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Abstract: A new low-and-high gain algorithm is presented for tracking control
of timed continuous Petri Net (contPN) systems working under infinite servers
semantics. The inherent properties of timed contPN determine that the control
signals must be non-negative and upper bounded by functions of system states.
In the proposed control approach, LQ theory is first utilized to design a low-gain
controller such that the control signals satisfy the input constraints. Based on
the low-gain controller, a high-gain term is further added to improve the system
transient performance. In order to guarantee global tracking convergence and
smoothness of control signals, in our work, a new mixed tracking trajectory (state
step and ramp) is utilized instead of a pure step reference signal.

1. INTRODUCTION

Petri Nets (PNs) are powerful mathematical tools
with appealing graphical representations for the
modeling, analysis and synthesis of Discrete Even
Systems (DESs). However, like in all DESs, dis-
crete PN systems suffer from the so called state
explosion problem. One possible way to partially
tackle this problem is to fluidify the discrete PN
models. The resulting continuous Petri Net (cont-
PN) systems have the potential for the applica-
tions of more analytical techniques which were
originally developed for continuous and hybrid
systems. Furthermore, analogous to discrete PN
systems, time has been introduced to contPN
systems, which leads to timed contPN systems.
Steady state control is studied in (Mahulea et
al., 2005); assuming all transitions can be con-
trolled, it can be solved by means of a LPP.
Nevertheless, dynamic control of timed contPN
systems needs further investigations and great
improvements.

For control of timed contPN systems, we will
begin from Join-Free (JF) timed contPN systems
with step-tracking control target. For a JF timed
contPN system, a linear differential equation de-
scribes its behavior, but it is subject to certain
input constraints, i.e. the control signal must be
non-negative and upper bounded by a function of
system states. These constraints result in a hybrid
system, more precisely a piecewise linear system.
The main challenge in our work is to develop con-
trol laws under these special input constraints so
that global tracking convergence can be ensured.

The input constraints can be treated as input
saturations. As input saturation is one of the
common phenomena encountered in control sys-
tems, hitherto lots of works have been done.
In (Wredenhage and Bélanger, 1994), a kind of
piecewise-linear control law was derived. How-
ever, such a design method will lead to a low-
gain controller. To improve the control perfor-
mance, a low-and-high gain approach was given in
(Saberi et al., 1996). Recently, several nonlinear
control methods were further presented (Lin et
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al., 1998), which mainly focus on the high-gain
design in the low-and-high gain algorithms aiming
to achieve better transient control performance. It
should be pointed out that common assumptions
in all these works are that the lower saturation
bounds are negative constants and the upper sat-
uration bounds are positive constants. However,
in JF timed contPN systems, the lower saturation
bound is zero and the upper saturation bound
depends on system states. Therefore, the existing
control strategies for systems with input satura-
tions cannot be applied directly.

In this paper, a new low-and-high gain approach
will be proposed for step-tracking control of JF
timed contPN systems. The presented algorithm
can ensure global asymptotical convergence in
presence of the input constraints existing in JF
timed contPN systems. According to initial mark-
ing, desired marking and net structure, a new ref-
erence trajectory is constructed. Based on the new
tracking target, a low-gain controller is designed
according to LQ theory so that the control signals
are within the required regions. Since the upper
bounds of the control inputs depend on the system
states, the design method in (Wredenhage and
Bélanger, 1994) fails to work. By combining the
new tracking trajectory design with LQ method, a
novel design scheme for the low-gain part is given
in our work. Analogous to the works of (Saberi
et al., 1996), a high-gain part is further added to
make better use of the available control authority,
and consequently faster system response can be
obtained. Note that in the high-gain term, the
control vector of the low-gain part is maintained,
which makes possible the analysis of system sta-
bility. Rigorous proof is provided to guarantee the
global asymptotical convergence.

