
MODELING AN IMPACT CONTROL

STRATEGY USING HYPA

Pieter J.L. Cuijpers
∗,1

Michel A. Reniers
∗

∗ Technische Universiteit Eindhoven (TU/e), Eindhoven

Abstract: We analyze a control strategy for the pick-and-place module of a
component mounting device. We use a combination of techniques from bondgraph-
theory, systems theory, process algebra and differential algebra to achieve this,
and we show how the hybrid process algebra HyPA aides us in combining these
techniques and in using them on a common hybrid model of the device.

Keywords: hybrid systems, process algebra, bondgraph theory, impact control

1. INTRODUCTION

In this paper, we describe and analyze a control
strategy for the pick-and-place module of a com-
ponent mounting device, see figure 1, using the
hybrid process algebra HyPA (Cuijpers and Re-
niers, 2005). The objective of this control strategy,
designed by Philips CFT and Assembleon, is to
bring a component to a PCB (Printed Circuit
Board) as quickly as possible, and press it onto
the PCB with sufficient force to make it stick.
This all should be done without damaging the
component. The focus of our analysis, is to show
under which conditions safety of the controller
can be guaranteed. In other words, we aim to
find conditions under which it is certain that the
component is not damaged.

The modeling and analysis of the pick-and-place
module is carried out in the hybrid process alge-
bra HyPA. This process algebra focuses on the
description of so-called hybrid systems, i.e. on
models of systems in which both continuous and
discrete behavior occur. In the case of the pick-
and-place module, hybrid modeling turns out to
be useful, because it allows us to abstract from the

1 We would like to express our gratitude to Progress/STW
(Grant EES5173), Philips CFT and Assembleon, for their
financial and material support of this case study, and of
our project on the development of hybrid systems theory.

PCB

sled

Fig. 1. A pick-and-place module

precise mechanics of impact and other relatively
fast behavior. This makes the dynamic behavior of
the system much simpler which, rather unexpect-
edly, allows us to find analytic bounds for safety
for this particular case study.

Apart from providing the user with a framework
to specify hybrid systems, HyPA also allows alge-
braic reasoning about the compositional structure
of such systems, i.e. on the way in which a hybrid
system is composed from subsystems. One of the
strengths of HyPA, is in finding different abstract
representations of a system. In this paper, we
first specify the system as a parallel composi-
tion of more-or-less standard components from
bondgraph theory (Karnopp et al., 1990; Moster-
man et al., 1998; Cuijpers et al., 2004), and
then rewrite it into a semi-linear representation
(Usenko, 2002; van de Brand et al., 2006) that

Preprints of the 2nd IFAC Conf. on Analysis and Design of Hybrid Systems (Alghero, Italy), 7-9 June 2006

56

FRANCO
Text Box
Copyright © 2006 IFAC

gives more insight in the functional behavior of the
system. The exact functional behavior is extracted
from this last representation using analysis of
the differential equations and difference equations
that occur in it.

In a sense, the focus of the process algebraic ap-
proach on compositional structure is supplemental
to the kind of analysis of hybrid behavior as de-
scribed in, for example, (Mosterman et al., 1998;
Febbraro et al., 2001; Alur and Dill, 1994; Heemels
et al., 2001; Henzinger, 1996; van der Schaft and
Schumacher, 2000). These latter approaches often
consider a hybrid model that is already written
in a specific form, and are able to give a very
detailed analysis of such a model. The process
algebraic approach provides a way of switching
between different compositional representations of
the model, i.e. between the different forms nec-
essary for certain kinds of analysis. Recently, a
number of other process algebras for hybrid sys-
tems have been introduced as well (Rounds and
Song, 2003; Bergstra and Middelburg, 2005; van
Beek et al., 2006), which differ on a number of
subtle details that are outside the scope of this
paper. We suppose that these process algebras are
equally suitable for the purpose of modeling and
analyzing a system as presented in this paper, but
it may be interesting to verify this in the future.

The structure of this paper is as follows. In section
2, we briefly introduce the hybrid process algebra
HyPA. In section 3, we discuss the central model
for this case study, namely that of the pick-and-
place module. In section 4, we extend it with
a model of a measuring and control strategy
proposed by Philips CFT (Mateboer, 1999). In
section 5, we formalize the analysis goal of this
paper, i.e. we formalize what we mean by safety
of a system. Finally, in section 6, we discuss the
results of the actual analysis of the controlled
pick-and-place module, and in section 7, we give
some conclusive remarks and recommendations
for future work.

2. HYBRID PROCESS ALGEBRA

In this section, the part of the syntax of HyPA
that is used in this paper is discussed. The dis-
cussion presented here is adapted from (van de
Brand et al., 2006). For a more detailed work on
this algebra see (Cuijpers and Reniers, 2005; Cui-
jpers, 2004).

