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Abstract: A Distributed Manufacturing System (DMS) is a collection of independent 
companies possessing complementary skills and integrated with transportation and 
storage systems. This paper proposes a new model for DMS employing first order hybrid 
Petri nets, i.e., Petri nets based on first order fluid approximation. More precisely, 
transporters and manufacturers are described by continuous transitions, buffers are 
continuous places and products are represented by continuous flows routing from 
manufacturers, buffers and transporters. Moreover, discrete events occurring 
stochastically in the system are considered to take into account the start of the retailer 
requests and the blocking of transports and raw material supply. With the aim of showing 
the model effectiveness, a DMS example is modelled and simulated under two different 
operative conditions. Copyright © 2006 IFAC 
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1. INTRODUCTION 

 
A Distributed Manufacturing System (DMS) is a 

collection of independent companies possessing 
complementary skills and integrated with 
transportation and storage systems (Viswanadham 
and Raghavan 2000). Appropriate modelling and 
analysis of these highly complex systems are crucial 
for performance evaluation and comparison of 
competing DMS. However, few contributions face the 
problem of modelling the DMS in order to analyze 
the system performance measures and to optimize its 
functional objectives. Viswanadham and Raghavan 
(2000) model the system as a Discrete Event 
Dynamical System (DEDS), in which the evolution 
depends on the interaction of discrete events. 
Generalized Stochastic Petri Nets (GSPN) model a 
particular example of SC and determine the 
decoupling point location, i.e., the facility from which 
all finished goods are assembled after customer order 
confirmation. Moreover, in (Desrochers et al. 2005) a 
two product SC is modelled by complex-valued token 
Petri nets and the performance measures are 
determined by simulation. In addition, Dotoli and 
Fanti (2005) propose a GSPN model in order to 
describe in a modular way a generic DMS. However, 
the limit of this formalism is the modelling of 

products by means of discrete quantities (i.e., tokens). 
This assumption is not realistic in large systems with 
a huge amount of material flow. Since DMS are 
DEDS whose number of reachable states is very 
large, approximating fluid models can be used in this 
context as in manufacturing systems. 

The aim of the paper is to propose a new model for 
DMS employing First Order Hybrid Petri Nets 
(FOHPN, Balduzzi et al. 2000), that include 
continuous places holding fluid and discrete places 
containing a non-negative integer number of tokens 
and transitions, where the latter are either discrete or 
continuous. Such a hybrid Petri net model is based on 
the framework proposed by Alla and David (1998) 
and presents the main key feature of allowing the 
Instantaneous Firing Speeds (IFS) of the continuous 
transitions to be chosen in a given range by a control 
agent. Moreover, the set of all admissible IFS vectors 
is explicitly characterized by the feasible solutions of 
a linear constraint set. Furthermore, an optimal IFS 
vector can be chosen according to a given objective 
function. Using such a modelling approach, this paper 
develops an FOHPN model of DMS by means of 
first-order fluid approximations. In particular, 
transporters and manufacturers are described by 
continuous transitions, buffers are continuous places 
and products are represented by continuous flows 
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(fluids) routing from manufacturers, buffers and 
transporters. The model is built by using a modular 
approach based on the idea of the bottom-up 
methodology (Zhou and Venkatesh, 1998). A 
representative example, including the typical DMS 
elements, shows the effectiveness of the modelling 
technique that allows us to evaluate the system 
performance indices by the simulation. 

The paper is structured as follows. Section 2 
describes the structure and the dynamics of a generic 
DMS. Section 3 reports a brief overview of the 
FOHPN modelling formalism and Section 4 presents 
the modular DMS model. Section 5 describes and 
analyzes an example of DMS and a conclusion 
section closes the paper. 