The paper is organized as follows. Section 2 intro-
duces the required concepts of contPN systems
and timed contPN systems. The control for JF
timed contPN systems is formulated in Section
3. How to construct the new tracking trajectory
is outlined in Section 4. Section 5 focuses on the
development of control laws and the analysis of
global asymptotical convergence property. An il-
lustrative example is given in Section 6. Finally,
Section 7 concludes the paper.

2. CONTINUOUS PETRI NET SYSTEMS

2.1 Untimed Continuous Petri Net Systems

A contPN system can be described as 〈N ,m0〉,
where N = 〈P,T,Pre,Post〉 specifies the net
structure (P and T are disjoint (finite) sets of
places and transitions, and Pre and Post are
incidence matrices), and m0 is the initial marking.
N is assumed to be connected, while P and T

have n and m elements, respectively. The marking
m belongs to R+n

, where R+ is the set of non-
negative real numbers, and both Pre and Post
are of the size n×m. For w ∈ P∪T, the set of its
input and output nodes are denoted as •w, and
w•, respectively. N is JF (or rendez-vous free)
iff ∀t ∈ T, |•t| = 1. If m is reachable from m0

through a sequence σ ∈ R+m, the state equation
is m = m0 + C ·σ, where C = Post−Pre is the
token flow matrix and σ is the firing count vector.

2.2 Timed Continuous Petri Net Systems

A timed contPN system can be represented as
〈N , λ,m0〉, where λ[t] > 0 is the internal firing
rate of transition t. The state equation has an
explicit dependence on time m(τ) = m0 +Cσ(τ),
where τ is time. Deriving with respect to it,
ṁ(τ) = Cσ̇(τ) is obtained. Define f(τ) = σ̇(τ),
which denote flows of transitions. The state equa-
tion is ṁ(τ) = Cf(τ). For notation simplicity, τ
will be omitted in the rest of the paper. For the de-
finition of flow f , different semantics have been in-
troduced and the most important ones are infinite
servers and finite servers. Infinite servers seman-
tics will be considered in this work, which usually
provides a much better approximation of discrete
behaviors. Under infinite server semantics, f is the
product of λ[t] and the instantaneous enabling
of the transition, i.e. f [t] = λ[t] · enab(t,m) =
λ[t] · minp∈•t{m[p]/Pre[p, t]}. As in JF nets any
transition has only one input place, the flow can
be expressed as f = Φ · m, where Φ ∈ R+m×n

and Φ[t, p] = λ[t]/Pre[p, t] if p = •t, Φ[t, p] = 0
otherwise. Moreover, each row of Φ has only one
non-zero element. ∀j ∈ M

�
= {1, 2, · · · , m}, the

non-zero element for the j-th row of Φ is denoted
as φj,i where i ∈ N

�
= {1, 2, · · · , n}. Therefore,

∀j ∈ M , we have fj = φj,imi, where fj is the j-
th element of f and mi is the i-th element of m.
The evolution of the marking can be written as
follows:

ṁ = C · f = A ·m, (1)

where A = C · Φ. Finally the definition of
conservativeness and some related properties for
a JF timed contPN are listed as follows.

Definition 1. A PN is conservative iff ∃y > 0,
such that y·C = 0. Any left non-negative annuller
of matrix C, i.e. y, is called P-semiflow. A P-
semiflow is minimal if 1 is the greatest common
divisor of its elements, and its support does not
strictly contain the support of other P-semiflow.

Property 1. (Teruel et al., 1997) Let N be a JF
net.

1.1 If N is strongly connected,

a) N has at most one minimal P-semiflow;
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b) N is conservative iff it has one P-semiflow.

1.2 If N is conservative, it is consistent iff it is
strongly connected.

Property 2. Let N be a conservative and strongly
connected JF timed contPN. The matrix A for
N defined in (1) has only one zero-eigenvalue.
Moreover, the remaining eigenvalues of A are with
negative real parts.

