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Abstract: The analysis of error propagation in an Air Traffic Management (ATM )
environment is addressed. The theory of Hybrid Systems is used to model the error
evolution, an observability problem for a Markov Chain with discrete output symbols
associated to the transitions is stated, and a runtime observer is proposed for estimating
the probability of a given discrete state to be active. Sufficient conditions are given for
characterizing the decidability of the addressed observability problem. The results are
related to previous works on location observability of deterministic hybrid systems, and
are used to analyze an ATM case study, the “clearance to change the flight plan”.
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1. INTRODUCTION

Hybrid systems are a powerful tool for the analysis
and control of Air Traffic Management (ATM )
systems, as shown in the IST European Project
HYBRIDGE (see http://www.nlr.nl/public/host-
ed–sites/hybridge). Each agent, in an ATM envi-
ronment, executes a sequence of operations that
may be characterized by different dynamics (Di
Benedetto et al., 2005): this is a typical hybrid
context. Moreover, since we are dealing with hu-
man agents, the behavior is non–deterministic.
The non–determinism of human agents is mainly
due to Situation Awareness, which is defined
in (Endsley, 1995), (Stroeve et al., 2003) as “the
perception of elements in the environment, the
comprehension of their meaning, and the projec-
tion of their status in the near future”. Situation
Awareness may be wrong for wrong perception of
relevant information, wrong interpretation of per-
ceived information, or wrong prediction of a future
state and propagation of error due to agents com-
munication. Moreover, statistic data retrieved by
the analysis of real cases of ATM procedures may
be used to define specific error probability in ATM
operations, thus it is reasonable to introduce a
stochastic framework to analyze error propaga-

1 This work was partially supported by European Com-
mission under Project IST NoE HyCON contract n.
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tions. In the context of error detection analysis,
partially observable discrete event systems have
been extensively studied in fault detection and
supervisory control problems. (Yoo and Lafor-
tune, 2001) analyze the diagnosability of partially
observable discrete event systems, and propose
a polynomial verification method. (Hadjicostis,
2002) discusses a probabilistic methodology for
detecting functional changes in the state tran-
sition mechanism of a deterministic finite-state
machine (FSM). Results are achieved by comput-
ing the deviation between the expected observa-
tions and the actual measurements, assuming to
know an appropriate statistical characterization
of the FSM input. In (Kennedy et al., 1987) a
decision feedback equalizer (DFE) operating on
a noisy channel is considered, and it is shown
how the results concerning a noiseless channel
can be extended to yield tight bounds on the
stationary error probability performance for the
noisy case. Similar approaches were developed in
(Aghasaryan et al., 1997; Boubour et al., 1997)
for Petri nets. Observability of hybrid systems
has been also analyzed in (Balluchi et al., 2002),
where a definition of observability of the current
state (current location observability) has been pro-
vided and a procedure for the construction of an
observer of the discrete and continuous states is
proposed, and in (D’Innocenzo et al., 2006), where
current location observability of hybrid automata
has been studied.
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The above definitions of diagnosability and ob-
servability do not require a real time state esti-
mation, while in safety-critical applications such
as ATM, we need to determine the actual state
of the system immediately, as a delay can lead
to unsafe or even catastrophic behavior of the
system. For this reason, we focus here on the con-
cept of observability in prescribed time horizon,
and we introduce a stochastic framework to model
and test Situation Awareness error evolution in
ATM operations. In Section 2, we define a class
of stochastic Hybrid Systems. In Section 3, we
propose a definition of observability with bounded
probability of false alarm for this class of systems.
We propose a design method for a runtime es-
timator of the discrete state of S on the basis
of the measured outputs, and we give conditions
for the system to be observable. In Section 4, we
state sufficient conditions such that observability
is decidable. In Section 5, we relate our results to
previous works on location observability of deter-
ministic hybrid systems (De Santis et al., 2005). In
Section 6 we present a case study, the Clearance
to change the flight plan, where the developed
methodologies are used to yield a conditioned
probability distribution of the SA error evolution.
Section 6 offers conclusions and tips for further
work.