 
 

2. THE SYSTEM DESCRIPTION 
 

A DMS may be described as a set of facilities with 
materials that flow from the sources of raw materials 
to subassembly producers and onwards to 
manufacturers and consumers of finished products. 
The DMS facilities are connected by transporters of 
materials, semi-finished goods and finished products. 
More precisely, the entities of a DMS can be 
summarized as follows. 
1- Suppliers: a supplier is a facility that provides raw 

materials, components and semi-finished products 
to manufacturers that make use of them. 

2- Manufacturers and assemblers: manufacturers 
and assemblers are facilities that transform input 
raw materials/components into desired output 
products. 

3- Logistics and transporters: storage systems and 
transporters play a critical role in distributed 
manufacturing. The attributes of logistics facilities 
are storage and handling capacities, transportation 
times, operation and inventory costs. 

4- Retailers or customers: retailers or customers are 
sink nodes of material flows. 

Here, part of the logistics, such as storage buffers, 
is considered pertaining to manufacturers, suppliers 
and customers. Moreover, transporters connect the 
different stages of the production process. 

The dynamics of the distributed production system 
is traced by the flow of products between facilities 
and transporters. Because of the large amount of 
material flowing in the system, we model a DMS as a 
hybrid system: the continuous dynamics models the 
flow of products in the DMS, the manufacturing and 
the assembling of different products and its storage in 
appropriate buffers. Hence, resources with limited 
capacities are represented by continuous states 
describing the amount of fluid material that the 
resource stores.  

Moreover, we consider also discrete events 
occurring stochastically in the system, such as: 
a) the blocking of the raw material supply, e.g. 

modelling the occurrence of labour strikes, 
accidents or stops due to the shifts; 

b) the blocking of the transport operations due to the 
shifts or to unpredictable events such as jamming 
of transportation routes, accidents, strikes of 
transporters etc.; 

c) the start of a request from the retailers. 
 
 

3. FIRST-ORDER HYBRID PETRI NETS 
 
3.1 The net structure and marking. 
 

This section recalls the First Order Hybrid Petri 
Nets (FOHPN) formalism used in the following 
(Balduzzi et al. 2000). 

A FOHPN is a bipartite digraph described by the 
six-tuple PN=(P, T, Pre, Post, D, F). The set of places 
P=Pd∪Pc is partitioned into a set of discrete places Pd 
(represented by circles) and a set of continuous places  
(represented by double circles). 

The set of transitions T=Td∪Tc is partitioned into a 
set of discrete transitions Td and a set of continuous 
transitions Tc (represented by double boxes). 
Moreover, the set of discrete transitions Td=TI∪TE is 
further partitioned into a set of immediate transitions 
TI (represented by bars) and a set of exponentially 
distributed transitions TE (represented by boxes). 

The matrices Pre and Post are the pre-incidence 
and the post-incidence matrices, respectively, of 
dimension |P|×|T|. Note that the symbol |A| denotes 
the cardinality of set A. Such matrices specify the net 
digraph arcs and are defined as follows: 

+ × →
 × →

c

d

P T
Pre,Post : 

P T
. 

We require that for all t∈Tc and for all p∈Pd it 
holds Pre(p,t)=Post(p,t) (well-formed nets). 

The function D: Tt→R+ specifies the timing 
associated to exponentially distributed timed 
transition tj∈TE. More precisely, we associate to each 
tj∈TE the average firing delay δj=D(tj). Moreover, the 
function F : Tc→R+×R∞

+ specifies the firing speeds 
associated to continuous transitions (we denote 
R∞

+=R+∪{∞}). For any continuous transition tj∈Tc 
we let F(tj)=(Vmj,VMj), with Vmj≤VMj. Here, Vmj 
represents the minimum firing speed (mfs) and VMj 
the Maximum Firing Speed (MFS) of the generic 
continuous transition. 