Proof: As N is conservative and strongly con-
nected, from Property 1.2, N is consistent. From
the Proposition 1 in (Jiménez et al., 2005), for the
conservative and consistent JF PN N , the matrix
A has only one zero-valued eigenvalue. On the
other hand, as A is a Metzler matrix and the
eigenvalue of zero is the (Frobenius) dominant
eigenvalue (Jiménez et al., 2005), the remaining
eigenvalues of A are with negative real parts.

3. PROBLEM FORMULATION

We will restrict our research to conservative and
strongly connected JF timed contPN systems and
assume all the markings are observable. For con-
cise expression, “timed contPN” will be written
as “contPN”. Like all the other systems, control
actions can also be introduced to modify au-
tonomous evolution of PN systems. The possible
control action that can be applied to PN systems
is to slow down their unforced firing flows. Hence,
the forced flows of controlled transitions become
f−u, where u is the control signal and must satisfy
0 ≤ u ≤ f . Considering (1), a JF contPN system
with a control action can be described as follows:

ṁ = C(Φm − u)
�
= Am − Bu, (2)

where m ∈ R+n, A ∈ Rn×n, B
�
= C ∈ Rn×m and

u ∈ R+m. It should be noted that the constraints
on input u lead the closed system to be a piecewise
linear system.

Our control objective is to construct control laws
such that m and u respectively converge to de-
sired values: md and ud. To satisfy reachability,
md must fulfill that y ·md = y ·m0 where y ∈ Rn

is the basis of P-semiflows. For ud, 0 ≤ ud ≤ Φmd

must be satisfied, i.e. ∀j ∈ M , 0 ≤ ud,j ≤ φj,imd,i

where ud,j and md,i are the j-th and i-th elements
of ud and md respectively. Moreover, as md is
constant, according to (2), the desired control
input must be a solution of the following equation.

0 = Amd − Bud. (3)

In our work, the following assumption is made for
m0 and md.

Assumption 1. ∀i ∈ N , m0,i > 0 and md,i > 0.

Remark 1. If we consider optimal steady states in
practical manufacture systems, generally md > 0
is valid. On the other hand, if some elements of
m0 are zeros, as md > 0, a firing sequence can
always be found such that m0[σ > m and m > 0
(Recalde et al., 1999). Then the control algorithm
proposed in our work can be further applied.

4. DESIGN OF NEW TRACKING
REFERENCE

To ensure global convergence and smoothness of
the control signal, a step target md is replaced by
the following reference trajectory mr(τ).

mr(τ) =

{
mr0 +

md − mr0

h
τ, τ ∈ [0, h]

md, τ ∈ [h,∞)
(4)

where mr(τ) ∈ R+n, mr0
�
= mr(0) and h > 0

determines the time when mr(τ) = md. Here we
choose mr0 = m0 + δ(md −m0), where 0 ≤ δ < 1
is a parameter to be designed. The parameter h
is chosen such that, for given mr0 and md, valid
control actions ur0 ∈ R+m and urh− ∈ R+m exist
for the following equations.

Amr0 − Bur0 =
md − mr0

h
(5)

Amd − Burh− =
md − mr0

h
, (6)

where 0 ≤ ur0 ≤ Φmr0 and 0 ≤ urh− ≤ Φmd.

Proposition 1. For given m0 and reachable md, δ
and h can always be found such that (5) and (6)
are valid. Moreover, as δ increase, smaller h can
be chosen.

Proof: Given m0 and reachable md, σ ≥ 0 can
always be found so that md = m0 + Bσ. Thus,

md − mr0 = B(1 − δ)σ. (7)

Substituting (7) into (5) and (6) yields

BΦmr0 − Bur0 = B(1 − δ)σ
1
h

,

BΦmd − Burh− = B(1 − δ)σ
1
h

.