2. DEFINITIONS AND SETTING

We define a Markov Hybrid System as a tuple
S = (Q × X, Q0 × X0, U, Y, Sq, Σ,E, Ψ, η,Π, Π0)
where:

• Q = q1, · · · , qN is the discrete state set;
• X is the continuous state space;
• Q0 is the set of initial discrete states;
• X0 is the set of initial continuous states;
• U is the continuous input space;
• Y is the continuous output space;
• Sq associates linear continuous dynamics

Aq, Bq, Cq to each discrete state q ∈ Q;
• Σ is the finite set of input symbols;
• E ⊆ Q×Σ ×Q is a collection of edges;
• Ψ is the finite set of output symbols;
• η : E → Ψ is the output function;
• Π is a transition probability matrix with

Πij = P[q(k +1) = qj | q(k) = qi] for each k;
• Π0 is an initial probability distribution

(P[q(0) = q1] · · · P[q(0) = qN ]), where Π0i =
0 if qi /∈ Q0.

A Markov Hybrid System is similar to a Hybrid
Markov chain as proposed in (Shi et al., 2004).
However, in our model no guard functions are
considered, and we do not assume that the em-
bedded Markov Chain is irreducible and positive
recurrent.

To define the executions of S, we introduce a
hybrid time basis τ = {Ik}k≥0 ∈ T as a finite
or infinite sequence of intervals Ik = [tk, t′k] such
that (Lygeros et al., 1999)

(1) Ik is closed if τ is infinite; Ik might be
right–open if it is the last interval of a finite
sequence τ ;

(2) tk ≤ t′k for all k and t′k−1 ≤ tk for k > 0.

The cardinality |τ | of the hybrid time basis is the
number of intervals Ik in τ .

An execution of S is a collection χ = (τ, x, q),
with x, q satisfying the continuous and discrete
dynamics of S. A string ρ = q0, · · · , qs is an

execution of the discrete state q of S with a finite
number of transitions |ρ| − 1 = s if q0 ∈ Q0 and
∀Ik ∈ {I1, · · · , Is}, (qk−1, qk) ∈ E. The discrete
state execution is ruled by a discrete time Markov
chain.

Let Υ (Q0) be the set of all executions ρ of the dis-
crete state of S with a finite number of transitions.
Given q ∈ Q, let Υq(Q0) be the set of all executions
ρ ∈ Υ (Q0) such that the last visited state is
qs = q. We associate to each execution ρ the ob-
served output as the string p = P (ρ) = ψ1 · · ·ψs

where ψk = η(q(Ik−1), q(Ik)) for k = 1, · · · , s.
We define L(S) = {P (ρ) | ρ ∈ Υ (Q0)} the set
of output strings that can be generated by all
executions of the system S. Given an output string
p = ψ1 · · ·ψs, we define

ReachS(Q0, p) := {q ∈ Q | ∃ρ ∈ Υq(Q0), P (ρ)=p}
the set of all states that can be reached from an
initial state in Q0 and such that the observed
output string is p.

Let H = (Q×X,Q0 ×X0, U, Y, Sq, Σ,E, Ψ, η) be
a Hybrid System defined by the same tuple of
S, except for the stochastic matrices Π and Π0.
The space of all executions of S and that of H
coincide. However, the discrete execution is non
deterministic on H, while on S it is subtended by
a probability space, denoted (Ω,F ,P), on which
the stationary Markov chain q(I0), q(I1), q(I2), · · ·
is defined. Ω is the space Υ of all executions ρ of
the discrete space, and F the associated sigma–
algebra. P is uniquely defined by the transition
probability matrix Π and the initial probability
distribution Π0. Let πi(Ik) : = P[q(Ik) = qi] and
π(Ik+1) = ΠT π(Ik) the corresponding dynamics.
We now introduce a well known formalism that
will be necessary in the following sections:

Let a Markov Hybrid System S = (Q × X, Q0 ×
X0, U, Y, Sq, Σ,E, Ψ, η,Π, Π0) and the subsets Q′ ⊂
Q, E′ ⊂ E∩(Q′×Q′) be given; S ′ = (Q′×X, Q′

0×
X0, U, Y, Sq, Σ

′, E′, Ψ ′, η′,Π ′,Π ′
0) is the subsys-

tem induced by (Q′, E′) on S, where (Π ′, Π ′
0) are

normalized stochastic matrices.

3. P–OBSERVABILITY OF A DISCRETE
STATE

In this section, we propose a definition of ob-
servability for a Markov Hybrid System, with re-
spect to a given discrete state. We then propose
a constructive procedure for an estimator of the
discrete state and a verification procedure for ob-
servability. Finally, give conditions such that P–
Observability is decidable.

Given a Markov Hybrid System S, our goal is
to use the discrete output string to compute
the probability distribution of the current dis-
crete state conditioned to a subset of trajectories,
namely all the trajectories whose output is the
measured output. Consider the probability space
(Ω,F ,P). When an output string p = ψ1 · · ·ψs is
generated up to time ts, it is possible to define the
set G(p) ⊆ Ω of executions ρ ∈ Υ (Q0) such that
P (ρ) = p. G(p) is given by Gk(p) for k = s, where

G0(p) = Ω

Gk(p) = Gk−1(p) ∩

 ⋃

q∈ReachS(Q0,p|k)

Υq(Q0)



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where p |k= ψ1 · · ·ψk is the truncation of p up to
time k. Note that G(ε) = Ω and G(p |k) = Gk(p).
Let us define

P[q(I|p|) = qi | p ] : = P[ρ ∈ Υqi(Q0) | P (ρ) = p ] =
= P[q(I|p|) = qi | G(p)]

and let qc ∈ Q be a given critical state of S,
namely a discrete state associated to a behavior
of the system which may lead to unsafe situations.
We want to construct an observer of a critical
state with the property that it always detects if
the current state of S is qc, and such that the
probability that detection of qc is a false alarm
is bounded. Let P ∈ [0, 1] be the maximal prob-
ability of false alarm we accept to tolerate. We
can formalize the property that such an observer
exists by the following definition:

Definition 1. Given a Markov Hybrid System S, a
discrete state qc ∈ Q is P–Observable (observable
with probability of false alarm P ) if ∀p ∈ L(S)

P[q(I|p|) = qc | G(p)] ∈ {0} ∪ [1− P, 1].

This condition implies that, given the measured
output of S, either we are sure that we are not in
a critical state (thus we don’t have to worry) or
the probability that the current state is critical
is very high, and it is reasonable to give an
alarm signal. Namely, if a discrete state qc of O
is P–Observable, we guarantee that it is always
possible to detect if the current state is qc, with a
probability of generating a false alarm less than P .
We obtain the limit case (0–Observability) when
the information given by the output of the system
is rich enough that P[q(I|p|) = qc | G(p)] assumes
only the values 1 or 0 for all p ∈ L(S), that is
we know at each time instant with probability 1
if the current state is qc or not.

We propose now a method for constructing a
system whose input is the discrete output string
p ∈ L(S), and whose output is the probability
P[q(I|p|) = qi | p ],∀i = 1 · · ·N . Note that such
system uses the only discrete output of S to esti-
mate the current discrete state. Consider a hybrid
system O = (Q̂ × X̂, q̂0 × x̂0, Û , Ŷ , Ŝq̂, Σ̂, Ê, R̂)
such that:

• Q̂ ⊆ 2Q is the set of discrete states;
• X̂ = [0, 1]N is the continuous state space, and

π̂ = [π̂1, π̂2, · · · , π̂N ] is the continuous state;
• q̂0 = Q0 ⊆ 2Q is the initial discrete state of
O;