The syntax of HyPA is an extension of the process
algebra ACP (Baeten and Weijland, 1990), with
the disrupt operator from LOTOS (Brinksma,
1985) and with variants of the flow clauses and
re-initialization clauses from the event-flow for-
malism introduced in (van der Schaft and Schu-

macher, 2000). The signature of HyPA contains
the following constant and function symbols:

(1) discrete actions a ∈ A,
(2) flow clauses c ∈ C,
(3) a family of process re-initialization operators

d ≫ where d ∈ D,
(4) alternative composition ⊕ ,
(5) sequential composition ⊙ ,
(6) disrupt ◮ and left-disrupt ⊲ ,
(7) parallel composition ‖ ,
(8) a family of encapsulation operators ∂H (),

where H ⊆ A, and predicate encapsulation
operators ∂Pm

(), where Pm ∈ Pm.

The binding order of these operators is as follows:
⊙ , ◮ , ⊲ , d ≫, ‖ , ⊕ , where sequential compo-
sition binds strongest and alternative composition
binds weakest. These constants and operators are
described informally below.

Flow clauses are used to model continuous, never
terminating, physical behavior by describing how
the model variables Vm are allowed to change
through time. A flow clause is a pair (V |Pf)
of a set of model variables V ⊆ Vm and a flow
predicate Pf ∈ Pf . This flow predicate may,
for example, contain differential equations and
algebraic equations. The set V models which
variables are not allowed to jump at the beginning
of a flow.

A process re-initialization d ≫ p models the be-
havior of p where the model variables are submit-
ted to a discontinuous change as specified by the
re-initialization clause d. A re-initialization clause
describes a set of re-initializations, where a re-
initialization is a pair of valuations representing
the values of the model variables prior to and
immediately after the re-initialization. The set of
all re-initializations Val × Val is denoted R.

A re-initialization clause is a pair [V |Pr] of a set
of model variables V ⊆ Vm and a re-initialization
predicate Pr ∈ Pr. The set V models which
variables are allowed to change. Note that this is
precisely opposite to flow clauses, where V denotes
those variables that do not change (initially).
Predicate Pr models the discontinuous changes.
In a predicate, x− denotes the value of a variable
x before re-initialization, x+ denotes the value of
a variable x after re-initialization, and x′ denotes
the difference between x+ and x−, i.e., x′ = x+ −
x−. Also, P−

r denotes the predicate Pr with all
occurrences of x replaced by x−.

The alternative composition p ⊕ q models a (non-
deterministic) choice between the processes p and
q. The sequential composition p ⊙ q models a
sequential execution of processes p and q. The pro-
cess q is executed after (successful) termination of
the process p.

2

 57

FRANCO
Text Box

The disrupt p ◮ q models a kind of sequential
composition where the process q may take over
execution from process p at any moment, without
waiting for its termination. This composition is
essential for modeling two flow clauses executing
one after the other, since the behavior of flow
clauses never terminates. The left-disrupt p ⊲ q
first executes a part of the process p and then
behaves as a normal disrupt.

The parallel composition p ‖ q models concurrent
execution of p and q. The intuition behind this
concurrent execution is that discrete actions are
executed in an interleaving manner, with the pos-
sibility of synchronization of actions (as in ACP,
where synchronization is called communication),
while flow clauses are forced to synchronize, and
can only synchronize if they accept the same solu-
tions. The synchronization of actions takes place
using a (partial, commutative and associative)
communication function | ∈ A × A 7→ A. For
example, if the actions a and a′ synchronize, then
the resulting action is a′′ = a | a′. Actions cannot
synchronize with flow clauses, and in a parallel
composition between those, the action executes
first. Re-initializations synchronize only if the pro-
cesses on which they act synchronize.

Encapsulation ∂H (p) models that the discrete ac-
tions from the set H ⊆ A are blocked during the
execution of process p. This operator is often used
in combination with the parallel composition to
model that synchronization between discrete ac-
tions is enforced. Predicate encapsulation ∂Pm

(p)
models that all actions and flows that (at some
point in time) satisfy the predicate on model vari-
ables Pm, are blocked. In (Cuijpers, 2004) and the
present paper, it is used to formalize and analyze
safety requirements on processes.

Terms can be constructed using variables from
a given set of process variables Vp (with Vp ∩
Vm = ∅), as usual. Finally, all processes should
be interpreted in the light of a set E of recursive
definitions of the form X : p, where X is a process
variable and p is a term.

For some examples of modeling using HyPA we
refer to (Cuijpers et al., 2004; Cuijpers, 2004; Man
et al., 2005).