Given a FOHPN and a transition t∈T, the 
following sets of places may be defined: •t={p∈P: 
Pre(p,t)>0}, named pre-set of t; t•={p∈P: 
Post(p,t)>0}, named post-set of t. Moreover, the 
corresponding restrictions to continuous or discrete 
places are defined as (d)t=•t∩Pd or (c)t=•t∩Pc. Similar 
notations may be used for pre-sets and post-sets of 
places. The incidence matrix of the net is defined as 
C(p,t)=Post(p,t)-Pre(p,t). The restriction of C to PX 
and TX (with X,Y∈{c, d}) is denoted by CXY. 

A marking 

+

→
 →

m d

c

P
: 

P
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is a function that assigns to each discrete place a non-
negative number of tokens, represented by black dots, 
and to each continuous place a fluid volume; mi 
denotes the marking of place pi. The value of a 
marking at time τ is denoted by m(τ). The restriction 
of m to Pd and Pc are denoted by md and mc, 
respectively. A FOHPN system <PN,m(τ0)> is a 
FOHPN with initial marking m(τ0).  

The following statements rule the firing of the 
continuous and discrete transitions: 
1- a discrete transition t∈Td is enabled at m if for all 

pi∈•t, mi>Pre(pi,t); 
2- a continuous transition t∈Tc is enabled at m if for 

all pi∈(d)t, mi>Pre(pi,t). 
Moreover, we say that an enabled transition t∈Tc is 

strongly enabled at m if for all places pi∈(c)t, mi>0; 
we say that transition t∈TC is weakly enabled at m if 
for some pi∈(c)t, mi=0. 

In addition, if <PN,m> is an FOHPN system and 
tj∈Tc with instantaneous firing speed (IFS) vj, it holds: 
1- if tj is not enabled then vi=0; 
2- if ti is strongly enabled, then it may fire with any 

firing speed vj∈[Vmj,VMj]; 
3- if tj is weakly enabled, then it may fire with any 

firing speed vj∈[Vmj,Vj], where Vj≤VMj depends on 
the amount of fluid entering the empty input 
continuous place of ti. 

We denote by v(τ)∈[v1(τ) v2(τ)… v|Tc|(τ)]T the IFS 
vector at time τ. Any admissible IFS vector v at m is 
a feasible solution of the following linear set: 

0Mj jV v− ≥  ( )jt Tε∀ ∈ m  
0j mjv V− ≥          ( )jt Tε∀ ∈ m  (1) 

0jv =  ( )jt Tυ∀ ∈ m  

jt
( , ) 0j j

T
C p t v

ε∈
≥∑ ( )p Pε∀ ∈ m , 

where ( ) cT Tε ⊂m ( ( ) cT Tυ ⊂m ) is the subset of 
continuous transitions that are enabled (not enabled) 
at m and { }( ) | 0i c iP p P mε = ∈ =m  is the subset of 
empty continuous places. 
 
3.2 The net dynamics. 
 

The hybrid dynamics of the net combines both 
time-driven and event-driven dynamics. We define 
macro events the events that occur when: i) a discrete 
transition fires or the enabling/disabling of a 
continuous transition takes place; ii) a continuous 
place becomes empty.  

The equation that governs the time-driven 
evolution of the marking of a place pi∈PC is: 

( ) ( , ) ( )
j C

i i j j
t T

m C p t v
∈

τ = τ∑ . (2) 

Now, if τk and τk+1 are the occurrence times of two 
macro-events, we assume that within the time interval 
[τk,τk+1) (macro period) the IFS vector v(τk) is 
constant. Then the continuous behaviour of an 
FOHPN for τ∈[τk,τk+1) is described by: 

( ) ( ) ( )( )

( ) ( )
k k k

k

τ = τ + τ τ − τ

τ = τ

c c
cc

d d

m m C v

m m
. (3) 

The evolution of the net at the occurrence of the 
macro-events is described by: 

( ) ( ) ( )

( ) ( ) ( )
k k k

k k k

−

−

τ = τ + σ τ

τ = τ + σ τ

c c
cd

d d
dd

m m C

m m C
, (4) 

where σ(τ) is the firing count vector associated to the 
firing of the discrete transition tj. 
 