• x̂0 = Π0 is the initial continuous state of O,
namely the initial probability distribution of
each discrete state of S;

• Û = ∅ is the continuous input space;
• Ŷ = X̂ is the continuous output space;
• Ŝq̂ is such that Aq̂ = Bq̂ = 0, Cq̂ = I ∀q̂ ∈ Q̂;
• Σ̂ = Ψ is the set of input symbols, namely

the set of output symbols of S;
• Ê = Q̂× Σ̂× Q̂ is the set of edges associated

to an input symbol;
• R̂ : Ê × X̂ → X̂ is a deterministic non-linear

reset function of the continuous state π̂.

The discrete layer of O may be constructed as
in (Di Benedetto et al., 2005). Given an output

string p ∈ L(S), the associated hybrid execution
of O is unique (O is deterministic), and by con-
struction ofO q̂(I|p|) = ReachS(Q0, p) ⊆ 2Q is the
set of states of Q that may be active in the time
interval I|p| accordingly to the observed output
p. Note that given any execution of S and the
associated execution of O, the associated hybrid
time bases τH and τO coincide.

Let us define the dynamics of the continuous
state π̂i(t) of O. Note that, since π̂(t) is piecewise
constant for each interval Ik = [tk, tk+1) and is
only modified by reset functions, we refer to π̂(Ik)
as the value on such intervals. The reset function
R̂(ê, π̂) for each (ê, π̂) ∈ Ê × X̂ is defined in
(Di Benedetto et al., 2005), and the following is
proved:

Proposition 1. (Di Benedetto et al., 2005) Given
a system S and the associated system O. Then,
π̂i(I|p|) = P[q(I|p|) = qi | G(p)], ∀i =
1 · · ·N, ∀p ∈ L(S).

Remark 1. Let Q̂c = {q̂ ∈ Q̂ | qc ∈ q̂ ∧ |q̂| > 1}: a
discrete state qi of a Markov Hybrid System S is
P–Observable if the reach set of the hybrid state
(q̂, π̂) of O has empty intersection with the set
Q̂c × {π̂i ∈ (0, 1− P )}.

For all proofs of this paper the reader is referred to
(Di Benedetto et al., 2006). We will now charac-
terize decidability of the P–Observability problem
for a Markov Hybrid System S. We define the
set Kqc(S) = {p ∈ L(S) | qc ∈ ReachS(Q0, p) ∧
|ReachS(Q0, p)| > 1}, namely the set of bad out-
put strings that yield qc indistinguishable from
some other state in Q. Moreover, let LQ̂f

(O)
be the language accepted by a non-deterministic
finite automaton (NFA) with the same discrete
topological structure as O and such that the set
of final states is Q̂f .

Lemma 1. The following statements hold:

(i) L(S) is a regular language;
(ii) Kqc

(S) = LQ̂c
(O) =

⋃
q̂∈Q̂c

Lq̂(O)

(iii) Kqc(S) is a regular language, and Kqc(S) ⊂
L(S).

Proposition 2. Given a Markov Hybrid System S,
a discrete state qc ∈ Q is P–Observable (observ-
able with probability of false alarm P ) if ∀p ∈
Kqc

(S), P[q(I|p|) = qc | p ] ∈ {0} ∪ [1− P, 1].

Let q̂ = {q1, · · · , qm, qm+1} ∈ Q̂c, where qc =
qm+1 and m ≥ 1 by definition of Q̂c. Given the
output string p, let us define:

θ(Q0, q, p) : =
∑

ρ∈Υq(Q0)
P (ρ)=p

P[q(I0) = ρ0] ·

·



|p|∏

k=0

P[q(Ik+1) = ρk+1 | q(Ik) = ρk, ψk]


 (1)

where ρ = ρ0 · · · ρ|p|+1. Note that 1 implies
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P[q(I|p|) = qc | p ] =
θ(Q0, qc, p)

m+1∑
i=1

θ(Q0, qi, p)
(2)

Proposition 3. A state qc is P–Observable for a
system S if and only if ∀q̂ ∈ Q̂c and ∀p ∈ Lq̂(O)
the following holds:

θc(p) : =
θ(Q0, qc, p)

m∑
i=1

θ(Q0, qi, p)
≥ 1− P

P
. (3)

If the cardinality of the language Lqc(S) is finite,
the P–Observability problem is decidable. If not,
the following theorem gives sufficient conditions
on the language Kqc(S) to achieve decidability of
the P–Observability problem.