3. THE PICK-AND-PLACE MODULE

In this section, we give a model for the pick-and-
place module based on bondgraph modeling.

In (Mateboer, 1999), a model of the pick-and-
place module is used that contains differential and
algebraic equations for the collision mechanics.
Simulations are performed, to see how changes
in the characteristics of the PCB influence the

Mass(ms) Actuator(F)Junction

Collision(Act,InAct)

JunctionMass(mp)

Damper(bp)

Spring(kp)

1 2

3

4
5 6

7

Fig. 2. Bondgraph of the pick-and-place module

performance of the controller. One of the conclu-
sions of that report is that, if the characteristics
of the collision mechanics are dominant over the
characteristics of the PCB (an assumption that is
reasonable in practice), then the impact behavior
has ended before it is detected.

This relatively fast impact behavior, is the first
reason why we abstract from the precise impact
mechanics in our model, replacing it by discon-
tinuous behavior. The second reason is that the
parameters of the collision may vary wildly as
different components and PCBs are used. Ab-
straction from the precise mechanics, means that
we are robust against those variations.

In figure 2, a bondgraph model (Karnopp et

al., 1990) of the impact module is depicted. A
bondgraph gives a graphical representation of the
energy exchange in a physical system. In our ex-
ample, the components of which the bondgraph
consists are a mass (ms) that models the sled, a
force (F) that models the actuator through which
the sled is controlled, a mass-spring-damper sys-
tem (mp, kp, bp) modeling the flexible PCB, and
junctions (including a special collision junction)
that model the exchange of energy between the
other components.

Classically, the semantics of a bondgraph is given
by a set of differential and algebraic (so called
constitutive) equations for each of the bondgraph
components (Karnopp et al., 1990). However,
inconsistencies tend to arise in these equations
whenever connections between components are
made or broken, which is what happens dur-
ing collisions. In (Mosterman et al., 1998), a
method was proposed to deal with these incon-
sistencies while performing simulations of a sys-
tem, and switching junctions such as our collision
component were introduced to model the mak-
ing and breaking of connections. In (Cuijpers et

al., 2004; Cuijpers, 2004) an algebraic semantics
for hybrid bondgraphs was given using so called
hybrid constitutive processes in the process alge-
bra HyPA. These constitutive processes contain
the usual constitutive differential and algebraic
equations for continuous behavior, and in addi-

3

 58

FRANCO
Text Box

Table 1. Physical meaning of the vari-
ables (and constants).

Variable Physical meaning Unit

a acceleration m

s2

b damping constant Ns

m
= kg

s

E energy J = kgm
2

s2

F force N = kgm

s2

k elasticity / spring constant N

m
= kg

s2

m mass kg

p momentum kgm

s

v velocity m

s

x position m

tion contain constitutive difference equations that
describe the discontinuities in behavior due to the
aforementioned inconsistencies. Thus, the seman-
tics of a hybrid bondgraph is formed by a parallel
composition of constitutive hybrid processes for
each of the bondgraph components. The constitu-
tive hybrid processes associated with our impact
system are explained below, and summarized in
table 2.

The classical constitutive equations of bondgraphs
are based on the insight that in many physi-
cal systems energy exchange (i.e. power) between
two components is the product of two variables
called generalized effort and generalized flow. In
turn, generalized effort and generalized flow are
the time-derivatives of the two state-variables
of a physical component, which are generalized

momentum and generalized displacement respec-
tively. In mechanical systems, such as the one un-
der study, energy (E) is a combination of kinetic
and potential energy, generalized effort is better
known as force (F), generalized flow is called
velocity (v), generalized momentum is called mo-

mentum (p) and generalized displacement is called
position (x). The behavior of each mechanical
component can be expressed using these five vari-
ables, and their fundamental relations (Ė = F · v,
ẋ = v and ṗ = F) are captured in the Bond
process in table 2. Note, that we have adapted the
notation in this paper to that of the mechanical
domain (see table 1).

In figure 2, each of the bonds (i.e. the half-arrows)
is identified by a number. With each bond i
variables Ei, pi, and xi, Fi and vi, representing
energy, momentum, position, force and velocity,
of that bond, are associated. The direction of the
bonds defines the positive direction of the flow
of energy. The positive direction for the physical
variables (e.g. which direction of movement is
considered a ‘positive’ velocity) should be chosen
in accordance to this. In relation to figure 1, all
‘upward’ displacements, velocities and forces are
considered positive, contrary to what one might
intuitively expect.