 

4. THE MODULAR DMS MODEL 
 

Petri net modelling and synthesis is a very 
important research area that attracted much attention 
in the past (Zhou and Venkatesh, 1998). Based on the 
idea of the bottom-up approach, this section proposes 
a modular FOHPN model to describe a DMS. Such a 
method can be summarized in two steps: 
decomposition and composition. Decomposition 
involves dividing a system into several subsystems. In 
DMS this division can be performed based on the 
determination of distributed system facilities (i.e., 
suppliers, manufacturers, transporters and customers). 
All these subsystems are modelled by FOHPN. On 
the other hand, composition involves the interacting 
of these sub-models into a complete model, 
representing the whole DMS. The following FOHPN 
modules model each individual subsystem composing 
the DMS. 
 
1- The supplier module. The supplier is modelled as a 
continuous transition and two continuous places (see 
Fig 1). The continuous place pS represents the row 
material buffer of finite capacity CS and p’S represents 
the corresponding available capacity such that 
mS+m’S=CS. Moreover, the continuous transition tS 
models the arrival of raw material in the system at a 
bounded rate vS with F(tS)=(VSmin,VSmax). In addition, 
we consider the possibility that the providing of raw 
material is blocked. This situation is represented by a 
discrete event modelled by two exponentially 
distributed transitions and two discrete places. In 
particular, place pk∈Pd models the operative state of 
the supplier and p’k∈Pd is the non-operative state (see 
Fig 1). The blocking and the restoration of the raw 
material supply corresponds to the firing of 
transitions tk and t’k, respectively. For the sake of 
clarity, Fig. 1 depicts the transition tT modelling the 
transport operation. 
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Fig. 1. The FOHPN modelling the supplier. 
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Fig. 2. The FOHPN modelling the manufacturer and 
the assembler. 
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Fig. 3. The FOHPN modelling logistics. 
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Fig. 4. The FOHPN modelling the retailer. 
 
2- The manufacturer and assembler module. The 
manufacturers and assemblers are modelled by the 
FOHPN shown by Fig. 2. More precisely, place pI is 
the input buffer of finite capacity CI storing the input 
goods of a particular type. The corresponding place 
p’I models the available buffer space so that 
mI+m’I=CI. Analogously, the output buffer of capacity 
CO storing the output product of a particular type is 
modelled by the place pO representing the occupied 
buffer level and by place p’O modelling the 
corresponding available capacity, with mO+m’O=CO. 
To manage the production in function of the output 
inventory of the product, we assume that the 
production rate of the facility changes in function of 
the available space in the output buffer. Indeed, two 
different rates are considered for the production: a 
nominal rate F(tn)=(0,Vmn) associated with the 
continuous transition tn and a high rate 
F(th)=(Vmn,VMh) associated with the continuous 
transition th. If it holds m’O(τ)<max (i.e., the 
inventory is high enough and the buffer free space is 
not too high) then transition t’k is disabled and the 
manufacturer works at the nominal rate with mk=1 
and mk’=0 with pk,pk’∈Pd as depicted in Fig. 2. On the 
contrary, when the buffer level of output parts 
decreases and hence the available buffer space 
reaches the maximum value m’O(τ)=max, the 

immediate transition t’k is enabled and can fire. After 
the firing of t’k, it holds mk=0 and mk’=1, so that the 
facility works at the higher rate associated with the 
continuous transition th and the output buffer pO is 
replenished more rapidly. Analogously, if the level of 
this buffer reaches the medium value mO(τ)=med, 
then the transition tk is enabled and can fire, leading 
the facility rate at the nominal value. Note that 
transitions tT and t’T of Fig. 2 depicts the transports 
facilities. 
3- The logistics module. The transporters connecting 
the different facilities are modelled by a continuous 
transition tT that describes the flow of material from a 
facility to a subsequent one at a bounded rate 
0≤vT≤VMT. Moreover, the random stop of the material 
transport is represented by two places pk,p’k∈Pd and 
two exponentially distributed transitions tk,t’k∈Td. If 
place pk∈Pd is marked, then the transport is operative. 
On the contrary, if transition tk fires, then the 
transporters are not operative and the place p’k∈Pd 
becomes marked. When transition t’k fires, the 
transporters are established again. 
 