Obviously, ur0 = Φmr0 − (1 − δ)σ 1
h and urh− =

Φmd − (1 − δ)σ 1
h are solutions for the above

equations. From 0 ≤ ur0 ≤ Φmr0, we have:

0 ≤ σ
1
h
≤ 1

1 − δ
Φmr0 (8)

⇒ 0 ≤ σ
1
h
≤ Φm0 +

δ

1 − δ
md. (9)
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From 0 ≤ urh− ≤ Φmd, we can obtain that

0 ≤ σ
1
h
≤ 1

1 − δ
Φmd. (10)

Therefore, the final constraints for h are:

0 ≤ σ

h
≤ min{Φm0 +

δmd

1 − δ
,

1
1 − δ

Φmd} (11)

where, for a1 ∈ R+n and a2 ∈ R+n, the i-th ele-
ment of min{a1, a2} is defined as min{a1,i, a2,i}.
From Assumption 1, all the elements of m0 and
md are strictly positive. Hence, min{Φm0 +

δ
1−δmd,

1
1−δ Φmd} is positive. Considering σ ≥ 0,

for a given 0 ≤ δ < 1, a sufficiently large h > 0 can
always be found such that (11) is valid. Moreover,
for a chosen σ, as δ increase, smaller h can be
obtained.

Proposition 1 clearly shows that the input con-
straints result in the constraints for h and, for a
chosen σ, smaller h can be realized by increasing
δ. Hence, to obtain faster response, in (4), mr0 is
designed instead of using m0 directly. However,
larger δ will lead to larger initial error, which
may destroy the tracking convergence. Hence, δ
and h should be properly chosen such that both
tracking convergence and possible fast response
can be obtained.

To simplify the design procedure, in the proposed
algorithm, δ will be designed first. Its design will
be given in next Section. Now let us discuss how
to calculate h for a given δ. According to (8) and
(10), the constraints for h can be rewritten as
0 ≤ σ

h ≤ Φmin{mr0,md}
1−δ . From the definition of

mr0, we have 0 < Φmin{m0,md}
1−δ ≤ Φmin{mr0,md}

1−δ .
Hence, h can be designed to satisfy 0 ≤ σ

h ≤
Φmin{m0,md}

1−δ . As min{m0,md} is strictly posi-
tive, the solution of h always exists. Furthermore,
h can be chosen as h = β(1 − δ), where β > 0
and σ

β ≤ Φmin{m0,md}. Consequently, ur0 and
urh− can be rewritten as follows:

ur0 = Φmr0 − σ

β
(12)

urh− = Φmd − σ

β
. (13)

Remark 2. For given m0 and md, σ is designed
first. Based on the chosen σ, the minimum β such
that σ

β ≤ Φmin{m0,md} is chosen.

5. TRACKING CONTROL OF JF CONTPN
SYSTEMS

The control signal u is designed as follows:

u = sat(ulg + uhg) + ur(τ), (14)

where ulg is the low-gain part, uhg is the high-
gain term and ur(τ) is the reference control input
defined as follows:

ur(τ) =

{
ur0 +

urh− − ur0

h
τ, τ ∈ [0, h−]

ud, τ ∈ [h+,∞)
,

where ur0 and urh− are given in (12) and (13)

respectively. Moreover, ∀ d ∈ Rm, sat(d)
�
=

[sat(d1), · · · , sat(dm)]T and ∀j ∈ M , sat(dj) is

sat(dj) =




φj,imi − ur,j, if dj ≥ φj,imi − ur,i

dj , if − ur,j < dj

< φj,imi − ur,j

−ur,j, if dj ≤ −ur,j

.

Define e = mr(τ)−m. From (2) and (4), we have

ė =




md − mr0

h
− Amr(τ)

+Ae + Bu τ ∈ [0, h−]
−Amd + Ae + Bu τ ∈ [h+,∞)

.(15)

From the definition of ur(τ) and considering (5)
and (6), for τ ∈ [0, h−], it can be derived that

Bur(τ) = Amr0 − (md − mr0)
1
h

+ [Amd − (md

−mr0)
1
h
− Amr0 + (md − mr0)

1
h

]
τ

h

=−(md − mr0)
1
h

+ Amr(τ). (16)

According to (3) and (16), the following is valid:

Bur(τ) =

{
−md − mr0

h
+ Amr(τ), τ ∈ [0, h−]

Amd, τ ∈ [h+,∞)
.