The continuous behavior of the mechanical com-
ponents is described using the usual constitutive

equations for conservation of energy and momen-
tum. The components are additionally described
by the equation F = m · a for a mass, F = b · v
for a damper and F = k · x for a spring. The
Actuator(F) process acts as a source of a constant
force F . The discontinuous behavior of these me-
chanical components can be derived using partial
integration from these laws. Partial integration
of energy E as a function of momentum p, for
example, gives us that the change in energy E′

depends on the momentum p− prior to the change
and the momentum p+ after the change, satisfying

E′ = (p+)2−(p−)2

2·m . See (Cuijpers et al., 2004) for
a more complete treatment of the theory behind
these derivations.

The Junction process serves to describe preser-
vation of momentum and energy. Note our slight
abuse of notation regarding the direction in which
variables are to be interpreted. Firstly, for a set C
of bonds, VC denotes the set {Ec, pc, xc p c ∈ C}
of state-variables. Secondly, whenever we have an
inward (outward) half-arrow in the bondgraph, we
write a corresponding + (−) sign in the set C to
signify the direction of the bond, and we write a
+ (−) in the corresponding constitutive equations
whenever a ± sign occurs in these equations (typ-
ically, it will occur in front of a Fc or vc).

The Collision process describes how junctions
are made and/or broken as a result of collisions
between masses (in (Cuijpers et al., 2004), the
Collision process is called a (1/E)-junction). The
predicates Act and InAct describe the situation
that the two masses are connected and act as one
mass and the situation where the two masses are
not connected, respectively (see table 2). Indeed,
these two predicates are not local, in the sense
that they use variables of components that are
not directly connected by bonds. From a bond-
graph perspective, this is still correct, since there
is no exchange of energy defined through Act and
InAct. However, the occurrence of non-local vari-
ables in the definition of Collision is, admittedly,
confusing. A more elaborate variant of the bond-
graph formalism exists that takes such exchange of
information into account as well. It is for example
used in (Mosterman et al., 1998), but it is beyond
the scope of this paper to treat such variants here.

4. CONTROL STRATEGY

In this section, we discuss the control strategy
that is applied to the pick-and-place module. We
base our discussion on the control strategy as it
was first suggested by Philips CFT (Mateboer,
1999).

The control strategy consists of two phases. In
the first phase, the sled is brought down using

4 59

FRANCO
Text Box

Table 2. Definitions for the constitutive hybrid processes.

Module : Mass1(ms) ‖ Bond1 ‖ Actuator2(F) ‖ Bond2 ‖ Bond3 ‖ Bond4 ‖ Mass5(mp) ‖ Bond5 ‖ Spring
6
(kp)

‖ Bond6 ‖ Damper
7
(bp) ‖ Bond7 ‖ Junction{−1,2,−3} ‖ Collision{3,−4} ‖ Junction{4,−5,−6,−7}

Massi(m) :

([

Ei, pi, xi

∣
∣
∣ E′

i
=

(p
+

i
)
2−(p

−

i
)
2

2·m
∧ x′

i
= 0

]

≫



 Ei, pi, xi

∣
∣ pi = m · vi





)

◮ Massi(m)

Spring
i
(k) :

([

Ei, pi, xi

∣
∣
∣ E′

i
= k ·

(x
+

i
)
2−(x

−

i
)
2

2
∧ p′

i
= 0

]

≫



 Ei, pi, xi

∣
∣ xi = 1

k
· Fi





)

◮ Spring
i
(k)

Damper
i
(b) :

([
Ei, pi, xi

∣
∣ E′

i
= 0 ∧ p′

i
= 0 ∧ x′

i
= 0

]
≫



 Ei, pi, xi

∣
∣ Fi = b · vi





)

◮ Damper
i
(b)

Actuatori(F) :

([
Ei, pi, xi

∣
∣ E′

i
= 0 ∧ p′

i
= 0

]
≫



 Ei, pi, xi

∣
∣ Fi = F





)

◮ Actuatori(F)

Bondi :

([
Ei, pi, xi

∣
∣ true

]
≫



 Ei, pi, xi

∣
∣ Ėi = Fi · vi ∧ ṗi = Fi ∧ ẋi = vi





)

◮ Bondi

JunctionC :

([

VC

∣
∣
∣
∣

∑

c∈C
±E′

c = 0 ∧

∑

c∈C
±p′c = 0

∀c,c′∈C x′
c

= x′
c′

]

≫



 VC

∣
∣
∣
∣

∑

c∈C
±Fc = 0

∀c,c′∈C vc = vc′





)

◮ JunctionC

CollisionC :

([

VC

∣
∣
∣
∣

Act− ∧

∑

c∈C
±E′

c
= 0

∑

c∈C
±p′

c
= 0 ∧ ∀c,c′∈C x′

c
= x′

c′

]

