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Abstract: This paper presents a modeling and analysis strategy of human skill
based on stochastic switched dynamics. As a fundamental mathematical model,
the Stochastic Switched ARX model (SS-ARX model) is introduced. Then the
modeling and analysis strategy of human skill is proposed based on the stochastic
switched impedance model which can be regarded as one of the SS-ARX model.
Finally, the developed strategy is applied to peg-in-hole task which involves
interesting dexterous human skill, and the effectiveness of the proposed strategy

is discussed. Copyright © 2006 I[FAC
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1. INTRODUCTION

A system, in which an operator and artificial
machine play in an interactive manner, is called
a man-machine cooperative system. There are so
many practical examples of this kind of systems
such as, a power extender, automobile and so
on. The goals of the man-machine cooperative
systems are to enable the operator and artifi-
cial machine to work harmoniously. In order to
realize this requirement, development of the ‘in-
telligent assist’ which does not conflict with the
operator’s intention must be addressed. Although
this problem may include several subproblems,
the most important one is the understanding of
the operator’s behavior by the artificial machine
[Nechyba,1997] [Hannaford,1991] [Hirana,2004].

In order to model the operator’s behavior, the con-
ventional techniques such as the nonlinear regres-
sion models, the neural network and fuzzy systems
have been used [Sjoberg,1995][Narendra,1990].
These techniques, however, have some problems as
follows: (1) the obtained model often results in too
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complicated model, (2) this makes it impossible to
understand the physical meaning of the operator’s
behavior. When we look at the human behavior,
it is often found that the operator appropriately
switches some simple primitive skills. The switch-
ing of primitive skills may be caused by operator’s
decision making. This consideration strongly mo-
tivates us to model the human behavior as a Hy-
brid Dynamical Systems (HDS). By regarding the
operator’s primitive skill and switching scenario
as the continuous and discrete part of HDS, the
understanding of the human behavior can be re-
casted as problem of the parameter estimation in
HDS framework. Although many literatures have
dealt with the expression, stability analysis, con-
trol, verification and identification [Ferrari,2003]
[Bemporad,2004] of the HDS in the control and
computer science communities, the application of
the HDS model to the analysis of the human
behavior has not been fully discussed yet.

Roughly speaking, HDS can be classified into two
classes. The first one is the HDS where the tran-
sition between discrete states (modes) is specified
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by means of deterministic logics, and the second
one is the HDS where the transition is specified
by transition probabilities. In [Kim,2005], we have
applied the HDS with deterministic mode change
to the modeling of the driving behavior. Although
this work can capture the motion and decision
making aspects in the human behavior, it can not
be suitable for the complex behavior analysis due
to its high computational cost. This drawback is
more emphasized when we consider the real-time
application.

In this paper, first of all, a Stochastic Switched
AutoRegressive eXogenous (SS-ARX) model is in-
troduced. This model can be regarded as a natural
extension of the standard Hidden Markov Model
(HMM) [Rabiner,1989][Hannaford,1991] where dif-
ferent ARX model is allocated to each discrete
state of the HMM. The significant advantages
of using SS-ARX model as the behavior model
is described as follows: (1) it can calculate the
likelihood of the behavior with reasonable compu-
tational burden, (2) it can take into consideration
the input and output signals of the human behav-
ior, and (3) it can reflect the stochastic variance in
the human behavior. Then, we develop the model-
ing and analysis strategy of human skill based on
the stochastic switched impedance model, and fi-
nally, apply it to a peg-in-hole task which involves
interesting dexterous human skill.

2. BRIEF REVIEW OF ARX MODEL

As a preliminary for SS-ARX model, the conven-
tional ARX model is briefly reviewed.

The standard ARX model is described by the
following difference equation:

Yt =C1¥Yt—1 +C1Yt—2 + -+ CnYt—n
+dous + diug—1 + -+ + dptip—m + € (1)
where y; and u; are an output and an input of
the system at ¢. They are supposed to be scalar-
valued signals. Also, n and m are order of the
ARX model, and ¢1,¢a, -+, ¢Cn,do,d1, -+, dy, are
parameters. e; is called an equation error, and

is supposed to have a Gaussian distribution with
variance o.