Substituting (14) into (15) and considering the
above results, (15) can be rewritten as

ė = Ae + Bsat(ulg + uhg). (17)

ContPNs with at least one P-semiflow are non-
controllable, according to the classical linear con-
trol theory (Mahulea et al., 2005). Hence, a trans-
formation matrix H ∈ Rn×n is constructed to
separate the system states into controllable and
non-controllable parts. The first row of H is a
basis of P-semiflow (here only one vector; Property
1.1) and the remaining rows are completed with
elementary vectors such that H is full rank. Define
ē = He. Then (17) becomes

˙̄e = Āē + B̄sat(ulg + uhg) (18)

where Ā = HAH−1 and B̄ = HB. According
to the definitions of A, B and H and considering
y · C = 0, it can be derived that the first rows of
both Ā and B̄ are zeros, which leads to ˙̄e1 = 0.

33



From the definition of ē and H, we have ē1(0) =
y(md,1−m1(0)). As ymd = ym(0), ē1(0) = 0 can
be obtained. Therefore, ∀τ ∈ [0,∞), ē1(τ) = 0.
Moreover, the controllable part of (18) is

˙̄ec = Ācēc + B̄csat(ulg + uhg), (19)

where ēc
�
= [ē2, · · · , ēn]T ∈ Rn−1, Āc ∈ R(n−1)×(n−1)

and B̄c ∈ R(n−1)×m. From the definition of ē, we
have e = H−1ē. As ē1 = 0, e can be rewritten as
Sēc where S ∈ Rn×(n−1) is H−1 without the first
column.

5.1 Design of ulg and uhg

ulg is designed to minimize the following quadratic
performance criterion

J(ēc(0)) =

∞∫
0

(ēT
c Qēc + γuTRu)dτ, (20)

where Q ∈ R(n−1)×(n−1) is a diagonal positive
definite matrix, R = diag(r1, · · · , rm) is positive
definite and the γ > 0 is a parameter to be
designed.

Define c1 = min{ur0,urh− ,ud}. Obviously, c1 ≥
0. The design of ulg is classified into two cases.

Case 1. c1 > 0

The low gain controller is ulg = −Kēc, where
K = 1

γ R−1B̄T
c W and W can be found from the

following Riccati equation,

WĀc + ĀT
c W − 1

γ
WB̄cR−1B̄T

c W

+Q = 0. (21)

Case 2. c1 have zero-elements

To clearly explain the basic idea, assume only one
element of c1, i.e. c1,z (z ∈ M), is zero. However,
if c1 have several zero-elements, the design of ulg

can be derived analogously. In this Case, W is
calculated from the following Riccati equation,

WĀc + ĀT
c W − 1

γ
W(B̄c − ∆B̄c)

R−1(B̄c − ∆B̄c)TW + Q = 0, (22)

where ∆B̄c ∈ R(n−1)×m, the z-th column of
∆B̄c is same as the z-th column of B̄c and all
the remaining columns of ∆B̄c are 0. As Ac is
stable (from Property 2), the solution of W always
exists. The low gain controller is ulg = −Kēc,
where K = 1

γ R−1(B̄c − ∆B̄c)T W. From the
definition of ∆B̄c, it can be derived that the z-
th row of K, i.e. kz , is 0. Hence, ∆B̄cK = 0.

For the high-gain term, in both Case 1 and Case
2, uhg = −lB̄T

c Wēc where l is a positive constant.

5.2 Design of the parameters δ and γ

Define ε(W, ρ)
�
= {ēc : ēT

c Wēc ≤ ρ}, where ρ =
ēT

c (0)Wēc(0). δ and γ are designed off-line such
that ∀ēc ∈ ε(W, ρ) and ∀j ∈ M , −kj ēc ≥ −c1,j

and −k′
j ēc ≤ c2,j , where c1,j is the j-th element of

c1, c2,j
�
= min{σj

β , φj,imd,j − ud,j}, kj is the j-th

row of K, k′
j

�
= kj − φj,isi and si is the i-th row

of S. Note that c2,j ≥ 0.