≫



 VC

∣
∣
∣
∣

Act ∧
∑

c∈C
±Fc = 0

∀c,c′∈C vc = vc′





⊕

[
VC

∣
∣ InAct− ∧ ∀c∈C E′

c
= 0 ∧ x′

c
= 0

]
≫



 VC

∣
∣ InAct ∧ ∀c∈C Fc = 0





⊕

[

VC

∣
∣
∣
∣

InAct− ∧

∑

c∈C
±E′

c ≥ 0
∑

c∈C
±p′

c
= 0 ∧ ∀c,c′∈C x′

c
= x′

c′

]

≫



 VC

∣
∣
∣
∣

Act ∧
∑

c∈C
±Fc = 0

∀c,c′∈C vc = vc′





⊕

[

VC

∣
∣
∣
∣

Act− ∧

∑

c∈C
±E′

c ≥ 0
∑

c∈C
±p′

c
= 0 ∧ ∀c,c′∈C x′

c
= x′

c′

]

≫



 VC

∣
∣ InAct ∧ ∀c∈C Fc = 0





⊕

[
VC

∣
∣ InAct− ∧ ∀c∈C ± E′

c
≥ 0 ∧ x′

c
= 0

]
≫



 VC

∣
∣ Act ∧

∑

c∈C
±Fc = 0 ∧ ∀c,c′∈C vc = vc′





⊕

[
VC

∣
∣ Act− ∧ ∀c∈C ± E′

c ≥ 0 ∧ x′
c = 0

]
≫



 VC

∣
∣ InAct ∧ ∀c∈C Fc = 0





)

◮ CollisionC

Act ≡ (x1 = x5 ∧ v1 > v5) ∨ (x1 = x5 ∧ v1 = v5 ∧
1

ms
· (F1 + F3) ≥ 1

mp
· (F2 − F4))

InAct ≡ x1 ≤ x5

Table 3. Definitions for the controller, the sensor and the system.

System :
[

x−
5

= v−
5

= 0 ∧ margin ∧ consistent
]
≫ (Module ‖ Controller ‖ Sensor)

Controller :





−Fsat ≤ F = −K · (v1 + vseek) ≤ Fsat

∨

−Fsat ≥ −K · (v1 + vseek) ∧ F = −Fsat

∨

−K · (v1 + vseek) ≥ Fsat ∧ F = 0





◮ impact? ⊙



F = −Fsat





Sensor :



margin



 ◮

[

v1

clck

∣
∣
∣
∣
∣

margin−

¬margin+

clck+ = 0

]

≫




v1

clck

∣
∣
∣
∣

˙clck = 1
clck ≤ tdetect



 ◮

[
0 < clck−

≤ tdetect

]
≫ impact!

margin ≡ −vseek − vdetect ≤ v1 ≤ −vseek + vdetect

consistent ≡




p1 = ms · v1 ∧ p5 = mp · v5 ∧ x6 = 1

k
· F6 ∧ F2 = F ∧ F7 = b · v7

F2 − F1 = F3 = F4 = F5 + F6 + F7 ∧ v1 = v2 = v3 ∧ v4 = v5 = v6 = v7





a proportional feedback law or P-controller (Dorf
and Bishop, 1995). This means, that the controller
measures the velocity v1 of the sled and attempts
to keep it at a constant value vseek. It does this by
changing the applied force F proportionally, by a
constant factor K, to the difference between v1

and vseek. Note, that the controller synchronizes
the values of v1 and F with the sled and actuator
components, respectively. In the second phase, the
sled is pushed onto the PCB with a constant force,
by bringing the force-actuator into saturation
(Fsat). Naturally, in the actual system, the sled
is brought up after placing the component on the
PCB, but this is outside the scope of our studies
at the moment. Here, we focus on one placement

only. Our two phase control strategy is captured
in the process Controller in table 3.

The controller switches from the first phase to the
second when an impact is detected (the action
impact?). A logical first step to detect this impact
is by measuring the distance between sled and
PCB. However, this approach needs an additional
sensor, and turned out to be to expensive to
be used in the final product. Instead, impact
detection (the action impact!) is carried out by
detecting an abrupt change in the velocity of the
sled. The drawback of using a velocity sensor
for impact detection, is that the detection is
never immediate. We need to allow some time
tdetect between impact and detection, and use
an internal clock clck in our model, to measure

5

 60

FRANCO
Text Box

this time. In order to make the model of the
sensor more realistic, we also include a detection
margin (with vdetect > 0) on the velocity (see the
process Sensor in table 3). The sensor and the
controller communicate over a channel according
to impact! | impact? = impact.