By using the following vector form:

0:(017027"'7cn7d03d17"'7dm)T (2)

wt = (ytfla Yt—2," 3 Yt—mn, Ut, Ut—1," ", utfm)T
3)

equation (1) is rewritten as follows:

Yt :’ll)tTo‘i-@t- (4)
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Fig. 1. SS-ARX model (three states)

3. PARAMETER ESTIMATION FOR SS-ARX
MODEL

SS-ARX is defined as the system in which an
ARX model is switched to other one according to
the state transition probability as shown in Fig.1.

This model can be regarded as the model in which
the ARX model and HMM are combined.

3.1 Parameters in SS-ARX model

The parameters in SS-ARX model are specified as
follows:

o Set of discrete states S[= S;, (¢=0,1,---,N)]

e q;;: State transition probability (i=0,1,---, N;
j=0,1,---,N)

e 7;: Initial state probability (:=0,1,---,N)

e 0;: Parameters in ARX model assigned to S;
(i=0,1,2,---,N)

e 0;: Variances of equation error in ARX model
assigned to S; (i=0,1,2,---, N)

N + 1 denotes the number of discrete states. In
the following, we denote the set of parameters in
the SS-ARX model by /\:(Wi, @5, Bi, O'i).

3.2 Three fundamental problems

To address several problems listed below, the
measured signal and its occurrence probability are
defined for SS-ARX model as follows: First of all,
a measured signal o, at time ¢ is defined as the
combination of the output y; and the regressor
1, that is, o = (yi,%,). Then, its occurrence
probability b;(o;) is defined by the assumption of
the Gaussian distribution of the equation error,
and is given by

1
bile) = s

(¢T9i - yt)2
exp {—T . ()
Based on these definitions, the following three

fundamental problems can be addressed for SS-
ARX model.



(1) Evaluation problem

In evaluation problem, the probability that
the measured signal sequence O=(0g, 01, - -,
0, --,or) occurs from the model A = (7,
ai;,0;,0;) is calculated. This problem can
be solved by applying Forward algorithm
[Rabiner,1989).

Decoding problem

In decoding problem, the most likely underly-
ing state sequence s=(sq, 1, -, 5t, -, S7),
which yields the measured signal sequence
O = (00,01, *,0¢,-++,0r), is found for the
model A = (7;,a;5,0;,0;). This state esti-
mation can be realized by applying Viterbi
algorithm [Rabiner,1989].

Estimation problem

In estimation problem, the model parameter
A = (m;, aij,0;,0;), which gives the highest
occurrence probability for the measured sig-
nal sequence O = (09,01, --,0,---,07), is
estimated.

The solution for problems (1) and (2) are same
as ones for the standard HMM. However, the
parameter estimation algorithm for the SS-ARX
model requires some extension to the one for the
standard HMM. In the following subsection, the
concrete parameter estimation algorithm for the
SS-ARX model is derived.

3.8 Parameter estimation

Here, we assume that L measured signal sequences
are collected for the parameter estimation of SS-
ARX model.

3.8.1. EM algorithm  First of all, we consider an
unmeasurable state sequence

82(807317"'7St7"'58T) (6)

and measurable signal sequences

O = (010,011, 0085+, 0L,T) (7)
(where [ represents the index of the measured
signal sequence). The maximization of the likeli-
hood value of the s and Oy, Zle L(s,01;\) =
Zle P(s,0;]\) is achieved by introducing the

EM (Expectation and Maximization) algorithm.

Generally, the EM algorithm tries to find the
parameter A’ which maximizes the following Q
function:

M=

QX)) =)  Ellog{P(s,Oi|XN)} |01, A

(8)

~
Il
-

™=

> P(s|Oy, \) log {P(s, 01| \')}
S

N
Il
-
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(9)
by executing following procedures iteratively.

(1) Specify an initial parameter A.

(2) Find the A" which maximizes the Q(X, \').

(3) Substitute A’ for A, and iterate (2) until \'=\
holds.

3.3.2. Parameter estimation algorithm  The pa-
rameters of SS-ARX model before and after
the update are supposed to be given by A =
(74, a45,0;,0;), and X'= 0';,0}). From (9),

( ;7 aij)

-3

=1

QM)

{Z om0

x log {P(s, Oy |)\')}} (10)

in

Now, we replace

1 1 1
P(Oo|n)’ P(O1)) 7 P(OLIN)

(10) by ko, k1,---, kL.