The following proposition implies the existence of
the solutions of δ and γ.

Proposition 2. Let 〈N , λ,m0〉 be a conservative
and strongly connected JF contPN system. For
given Q and R, δ and γ can always be found such
that ∀ēc ∈ ε(W, ρ) and ∀j ∈ M , −kj ēc ≥ −c1,j

and −k′
j ēc ≤ c2,j.

Proof: Same as the design of ulg, the proof also
contains two cases.

Case 1. c1 > 0

∀j ∈ M , the maximum values of | − kj ēc| and
| − k′

j ēc| subjected to ēT
c Wēc ≤ ρ are as follows

(Wredenhage and Bélanger, 1994):

max
ēc∈ε(W,ρ)

| − kj ēc|=√
ρ(kjW−1kT

j )1/2, (23)

max
ēc∈ε(W,ρ)

| − k′
j ēc|=√

ρ(k′
jW

−1k
′T
j )

1/2
. (24)

To satisfy the design requirements, we need to
prove that, ∀j ∈ M ,

√
ρ(kjW−1kT

j )1/2 ≤ c1,j , (25)
√

ρ(k′
jW

−1k
′T
j )

1/2 ≤ c2,j. (26)

Based on (25) and (26) and considering the defin-
itions of ρ, kj and k′

j , δj and γj can be calculated
for every j ∈ M . Therefore, δ = minj∈M{δj} and
γ = maxj∈M{γj}. ∀j ∈ M , the existence of γj

and δj can be disscused according to two cases:

A. c2,j = 0

In this case, let δj = 0 and γj can be any positive
value.

B. c2,j > 0

From the definition of kj and k′
j , it can be derived

that any given γ, kj and k′
j are finite constant

matrices, i.e. irrelated with δ. Therefore, ∀j ∈ M ,
both kjW−1kT

j and k′
jW

−1k′T
j are constants. On

the other hand, smaller δj will lead to smaller
initial error which further results in smaller ēc(0)
and ρ. Therefore, as both c1,j and c2,j are strictly
positive constants, a positive δj , which is small
enough, can always be found such that (25) and
(26) are valid.
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Case 2. c1 have zero-elements

Assume c1,z = 0. δ and γ are designed off-line
such that ∀ēc ∈ ε(W, ρ), −kj ēc ≥ −c1,j (∀j ∈
{1, · · · , z − 1, z + 1, · · · , m}) and −k′

jēc ≤ c2,j

(∀j ∈ M). According to the result in Case 1
and considering the strictly positiveness of c1,j

(∀j ∈ {1, · · · , z − 1, z + 1, · · · , m}), the existence
of δ and γ can also be guaranteed. On the other
hand, as kz = 0, −kj ēc = 0. Consequently,
−kzēc ≥ −c1,z is always valid. Therefore, δ and γ
can always be found such that ∀ēc ∈ ε(W, ρ) and
∀j ∈ M , −kj ēc ≥ −c1,j and −k′

j ēc ≤ c2,j.

5.3 Asymptotical convergence analysis

Theorem 1. Let 〈N , λ,m0〉 be a conservative and
strongly connected JF contPN system. For any
m0 > 0 and any reachable md > 0 (Assumption
1) and ud, control law (14) with the parameters
δ and γ designed in Proposition 2 can ensure
the global asymptotical convergence of both the
system markings and the control signals.