Theorem 1. Given a Markov Hybrid System S,
let Aq̂ be the regular expression that generates
Lq̂(O) for q̂ ∈ Q̂. If Aq̂ can be expressed in the
form A1 + · · ·+ AM for each q̂ ∈ Q̂c, where Ai =
ai1ai2 · · · aini and aij ∈ {σ, σ∗, σ + σ′}, σ, σ′ ∈ Σ,
then P–Observability of S is decidable.

4. P–OBSERVABILITY FOR P = 0

In this section, we introduce an equivalence rela-
tion between P–Observability of S and critical ob-
servability (De Santis et al., 2005),(Di Benedetto
et al., 2005) of H. More precisely, we prove that,
given a system S, the P–Observability conditions
for P = 0 on the associated observer OS are
equivalent to the critical observability conditions
(De Santis et al., 2005) on the associated observer
OH. Note that OS and OH have the same dis-
crete dynamics, and therefore the same topologi-
cal structure. We first recall the definition given
in (De Santis et al., 2005) for a non-deterministic
hybrid system H w.r.t. a discrete state qc ∈ Q:

Definition 2. (De Santis et al., 2005) A hybrid
system H is critically location observable w.r.t.
a discrete state qc ∈ Q (qc–critically location
observable) if, for any initial state q0 ∈ Q0, the
current state q(k) can be detected from the output
string p whenever q(k) = qc.

Proposition 4. (De Santis et al., 2005) A hybrid
systemH is qc–critically location observable if and
only if, for each discrete state q̂ of the associated
observer O such that qc ∈ q̂, then |q̂| = 1.

We can now state the following:

Proposition 5. Given the systems H and S, and
the corresponding observers OH and OS , the
following are equivalent:

(1) qc is P–Observable with P = 0 for S;
(2) H is qc–critically location observable.

5. CASE STUDY: CLEARANCE TO CHANGE
THE FLIGHT PLAN

A Clearance to Change the Flight Plan involves
a pilot of a flying aircraft and an air traffic con-
troller. We assume that the procedure is started
by a decision of the controller because of a conflict
resolution. We describe now the agents involved
and the specific behavior of each of them:

The Flight Management System (FMS ) is
a technical system that holds the flight plan,
modeled as a list of positions si and an arrival
times ti. The FMS is configured by the PF, and
controls the aircraft direction, speed and flight
mode.The Flight Data Processing System
(FDPS ) is a system containing the flight plan, and
is reconfigured by the controller. The Aircraft
(AC ) is totally controlled by the FMS. The Pilot
flying (PF ) interacts via VHF communication
with the Controller, and can change the actual
flight plan by re-configuring the FMS system. The
Air Traffic Controller (CO) interacts via VHF
communication with the PF and monitors the
aircraft information (position, velocity, altitude,
direction, aircraft code etc) on the FDPS.