Since kg, k1,---,kr are constant, the maximiza-
tion of Q(A,)\') implies the maximization of
QA \N) given by

QAN ZP (5,0u|\) log {P(s, O1|\)} .(11)

By using the definition, Q(\,\’) can be decom-
posed as follows:

QA N)=Q1(\ ) + Q2(), 1])‘*'@3(/\ 0'i,0;)
(12)
where
) L N
Q1=> Y kimibi(or0)log {m}} B(1,i,0)  (13)
L
Qo= ZZZZklog{a”
I=1 t=1 i=0 ;=0
xa(l,i,t = 1)ai;bj(o,e)B(1, j, 1) (14)

Mq
Mz

=)

=11

Qz

ki log {i(ov.ba(L, i, )81, 1),

I
<
Il
<)

i

(15)

The forward probability «(l,i,t) and backward
probability A(1,4,t) in (13), (14) and (15) are
defined as follows:



"X Asqp_ysp bST (Ol,T)'

(17)

X sy 15442 b5t+2 (Ol,t+2) X

The meaning of a(l,i,t) is the probability for
SS-ARX model A to generate the [th measured
signal subsequence Oy = (010,011, -, 01,) until ¢
and reach the state S; at ¢ (i.e. s; = S;). Also,
the meaning of 5(l,4,t) is the probability for SS-
ARX model X to generate the [th measured signal
subsequence Oy = (0y,441,01,142, -+, 0,T) starting
from S; at t (i.e. s,=3S;) and reach the final state
at T

Then, by maximizing Q,(\, D, Qa(\, a;;) and
Qs(\, 0',0)), Q(\,XN) can be maximized. N
which maximizes the Q(\, \') can be obtained as
follows:

i kimibi(o0)B(1,,0)
SN o S, kimibi(o10)B(1, 4, 0)
al; = ]?3:17;%:1Lkla(lvivtl_l)aijbj(Ol,t)ﬂ(lajat).

> im0 2ot 2o Fually i t=1)ab;(0n,e) B 1)

S

(2

(19)
T L -1
0 = {ZZIW, Wi l,z,t)ﬁ(l,z’,t)}
t_OqulL
X AN ki e l,z,t)ﬂ(l,z’,t)} (20)
t=0 [=1

0_,.2 _ Zt:ozlzlk”o; ¢l,t _yl,t|2a(l7i7t)/ﬁ(lvivt)
' 23:0 ZIL:1 kla(laiat)ﬂ(laiat)

By iterating three steps in the EM algorithm
together with (18), (19), (20) and (21), the pa-
rameter X is locally maximized.

.(21)

Note that eq. (20) can be regarded as the weighted
least mean square solution in which the weight
parameters are specified by a(l,4,t)5(l,1,t), i.e
the probability that the o, is generated from the
state S;.

Also, the parameter estimation algorithm de-
scribed in this section can be easily extended to
the multiple output case.

4. APPLICATION TO ANALYSIS OF HUMAN
SKILL

4.1 Task environment

The task environment addressed in this paper is
depicted in Fig.2. The peg is supposed to move
only in z — z plane.

Peg and hole are made of Aluminum and rubber,
respectively. The clearance of the hole is 0.1[mm)].
The operator executes the task based on the
scenario depicted in Fig.3.

67

AZ

Peg
Hole
y AN
i
e X
> o
0 Environment

Fig. 2. Peg-in-hole task

In this scenario, since the switchings from (1) to
(2) and (4) to (5) are considered to be determin-
istic, the transition from (2) to (4) were analyzed
based on stochastic switched dynamics.

(1) Move the peg to surface.

(2) Move the peg to the hole
keeping contact.

(3) Upright the peg.

(4) Insert the peg in the hole.

/g

. Enyvironment
//////////////////////////

X

(5) Terminate.

3>

)

Fig. 3. Motion of peg

4.2 Impedance model representing human skill

4.2.1. Impedance model In the field of robotics,
the impedance model has been considered as typi-
cal dynamical model to represent the human skill.
In this work, therefore, we define the ARX model
at each discrete state by impedance model to rep-
resent the dexterous human skill. The impedance
model considered for the peg-in-hole task is shown
in Fig.4, and can be described by (22), (23) and
(24).