4- The retailer module. Finally, we consider the 
model of the retailers, represented by a continuous 
buffer place pR of infinite capacity associated with 
each final product type. Moreover, a continuous 
transition tR models the acquisition of final products 
by the retailer. However, we consider that the 
requests of the products are managed by discrete 
random events expressed by two discrete timed 
transitions tk and t’k and two places pk and p’k. If mk=1 
then the flow of material is enabled. On the contrary, 
if transition tk fires, then a token in p’k means that the 
retailer does not require any product and tR is 
inhibited. The continuous place pF models the system 
output and collects all the products requested by the 
retailer. Figure 4 depicts the retailer module. 
 
 

5. AN EXAMPLE OF DMS 
 

We consider a system producing two product types 
E and F by the four stages depicted in Fig. 5. The first 
stage includes two component suppliers S1 and S2, 
the second stage is composed by two subassembly 
manufacturers M1 and M2, the third stage is 
composed by two assemblers A1 and A2 and the last 
stage is constituted by the retailers R1 and R2. 
Moreover, six logistics service providers T1 to T6 
suitably connect the DMS facilities that are located in 
different geographical sites. The buyers order two 
brands of products (E and F). Such products are 
obtained by two assemblers that assemble two types 
of products (C and D) obtained from two 
manufacturers. The subassemblies C and D are in turn 
produced by the manufacturers of the second stage, 
which receives the components of type A and B by 
the first supplier stage. 
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Fig. 5: The DMS configuration.     Fig. 6: The DMS model. 
 
 

Table 1: Firing speeds and average firing delay of 
continuous and discrete transitions for Cases 1 and 2. 
 

Continuous 
transitions 

[Vmin,Vmax] 
(Case 1) 

[Vmin,Vmax] 
(Case 2) 

Discrete 
transitions 

Average firing 
delay (hours)

t1 [0, 8] [0, 4] t27 14 
t2 [0, 10] [0, 5] t29 14 

t3 t6 t14 t22 [0, 10] [0, 5] t28 10 
t4 t7 t13 t17 t19 [0,8] [0, 3] t30 10 

t5 t12 t20 [0,9] [0, 4] t31 t37 9 
t8 [8,20] [0, 6] t47 t49 9 
t9 [0, 12] [0, 2] t55 t57 9 
t10 [12,30] [0, 6] t32 t38 15 

t11 t21 [0, 11] [0, 3] t48 t50 15 
t15 [0, 6] [4, 15] t56 t58 15 
t16 [6, 15] [0, 4] t33 t35 10 
t17 [0, 8] [4, 12] t43 t45 10 
t18 [8, 20] [0, 3]  t59 t61 10 
t23 [0, 3] [0, 4] t34 t36 14 

t24 t25 [0, 4] [4, 10] t44 t46 14 
t26 [0, 5] [0, 6]  t60 t62 14 

 
We model the DMS in Fig. 5 by using in a modular 

way the elementary modules described in Section 3. 
Figure 6 shows the merged FOHPN model and 
depicts each facility module in dashed line squares. 