For the impact detection to work correctly, it
is important that the PCB is initially at rest
x5 = v5 = 0. Furthermore, in order for an im-
pact to be detectable, v1 should be higher than
a certain threshold. Lastly, for technical reasons,
the initial state of the system should be physi-
cally consistent. The initial value of the physical
variables should be chosen such that there is a
possible solution to the constitutive equations.
This is captured in the predicate consistent. In
the remainder of this paper, we call the system as
a whole System (see table 3).

5. SAFETY REQUIREMENTS

In (Mateboer, 1999) it is assumed that the placed
component will be damaged when there is too
great a force (Fmax) acting on it. Using that
assumption, a maximum impact velocity vmax =

Fmax√
ki·ms

is calculated (where ki is the internal elas-

ticity of the component), at which the component
can be brought down on the PCB. In our model,
we have abstracted from the internal forces on the
component, but we can still think about safety of
the collision by assuming that there is a maximum
impact velocity. This is reflected in the follow-
ing predicate, that describes the condition under
which a component remains undamaged:

S ≡ (x1 = x5 ⇒ v1 − v5 ≥ −vmax).

Following the outline for safety analysis intro-
duced in (Cuijpers, 2004), the analysis in the
remainder of this paper is aimed at finding pa-
rameter values for K, Fsat, tdetect and vdetect such
that the following condition holds:

∂¬S (System) - System.

Intuitively, one may say that a system is safe if
it never goes into a state in which S is false.
Since a change in the value of variables is always
visible on the transitions, we may also say that
no transitions may occur on which S is false. If
(and only if) no transitions can occur on which S
is false, then the process System is equivalent 2 to

2 As a technical remark, note that - here means initially

stateless bisimulation in the sense of (Mousavi et al.,
2005). This equivalence is a straightforward variant of
bisimulation for transition systems in which data plays a
role, but in (Cuijpers and Reniers, 2005) it was shown
to have congruence problems with respect to parallel
composition.

the ¬S-encapsulation of System, i.e. the process
System with all ¬S-transitions removed.

In this paper, we only study damage that results
directly from impact. Damage can also occur, for
example, after an inelastic impact when Fsat >
Fmax. The study of this and other kinds of damage
is left as a topic for future research.

6. ANALYSIS

Due to space considerations, we can only present
the outline of our analysis of the pick-and-place
module here. This outline is intended to give an
overview of the different techniques that were
used. For the details of the analysis we refer to
(Cuijpers, 2004).

Recall that we set out to investigate under which
constraints the condition ∂¬S (System) - System
holds. In this condition, System is formed by a
parallel composition of various components. Since
the encapsulation operator, in general, does not
distribute over parallel compositions, a logical first
step in our analysis was to obtain an equivalent
representation of System without parallel compo-
sitions. This was done using a technique similar
to process algebraic linearization (Usenko, 2002;
van de Brand et al., 2006) 3 . From this, we ob-
tained an equivalent process description of the
form

System -

[
x−

5 = v−5 = 0
margin−

]

≫ (Seek ◮ Detect

⊲ impact ⊙ Bounce) ,

in which Seek, Detect and Bounce are linear sub-
processes that each describe the complete systems
behavior in one of the three stages of control.
The Seek process describes the systems behavior
as the sled is brought down, the Detect process
describes the systems behavior between collision
and the detection of collision. The impact action
describes the detection of the collision, and the
Bounce process describes the systems behavior
after detection, when a constant force is applied.
Indeed, as the name suggests, the system some-
times performs bouncing behavior in this phase.

As parallel compositions are removed from the
system description, elaborate flow clauses arise
which describe the physical behavior of the system

3 As - is not a congruence for parallel composition, we
used the stronger notion of robust bisimulation (Cuijpers
and Reniers, 2005) (also called stateless bisimulation in
(Mousavi et al., 2005)) for this linearization. The use of
two different equivalences indicates that the analysis takes
place on two different levels of abstraction. Robust bisim-
ulation is used to reason on an architectural level about
the composition of components, while initially stateless
bisimulation is used to reason about the behavioral aspects
of the system as a whole.

6

 61

FRANCO
Text Box

using a set of differential and algebraic equations.
These equations were solved using Mathematica,
in order to find conditions under which each of the
subprocesses, Seek, Detect and Bounce, are safe.

For the subprocesses Seek it was easy to show
that the initial conditions vmax − vseek ≥ vdetect

and vdetect ≤ mp

ms
vseek ≤ vseek are sufficient to

guarantee safety up to the point of collision.

Showing safety of Detect and Bounce turned out
to be feasible only when we assume that collisions
between sled and PCB are completely inelastic.
Worse, if completely elastic collisions are consid-
ered possible, realistic parameter values can be
found for which damage might occur at the second
impact, i.e. after the first bounce! This is why we
aimed at finding conditions under which no second
impact could occur.