Fig. 4. Impedance model

Myii + Coit + Kot + Dyi = fa (22)
M. +C.i?+K.iz+D.i=f. (23)
Mpiﬁ—{—cpi,b-f-Kpip-f—Dpi:mp- (24)



In Fig. 4, eqs. (22), (23) and (24), z, z, p denote
position of peg, fz, f., m, denote interactive force,
and M:Ei: Mzi; Mpi; C:Ei: Czia Cpi: Kwia Kzia
K,; denote impedance parameters at ith discrete
state. Also, Dy = —Kopi®q+ fedi, Dzi = —K.iza+
fzdi; Dp,' = —Kppd + Mpdi- Td, 2d, Pd denote
reference position, and frdi, f:di, Mpdi denote
virtual reference force.

Note that virtual reference force varies from dis-
crete state to state, and Dy, D; and D,; are also
unknown.

4.2.2. Transformation to discrete-time model

Since equations (22), (23) and (24) are model
in continuous time domain, their discrete-time
model are derived with preserving parameters in
continuous time model (See [Wada,1993] for de-
tail). The transformation from continuous-time
model to its discrete-time model is derived as
follows: In the following, p represents one of the
coordinate, i.e. p is a substitute for one of x,
z and p. Note that D,; is replaced by Dp;d by
introducing a parameter d = 1 in the following.

Fyr(2) = MyiPpo(2) + CpiPri(2)

+KpiPF2(Z) + DpiDF(Z) (25)
where
(5 (+271)

F.r(z)= Qsz 26
(AT RTESreRy
(£)2(1+271)2
Dp(z)= =D(z) (27
HO e B D) @0
(8)F(1 427k (1212
Pri(z)= —P(2)(28
S T e Lo

(k=0,1,2). F,(2), D(z) and P(z) are z-transform
of fp, d and p. v is a time constant of the filter,
and was set to be v = 20 in this work. Finally, by
applying inverse z-transform to (25), and adding
equation error e,;;, we obtain

pr,t = MpipFO,t + CpipFl,t
+Kpiproe + Dpidpt + epiy
= ’l,b;it Om- + Epi,t-

(29)
(30)
Thus, the discrete-time impedance model can be

obtained with preserving the parameters in con-
tinuous time domain.

Now , the parameter vectors 8,4, 6.; and 8,; and
regressor vectors v, 4, ¥, and v, , are defined
for each coordinate as follows:

ezi = (M:m: Cwia K:Ei: Dzz)T
ozi = (Mziy Cziszinzi)T
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0, = (Mpiv Cpi, Kpis Dpi)T (33)
Vo= (@ros, Tr1e, Trog, dpg)’ (34)
Y., = (zro, 2P0, 2F2,0, dp) T (35)
¥, = (Pro,t; PF1L; PF21, dpe)” (36)

4.2.8. Stochastic switched impedance model We
consider the left-to-right model with five discrete
states as the model for peg-in-hole task (Fig. 5).

22 ags Q44

oo

T T T
JpFi=p.t Opo+ em,tT fort=%p 1 Optept  fpri=vpi Opstepst
pr.L:wp,lopl+ep1.[ pr,t:wprt 9p¢3+6p3.t

Fig. 5. Stochastic switched impedance model (left
to right)

4.8 Acquisition of data and result of parameter
estimation

4.8.1. Acquisition of data  The operator manip-
ulated the data acquisition tool shown in Fig. 6.
The position (z[mm], z[mm], p[rad]) and interac-
tive force (f;[N], f:[N], my[Nm]) are measured by
three potentiometers and force sensor. Sampling
interval was set to be 2[msec], it took about 5[sec]
to complete the task.

Potentiometer

Fig. 6. Data acquisition tool

4.8.2. Results of parameter estimation  The es-
timated impedance parameters at each discrete
state ( M.'m'; Mzi; Mpi; Ca:i; Czi; Cpi; K.’ci; Kzi;
K,i, Dy, D.;, D,; ) are shown in Figs.7 to 9
(upper figures). Also, the interactive force was
calculated based on the estimated model, switch-
ing points (obtained by applying Viterbi algo-
rithm) and the filtered measured position data
in (29) in order to verify the parameter estima-
tion. The calculated force profiles are depicted
in lower figures in Figs.7 to 9 together with the
estimated switching points represented by vertical
dash lines. The profiles of the real force data also



represent the data obtained by applying the low- 4.4 Discussion and application
pass filter 1/(1+2?) to the original measured force