Proof:

Case 1. c1 > 0

Assume ēc ∈ ε(W, ρ), where ε(W, ρ) is defined in
Proposition 2. Proposition 2 implies that δ and γ
can always be found so that, ∀ēc ∈ ε(W, ρ) and
∀j ∈ M , −kj ēc ≥ −c1,j and −k′

j ēc ≤ c2,j . Define
V = ēT

c Wēc, where W is obtained from (21).
Hence,

V̇ = ˙̄eT
c Wēc + ēT

c W ˙̄ec. (27)

On the other hand, (19) can be rewritten as

˙̄ec = (Āc − B̄cK)ēc + B̄cv, (28)

where v = sat(ulg +uhg)+Kēc. Substituting (28)
into (27) and considering (21), we have

V̇ = ēT
c (WĀc + ĀT

c W − 1
γ
WB̄cR−1B̄T

c W)ēc

− 1
γ
ēT

c WB̄cR−1B̄T
c Wēc + 2ēT

c WB̄cv

≤−ēT
c Qēc + 2

m∑
j=1

ēT
c Wb̄c,jvj (29)

where vj = sat(ulg,j + uhg,j) + kj ēc is the j-th
element of v. ∀j ∈ M , let us discuss ēT

c Wb̄c,jvj

in (29) according to the following three cases.

I. −ur,i < ulg,j + uhg,j < φj,imi − ur,j

ulg,j + uhg,j is not saturated. Hence,

ēT
c Wb̄c,jvj = ēT

c Wb̄c,j(−kj ēc − lb̄T
c,jWēc + kj ēc)

= −l(ēc
T Wb̄c,j)2 ≤ 0. (30)

II. ulg,j + uhg,j ≤ −ur,j

ēT
c Wb̄c,jvj = ēT

c Wb̄c,j(−ur,j + kj ēc). (31)

As −kj ēc ≥ −c1,j, considering the definitions of
c1,j and ur(τ), we have

−kj ēc ≥ −ur,j ⇒ −ur,j + kj ēc ≤ 0. (32)

On the other hand,

ulg,j + uhg,j ≤ −ur,j ⇒ uhg,j ≤ −ur,j − ulg,j

⇒ −lb̄T
c,jWēc ≤ −ur,j + kj ēc. (33)

From (32) and (33), it can be derived that
b̄T

c,jWēc > 0. Hence, from (31), ēT
c Wb̄c,jvj < 0.

III. ulg,j + uhg,j ≥ φj,imi − ur,j

Similarly to the proof in II, ēT
c Wb̄c,jvj < 0 can

be derived.

From I, II and III, V̇ < −ēT
c Qēc. Hence,

ε(W, ρ) is a positively invariant region. As ēc(0) ∈
ε(W, ρ), ēc(τ) ∈ ε(W, ρ) for all τ ≥ 0. Therefore,
since V̇ < −ēT

c Qēc, ēc, ē and e asymptotically
converge to zero. Furthermore, the convergence of
ēc leads to the convergence of u to ur(τ).

Case 2. c1 have zero-elements

The convergence analysis is quite similarly to that
in Case 1. From (19), the error dynamics can be
rewritten as follows:

˙̄ec = [Āc − (B̄c − ∆B̄c)K]ēc + B̄c[sat(ulg + uhg)

+Kēc] − ∆B̄cKēc. (34)

As ∆B̄cK = 0, (34) becomes

˙̄ec = [Āc − (B̄c − ∆B̄c)K]ēc + B̄cv. (35)

Define the same Lyapunov function, considering
the relationship (22), (29) can also be obtained
here.

Since ∀ēc ∈ ε(W, ρ) and ∀j ∈ M , −kj ēc ≥
−c1,j and −k′

j ēc ≤ c2,j , analogously to Case
1, ēT

c Wb̄c,jvj < 0 (∀j ∈ M) can be derived.
Therefore, V̇ < −ēT

c Qēc. The global asymptotical
convergence of e and u can be obtained.

6. ILLUSTRATIVE EXAMPLE

Consider the JF net in Figure 1 with λ =
[1, 1, 2, 1, 2]T . Hence, Φ = diag(1, 1, 1, 1, 1). The
minimal P-semiflow is y = [1, 1, 1, 2, 2]T . Adding

elementary vectors, H is chosen as H =




1 1 1 2 2
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


.
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Fig. 1. Timed Join-Free Net System.
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Fig. 2. Convergence of markings.