A Clearance to Change the Flight Plan procedure
starts when the Controller, to resolve a conflict,
decides to ask the pilot to reconfigure the actual
flight plan. The interaction between the CO and
the PF may be assumed as a request by the
CO to the PF to reconfigure the FMS with a
new position and arrival time, and a confirm by
the PF, who inserts the new data on the FMS.
The Controller too configures the FDPS with the
new coordinates. This simple operation may be
affected by several errors, which can bring to an
erroneous flight plan configuration and therefore
to a risk situation. We suppose without loss of
generality that the Controller decided for a secure
flight plan, and that the FMS configuration is
executed before the FDPS configuration. Further-
more it is assumed that the technical systems are
operative, to set the focus on human Situation
Awareness . The following errors are considered:
Communication error, FMS configuration error
and FDPS configuration error. An analysis of the
propagation of Situation Awareness errors may be
done by formalizing a stochastic system whose
continuous dynamics are the aircraft dynamics
given by the position and the velocity, and whose
discrete states are all possible combinations of
Situation Awareness values of the agents. More
precisely, we define the SA of each agent involved
in the procedure as its awareness of the flight
plan. The information flow previously described
can cause errors in the propagation of the SA
among agents. The Situation Awareness of each
agent may assume one of the following values:

(1) Former flight plan before the decision of the
controller (Old)

(2) New flight plan decided by the controller
(New)

(3) Erroneous flight plan due to communication
error between ATC and PF (ECOM )

(4) Erroneous flight plan due to erroneous pro-
gramming of the FMS (EFMS)

(5) Erroneous flight plan due to erroneous pro-
gramming of the FDPS (EFDPS)
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q11

q12

1

1

0

Fig. 1. System S modeling Situation Awareness
error evolution

We suppose here, without loss of generality, that a
communication error and a FMS programming er-
ror cannot happen simultaneously. This condition
simplifies the number of states and transitions in
the error evolution model. We consider the SA of
the Pilot Flying (SAPF ), of the Flight Manage-
ment System (SAFMS), and of the Flight Data
Processing System (SAFDPS).

At the beginning of the Clearance to Change the
Flight Plan, SAPF = SAPF = SAPF =Old. This
will be considered as the initial discrete state.
Considering possible errors in the SA propaga-
tion, we can construct an automaton where each
discrete state is a different value of the vector
(SAPF , SAPF , SAPF ). The discrete states of the
SA propagation model are all possible permuta-
tions of the considered agents’ SA. We consider
here only the most relevant states of this system,
in order to avoid the generation of a too complex
model. In such a system, the continuous aircraft
dynamic associated with each location may be the
same even in case of erroneous FMS configuration:
e.g. if the correct altitude level given by the Air
Traffic controller is 220 and the level understood
by the pilot is 240, the rise dynamic of the aircraft
may be identical. This means that the use of
continuous dynamics to detect the current discrete
state (Balluchi et al., 2002) may not always solve
the problem. Thus, in order to get extra discrete
information from the system, we assume that it
is possible to compare the flight plan configured
on the FMS and the flight plan memorized in the
FDPS : if they are equal, the system output is 0,
otherwise it is 1.

A Clearance to Change the Flight-Plan procedure
can be described by the following Markov Hybrid
System S, which models the Situation Awareness
error evolution:

• Q = {q1, · · · , q13} is the set of discrete states
(See Figure 1);

• X = R3 × R3 is the continuous state space,
where x = (s, v) specifies the aircraft position
s and the velocity v;

• Q0 × X0 = {q0} × {x0}, where q1 is as-
sociated to the Situation Awareness vec-
tor (SAPF , SAPF , SAPF ) = (Old,Old,Old)
and x0 are the aircraft continuous position
and velocity when the Clearance to Change
the Flight Plan procedure starts;

• U is the space of the continuous input control
u on the velocity of the aircraft;

• Y is the space of the continuous output (the
measure of the position of the aircraft);

• Sq is given by Aq, Bq, Cq:

Aq =
[ 0 I3

0 0

]
, Bq =

[ 0
I3

]
, Cq = [ I3 0 ]

∀q ∈ Q are the continuous dynamics. The
velocity vector vqi depends on the flight plan
configured on the FMS and is controlled by
u.

• Σ = {σ} is a discrete disturbance event that
triggers the actions of the agents.