data. In these figures, the real and calculated force We can see the several interesting properties
data agree well with each other. This implies that among obtained parameters. First of all, esti-
the proposed estimation technique works well. mated switching points seem to coincide with the
instance of change of geometrical constraints for
0003 0 0 e 3 the peg. As for the impedance parameters, al-
o 0= .
0002 o i 10 » though some parameter show negative value, the
0.001 02 20 25 ; .
0 03 ] 30 ST task was performed safely. This can be explained
= -0. - o1 . .
0001 ‘L JL CnllHE]D % o H as follows: The stability of the task is specified by
0002 06 e 5 overall closed-loop dynamics given by Fig.10. In
-0.003 | 07 b i 50 0t
-0.004 0.8 90 B= -5 g
01234 01234 01234 01 2 3 4 e E
STATE NUMBER STATE NUMBER STATE NUMBER STATE NUMBER t
0.002
Real Force Data Dpi _{t
S Calelgd Foree pus | z fim M1 P
I oo - - \ e o ‘ +
£ 00005 A % ] 7 fp
z A o H;
= K A
20,0005 &) N
0001 Fig. 10. Block diagram of whole system
0 500 1000 1500 2000 2500

Time Step (2ms)

Fig.10, each block is given by
Fig. 7. Estimated parameter and comparison of

real force and calculated force (X-axis) M = M,, s> (37)
2
Hi:Mm'S +Cpi8+Km’ (38)
0.01 - 10 40 400 El = Ceis + Kﬁi (39)
30 Frifege ]
8 300 . . . . .
0005 . » 200 where H; indicates ith dynamics of human skill
. o L0 e o 1 (estimated in the previous subsection) , M repre-
0009 2 ol 7]02 \ sents the mass of the handling tool, i.e. the peg
o 0 ) 200 fLI and force sensor, and E; represents the dynamics
001 |- ot o : d f ,and E ts the dy
o015 B 2T 0t 300 B of the environment at ith discrete state which
0(?(';I"ZATEI\'UME;ER STATE NUMBER STATE NUMBER STATE NUMBER COnsists Of the dynamics Of hole and fOrce SenSOr. p
oo in - represents the coordinate (x, z and p). This con-
S 00014 = id ti 11 to h ti i d
3 oo A sideration allows us to have negative impedance
E oo e parameter in realization of stable peg insertion.
§ 0.0006
£ 0.0004 # . . . .
00002 e oo Foreo Data ——— 1 The direct application of the obtained results
0= Switching Time ---%--- ]

-0.0002
0

= o - - ~w 18 an implementation of the target impedance

Time Step (2ms) models for the industrial robot together with the
switching scenario of them. This kind of ‘Skill
transfer’ is one of the most promising idea to
realize the dexterous manipulation. The other
interesting application is a quantitative evaluation

Fig. 8. Estimated parameter and comparison of
real force and calculated force (Z-axis)

0.02 - 8 —— 100 7000 (reCOgnitiOH) of the skill based on the smnlarlty
oo 6 0 i ol measure for the stochastic processes. This kind
4 =200 . . .
oo , o 4000 of measure can be a criterion for the design of
= o 4 Y ot R S artificial skill [Nechyba,1997][Hirana,2004].
0.1 2 -600 L
0.12 B R 1000 =475 . . . . . . .
o [ “ 0o L o [l | Also, it will be quite interesting to investigate the
ETERY EYERY YRR TRy obtained impedance parameters for understand-
STATE NUMBER STATE NUMBER STATE NUMBER STATE NUMBER . . . .
000 S, ing of physical meaning of human skill. Our de-
. eal Force Data
% o.oooz e A \ Calalted Force Data ——-—- veloped strategy can be a good first step to tackle
< ‘ | this problem.
£ 00ws \ sl .
Z oo o \ ‘,/\\,
g -0.0015 \\ / \ s
o002 5. CONCLUSIONS
000 0 500 1000 1500 2000 2500
Time Step (2ms) . . .
' In this paper, first of all, a Stochastic Switched
Fig. 9. Estimated parameter and comparison of AutoRegressive eXogenous (SS-ARX) model was
real force and calculated force (around Y- introduced and its parameter estimation algo-
axis) rithm has been derived.. Then, we have devel-

oped the modeling and analysis strategy of human
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skill based on the stochastic switched impedance
model which can be regarded as one of the SS-
ARX model. Finally, the developed strategy was
applied to peg-in-hole task which involves inter-
esting dexterous human skill, and the effectiveness
of the proposed strategy was discussed.
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