After changing the Collision process slightly, re-
moving the options for partly elastic collision as
described by the fourth and sixth alternative in
the definition of Collision in table 2 , we repeated
the linearization and found, again, a process of
similar form.

But even the assumption of inelastic collisions
turned out to be insufficient to guarantee that
the sled and PCB stick together after the first
impact. The Bounce process still admits bouncing
behavior, because after the collision both masses
move on together and a counter force builds up
that eventually launches the sled of the PCB
again. As it turned out, the force with which the
sled is pressed onto the PCB should also be large
enough to prevent such disconnection. We found
a lower bound for this force

Fsat ≤ kpm2
s vmax

(ms+mp)
(
θms+ω

√
mp(mp+2ms)

) ,

where ω =

√
4kp(ms+mp)−b2p

2(ms+mp) and θ =
bp

2(ms+mp) ,

which may be used as a requirement on the
Controller process to guarantee that the sled
is pressed to the PCB with sufficient strength,
i.e. to guarantee that the Bounce subprocess is
safe. Simulations have pointed out that this lower
bound can be strengthened further, in some cases
up to 60%, by taking the influence of damping
into account. However, without insight in how
sensitive the lower bound is for changes in the
parameters, we must for the time being use the
formula given above. Paradoxically, this means
that the force that is suggested by Philips CFT in
(Mateboer, 1999) should be increased by a factor
2 to ensure that the component mounting device is
safe. As we have no insight in the maximum static
load on the components, we can not determine
whether this recommendation is reasonable or not.

Finally, the detection of the impact should be fast
enough to guarantee that the pressing phase of the

controller is activated before the disconnection of
sled and PCB can no longer be prevented. We
derived that we need

tdetect ≤
1
2

π−arctan(
kp−bpθ

bpω
)

ω
,

as a requirement on the Controller to guarantee
that the Detect process is safe.

As a last step in our analysis, we need to show
that the combination of safe initial conditions of
the Seek, Detect and Bounce subprocesses forms
a safe initial condition for the System process.
For this, we used the special distribution laws
for encapsulation and reinitialization given in
(Cuijpers, 2004), that allow reasoning over - with
respect to initial conditions.

7. CONCLUDING REMARKS

In this paper, we have build a hybrid model of
a pick-and-place module, using bondgraph com-
ponents described in the hybrid process algebra
HyPA. Furthermore, we have analyzed a control
strategy aimed at bringing a component to a PCB
as quickly as possible, and press it onto the PCB
with sufficient force to make it stick, but without
breaking it.

We have shown how HyPA allows us to combine
process algebraic analysis and system theoretic
analysis, in the sense that these two kinds of anal-
ysis have been executed as separate operations
on a common hybrid model. Regarding the use
of process algebraic methods, we can conclude
that the division of the system as a whole into
manageable subprocesses certainly helped in the
analysis of the pick-and-place module. Another
strong point, is that we were able to describe
impact detection as a separate sequential process.
This allowed a separate formal treatment of the
different phases of the process, which was useful
because timing issues that played a role in the
Detect process would otherwise have interfered
with the search for a constraining force in the
Bounce process. Also the collision dynamics were
modeled as a separate component, which allowed
us to easily change the model when it became
apparent that we needed to assume inelastic colli-
sions. This would not have been possible if we had
not given semantics to the bondgraph paradigm
using hybrid constitutive processes.

A weak point in the analysis, is that we needed to
solve many of the differential equations that occur
in the subprocesses. This made it hard to gener-
alize our results to an analysis method, because
many differential equations that occur in practice
cannot be solved analytically. On the other hand,
it was exactly the use of hybrid constitutive pro-
cesses that allowed us to describe the physical be-
havior of the module using only simple differential

7

 62

FRANCO
Text Box

equations in the first place. If we had not used the
hybrid constitutive processes to model the mod-
ule at exactly the right level of abstraction, the
differential equations would certainly have been
too difficult to solve. In particular, the hybrid
approach allowed us to use basic conservation laws
only to describe the impact behavior, instead of
resorting to complex differential equations.

In the analysis discussed in this paper, HyPA was
used to transfer analysis results from system the-
ory to process algebra and back. The core of the
safety-analysis was a proof that the system satis-
fies a certain process algebraic condition. Proving
that this condition holds was done along process
algebraic lines of reasoning, but each iteration
required a system theoretic proof about the dif-
ferential equations involved. In (Cuijpers, 2004),
this method was already outlined, but as a topic
for future research we propose to search for more
and better combined proof methods of this kind,
with a focus on hybrid topics like safety, stability,
liveness and freedom of deadlocks.