• Ψ = {0, 1, ε} where ε is the unobservable
output, 0 indicates that the flight plan mem-
orized in the FMS is equal to the flight
plan memorized on the FDPS (SAFMS =
SAFDPS), and 1 indicates that they are not
equal (SAFMS 6= SAFDPS); SA stays for
Situation Awareness.

• E, η are defined according to the automaton
in Figure 1;

• Π is the transition probability matrix de-
fined according to ATM statistics, which are
usually estimated by airlines companies and
ATM research centers. In this analysis, we do
not assign numerical values to Πij since our
aim here is to illustrate how the methodol-
ogy proposed in the previous section can be
applied to our case study.

• Π0 = [1 0 · · · 0]T .

The construction procedure previously described
leads to a system O, that shows that the dis-
crete output obtained comparing the FMS and
the FDPS data is not sufficient to achieve 0–
Observability of the discrete state q13 of S, since
it is indistinguishable by q8 and q11. Therefore,
additional discrete outputs must be introduced.
Finding the set of extra discrete outputs neces-
sary to obtain 0–Observability is a combinatorial
problem on the set of edges E of the system S,
and may be trivially solved by adding all pos-
sible combinations of additional outputs to the
set E, and verifying 0–Observability conditions on
the system with the new outputs. To obtain P–
Observability, a similar procedure can be followed.
Since P–Observability conditions are weaker than
deterministic critical observability conditions, the
number of necessary number of additional outputs
would be lower.

In the particular example considered, suppose
ρ = q1, q3, q6, q11 be the execution of S, and
p = P (ρ) = 010 the associated output string.
The discrete state of the system O is steered by
p to q̂(I3) = {q8, q11, q13}. Since the value Π13

(communication error probability, transition from
q1 to q3) is certainly very low, P–Observability
does not hold for a reasonable value of P . Note
that the maximal probability of false alarm that
can be accepted for fault detection in an ATM
procedure is a design constraint. Thus, we have to
add new output ψECOM

to the transition (q1, q3).
To generate the output ψECOM

, since the VHF
speech communication cannot be measured, it is
necessary to change the Clearance to Change the
Flight Plan procedure, introducing a protocol for
the flight plan data transmission, such that an
error in the data transfer can be detected.

By adding further output symbols as done for
ψECOM

, it is easy to see that 0–Observability of
q13 is achievable by adding the discrete outputs
ψECOM

= η((q1, q3)), ψEF MS
= η((q2, q5)) and
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Fig. 2. System O′ constructed from H with new
output symbols

ψEF DP S = η((q4, q9)) = η((q6, q12)) = η((q7, q13)).
However, note that the probability associated to
the transition (q3, q6) is certainly very low, since
it is very unlikely that a pilot wrongly under-
stands a flight plan in the VHF communication
and then configures the FDPS with the correct
values. Hence, it is easy to see from Figure 2
that, by adding only the discrete outputs ψECOM

and ψEF MS
, the critical discrete state q13 is P–

Observable with a low value of P . This shows that
the detection of only two errors out of three yields
P–Observability with a low probability P of false
alarm.

6. CONCLUSIONS

We showed that estimating and mitigating the
probability of SA error in ATM can be supported
by observability analysis. We proposed a defini-
tion of observability for a class of stochastic hybrid
systems. For this class of systems, conditions for
checking observability were given, and an algo-
rithm to design an observer was illustrated. The
equivalence between the observability notion pre-
sented here, with a zero probability of false alarm,
and critical observability as defined in (De Santis
et al., 2005) was proven. This stochastic frame-
work was then used to analyze error evolution in
an ATM example. The framework proposed in this
paper can be used for simulating ATM procedures
and verifying ”observability” - i.e. detectability
- of dangerous operations. If the system is not
observable with an acceptably low probability of
generating a false alarm, the procedure must be
changed with the introduction of new system out-
puts, and the verification procedure can be used
on the resulting new system. Future research will
focus on the minimization of the set of discrete
outputs necessary to obtain P–Observability and
on the extension of our results to continuous time
Markov Chains.
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