching of effort-deciding or flow-deciding bonds
when model configurations change. They define the
notion of causality invariance and apply their method
to special classes of electrical systems. The approach
presented in this paper is more general, and the algo-
rithms we have developed apply to any HBG model
where the system remains in integral causality for all
modes of operation. Similar work on switching power
systems is reported in [7, 11], but both papers focus
on equation generation based on Hamiltonian meth-
ods, which is somewhat tangential to our approach
on block diagram-based simulation models. Buisson,
et al. [4] use the notion of switched bond graphs, a
very similar approach to our HBG models. But unlike
the approach described in this paper, they do not use
an incremental approach to causality re-assignment
when junction switches occur. Their focus too is equa-
tion generation when mode changes occur using im-
plicit state equation methods. [6] deal with switching
junctions and causality re-propagation in hybrid sys-
tems, but their focus has mainly been on situations
where energy-storage elements switch into derivative
causality. The methods presented in this paper do not
deal with situations where the system model goes into
derivative causality.

HyBrSim is an experimental application for HBG
modeling and simulation ([16]). The simulation algo-
rithm includes mechanisms for performing event de-
tection and location based on a bisectional search, and
the algorithm can handle runtime causality changes
(including derivative causality) when junctions switch
on and off. HyBrSim runs in interpreted mode and nu-
merical simulation of continuous-time behavior uses
a forward Euler integration algorithm. HyBrSim can
also generate C-code from the designed HBG for com-
piled simulation.

A very different simulation implementation can be
taken as well, where the causal changes are handled
based on the use of an implicit formulation of the
junction equations ([16]). This eliminates the diffi-
culty of explicitly handling causal changes during run-
time. Instead the complexity is handled by the implicit
equation solver, which typically relies on an algebraic
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equations solver. However, it is not clear how this
method scales up for larger models, and when multiple
junctions switch simultaneously.

6. CONCLUSIONS

The work presented in this paper uses physical system
modeling semantics as defined by BGs and HBGs to
impose semantic structure on hybrid computational
models in Simulink. Other elegant computational ap-
proaches, such as Ptolemy and HyVisual [8] possess
these semantics in a mathematical framework, but do
not link these semantics to physical system principles.
Therefore, we believe that our approach for building
computational models from HBGs provides a com-
prehensive framework for starting from component-
oriented physical system models and deriving effi-
cient computational models for hybrid systems. In the
future, we will extend our modeling approach and
computational model generation schemes to handle
situations of derivative causality, and propose a more
formal model of computation that is linked to physical
principles.
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