ACKNOWLEDGEMENTS

Many thanks go to Paul van den Bosch, Jan Friso
Groote and Ka Lok Man, for proof reading a
preliminary version of this paper.

REFERENCES

Alur, R. and D.L. Dill (1994). A theory of
timed automata. Theoretical Computer Sci-

ence 126(2), 183–235.
Baeten, J.C.M. and W.P. Weijland (1990). Pro-

cess Algebra. Vol. 18 of Cambridge Trancts

in Theoretical Computer Science. Cambridge
University Press. Cambridge.

Bergstra, J.A. and C.A. Middelburg (2005). Pro-
cess algebra for hybrid systems. Theoretical

Computer Science 335(2-3), 215–280.
Brinksma, E. (1985). A tutorial on LOTOS. In:

Proc. Protocol Specification, Testing and Ver-

ification V (Michel Diaz, Ed.). Amsterdam,
Netherlands. pp. 171–194.

Cuijpers, P.J.L. (2004). Hybrid Process Algebra.
PhD thesis. Technische Universiteit Eind-
hoven (TU/e). Eindhoven, Netherlands.

Cuijpers, P.J.L. and M.A. Reniers (2005). Hybrid
process algebra. Journal of Logic and Alge-

braic Programming 62(2), 191–245.
Cuijpers, P.J.L., J.F. Broenink and P.J. Moster-

man (2004). Constitutive hybrid processes.
In: Conference on Conceptual Modeling and

Simulation. Genua, Italy.
Dorf, R.C. and R.H. Bishop (1995). Modern

Control Systems. Series in Electrical and
Computer Engineering: Control Engineering.
Addison-Wesley.

Febbraro, A. Di, Giua, A. and Menga, G., Eds.
(2001). Special Issue on Hybrid Petri Nets.
Vol. 11 of Discrete Event Dynamic Systems.

Heemels, W.P.M.H., B. De Schutter and A. Be-
mporad (2001). On the equivalence of classes
of hybrid dynamical models. In: Proc. Con-

ference on Decision and Control. Orlando,
Florida. pp. 364–369.

Henzinger, T.A. (1996). The theory of hybrid au-
tomata. In: Proceedings of the 11th Annual

IEEE Symposium on Logic in Computer Sci-

ence (LICS 1996). IEEE Computer Society
Press. pp. 278–292.

Karnopp, D.C., D.L. Margolis and R.C. Rosen-
berg (1990). System Dynamics: A Unified Ap-

proach. John Wiley and Sons, Inc.
Man, K., M.A. Reniers and P.J.L. Cuijpers

(2005). Case studies in the hybrid process
algebra hypa. International Journal of Soft-

ware Engineering and Knowledge Engineer-

ing 15(2), 299–305.
Mateboer, A.J. (1999). Eindverslag phi-z. Tech-

nical Report CTB595-99-3044. Philips CFT.
Eindhoven, Netherlands.

Mosterman, P., G. Biswas and O. Otter (1998).
Simulation of discontinuities in physical sys-
tem models based on conservation principles.
In: Proceedings of the 1998 Summer Com-

puter Simulation Conference. Reno, Nevada.
pp. 320–325.

Mousavi, M.R., M.A. Reniers and J.F. Groote
(2005). Notions of bisimulation and congru-
ence formats for SOS with data. Information

and Computation (I&C) 200(1), 104–147.
Rounds, W.C. and H. Song (2003). The φ-

calculus: A language for distributed con-
trol of reconfigurable embedded systems.
In: Hybrid Systems: Computation and Con-

trol, 6th International Workshop, HSCC 2003

(F. Wiedijk, O. Maler and A. Pnueli, Eds.).
Vol. 2623 of Lecture Notes in Computer Sci-

ence. Springer-Verlag. pp. 435–449.
Usenko, Y.S. (2002). Linearization in µCRL.

PhD thesis. Technische Universiteit Eind-
hoven (TU/e).

van Beek, D.A., K.L. Man, M.A. Reniers, J.E.
Rooda and R.R.H. Schiffelers (2006). Syntax
and consistent equation semantics of hybrid
chi. Journal of Logic and Algebraic Program-

ming 68(1-2), 129–210.
van de Brand, P., M.A. Reniers and P.J.L. Cui-

jpers (2006). Linearization of hybrid pro-
cesses. Journal of Logic and Algebraic Pro-

gramming 68(1-2), 54–104.
van der Schaft, A.J. and J.M. Schumacher (2000).

An Introduction to Hybrid Dynamical Sys-

tems. Vol. 251 of Lecture Notes in Control and

Information Sciences. Springer-Verlag. Lon-
don.

8

 63

FRANCO
Text Box