Assume an initial marking as m0 = [2, 3, 5, 6, 9]T

and a desired marking md = [3, 5, 2, 7, 8]T . To
maximize the flows of the steady state, the desired
final control input ud = [1, 3, 0, 5, 6]T .

Based on m0 and md, σ = [1, 0, 2, 1, 2]T +
α[1, 1, 1, 1, 1]T where α ≥ 0. Here we randomly
choose α = 1, hence σ = [2, 1, 3, 2, 3]T . Con-
sidering σ, m0 and md, β = 1.5 is the min-
imum value such that σ

β ≤ Φmin{m0,md}.
According to (12) and (13), it can be derived
that ur0 = [0.6667, 2.3333, 3, 4.6667, 7]T and
urh− = [1.6667, 4.3333, 0, 5.6667, 6]T. Hence, c1 =
[0.6667, 2.3333, 0, 4.6667, 6]T. As c1 has one zero-
element, ulg is calculated based on (22). Let
δ = 0.2 and γ = 5. It is easy to verify that
∀j ∈ {1, 2, 3, 4, 5}, both (25) and (26) are valid.
Then, h = β(1 − δ) = 1.2. For simplicity, choose
Q = I4×4 and R = I5×5 for the low-gain design.
For the high-gain term, any positive l can guar-
antee the tracking convergence. Generally, smaller
l will lead to slower system response. However,
due to the existence of input saturation, when
l is sufficiently large, the system responses have
little difference by further increasing l. In our
simulation, we choose l = 10.

The simulation results are shown in Figures 2
and 3. Figure 2 illustrates the convergence of the
markings under the designed control law. Figure 3
shows the control signals u and the state-related
upper bound, i.e. φj,imi. ( Note the net structure
determines that ∀j ∈ {1, 2, 3, 4, 5}, i = j.) It can
be seen that 0 ≤ uj ≤ φj,imi and the final control
signals converge to the desired ones.
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Fig. 3. Control signals.

7. CONCLUSION

The main concern of our work is to construct
proper control laws for step-tracking of timed
contPN systems in presence of the existing state-
related input constraints. To guarantee global
convergence and smoothness of states and control
signals, the design method for a step-ramp track-
ing trajectory has been outlined. With the new
tracking target, a novel low-and-high gain control
method has been further proposed.
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Jiménez, E., J. Júlvez, L. Recalde and M. Silva
(2005). On controllability of timed continuous
Petri net systems: the join free case. In:
Proceedings of the 44th IEEE CDC and ECC
2005. Seville, Spain.

Lin, Z., M. Pachter and S. Banda (1998). Toward
improvement of tracking performance - non-
linear feedback for linear systems. Interna-
tional Journal of Control 70(1), 1–11.

Mahulea, C., A. Ramı́rez, L. Recalde and M. Silva
(2005). Steady state control, zero valued poles
and token conservation laws in continuous net
systems. In: Proceedings of the International
Workshop on Control of Hybrid and Discrete
Event Systems. Miami, USA.

Recalde, L., E. Teruel and M. Silva (1999). Au-
tonomous continuous P/T systems. In: Appli-
cation and Theory of Petri Nets 1999 (S. Do-
natelli and J. Kleijn, Eds.). Vol. 1639 of Lec-
ture Notes in Computer Science. Springer.
pp. 107–126.

Saberi, A., Z. Lin and A. R. Teel (1996). Con-
trol of linear system with saturating actua-
tors. IEEE Transactions on Automatic Con-
trol 41(3), 368–378.

Teruel, E., J. M. Colom and M. Silva (1997).
Choice-free Petri nets: A model for determin-
istic concurrent systems with bulk services
and arrivals. IEEE Transactions on Systems,
Man, and Cybernetics 27(1), 73–83.

Wredenhage, G. F. and P. R. Bélanger (1994).
Piecewise-linear LQ control for systems with
input constraints. Automatica 30(3), 403–
416.

36