To analyze the DMS behaviour, we simulate the 

FOHPN in two different cases that correspond to two 
different operative conditions. The data relative to 
Case 1 and 2 are shown in Table 1. In particular, Case 
1 corresponds to a system with high production rate 
of each manufacturer and assembler. On the other 
hand, in Case 2 manufacturers and assemblers exhibit 
lower production rates than in Case 1 but the same 
transportation speed and buffer capacities. Moreover, 
Table 1 reports for each tj∈Tc the minimum and 
maximum firing speeds and for each tj∈TE the 
average firing delay. In addition, Table 2 shows for 
Case 1 and Case 2 further data necessary to fully 
describe and simulate the system: the buffer 
capacities for the inventories of each stage, the initial 
markings of continuous places and the values of the 
edge weights. 

To analyze the system dynamics, we define some 
performance indices assumed as relevant measures 
for the DMS analysis: i) the throughput Ti with i=1,2 
of retailer Ri with i=1,2 respectively, i.e., the average 
number of products obtained by each retailer in a time 
unit; ii) the system throughput T=T1+T2; iii) the 
average input stocks in manufacturers Mi with i=1,2 
(IMi i=1,2) and in assemblers Ai with i=1,2 (IAi i=1,2) 
during the run time TP; iv) the average output 
inventory in Mi with i=1,2 (OMi i=1,2) and in Ai with 
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i=1,2 (OAi i=1,2) during the run time TP; v) the 
average system inventory SI, i.e., the amount of 
product storage in each buffer during the run time TP; 
vi) the average lead time LT that is as follows: 
LT= SI/T (5) 
 

The results are obtained by simulating the FOHPN 
in the Matlab environment for a simulation run of 
TP=480 hours. In particular, Fig. 7 shows the average 
inventories in manufacturers and in the assemblers in 
Cases 1 and 2. The figure shows that, also thanks to 
the dependence of manufacturers and assemblers 
production rates with their output inventories, the 
DMS is able to keep stocks at a satisfactorily high 
level, so that the demand is efficiently satisfied and 
inventory is not excessive. Moreover, as expected the 
DMS input stocks are always higher than the 
corresponding output inventories. However, the 
inventories of Case 1 are usually higher than the 
inventories in Case 2 because of the higher 
production rates. 

In addition, Table 3 reports the average lead times 
and the system inventories for Cases 1 and 2. As 
expected, these two performance indices are higher in 
Case 1, exhibiting a higher level of congestion caused 
by the faster system production. Moreover, Fig. 8 
reports the throughput of retailers R1 and R2 and the 
system throughput T. We remark that the throughput 
values in Case 1 are higher than the corresponding 
values in Case 2: this is expected, because 
manufacturers work in Case 1 with higher production 
rates. 
 
 

CONCLUSIONS 
 

The paper considers First-Order Hybrid Petri Nets 
(FOHPN) to model Distributed Manufacturing 
Systems (DMS), which are new emerging company 
networks, very complex to describe and manage. 
Combining continuous and discrete dynamics, 
FOHPN appears a promising formalism, able to 
capture the different properties of such discrete event 
systems, characterized by a large number of states.  

Future research will apply the FOHPN conflict 
resolution policy in order to optimize a given DMS 
objective function under different management 
policies. 
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Table 2: Initial marking of continuous places, 
capacities and edge weights for Cases 1 and 2. 

 
Initial marking Product units Capacities 

m1 m2 20 C1,C2=200 
m3 m5 m9 m11 20 C4,C6,C10,C12=100 

m7 m13 20 C8,C14=80 
m15 m21 m17 m23 20 C16,C22, C18,C24=100

m19 m25 20 C20,C26=80 
m27 m28 m29 0  
m30 m31 m32 0  

Edge weights 
maxM=190 maxA=190 
medM=50 medA=50 

 
Table 3: Overall lead time and system inventory for 

Cases 1 and 2. 
 

 Case 1 Case 2 
LT (hours) 190.60 167.87 

SI (product units) 445.80 218.38 
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Fig. 7. The average inventory in manufacturers and in 
assemblers in Cases 1 and 2. 
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Fig. 8. Throughputs (units/hours) in Cases 1 and 2. 
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