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Abstract: In this paper, observers are synthesized for switched linear systems,
resulting in switched observers including state jumps. The synthesis problem
involves multiple Lyapunov functions and is formulated as a linear matrix
inequality problem. It is assumed that the current mode (active dynamics) of
the switched linear is unknown, and it will be shown that the estimate of the
continuous states will be bounded at worst, if the mode is wrongly estimated. If
the active dynamics is estimated correctly within a certain time, and the dwell
time of the switched linear system is lower bounded, it will be shown that the

bound of the estimation error can be reduced significantly. Copyright © 2006 IFAC
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1. INTRODUCTION

A large class of systems is reasonably modelled by
a family of continuous-time subsystems and logic
rules that govern the switchings between them.
In this paper, we are interested in the estimation
problem of such switched system, and switched
observers including state jumps are synthesized.
The synthesis problem how to design the observer
gains, or showing stability for existing observer
gains, will be formulated as a linear matrix in-
equality problem.

Existing synthesis results can be divided into two
categories depending on whether the discrete state
(active dynamics or mode) of the switched system
is known or not. The estimation problem simplifies
significantly if the active dynamics is known (since
the mode of the observer can change correspond-
ingly), and synthesis results are proposed guaran-
teeing that the estimation error converges to zero
if certain conditions are satisfied, see for instance
(Alessandri and Coletta, 2001; Feron, 1996). How-
ever, if the active dynamics is unknown and needs
to be estimated together with the continuous
state, there are quite a few synthesis results. If
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the discrete mode is estimated from the contin-
uous part of the switched system, there are not
yet any synthesis results that are applicable to a
large class of switched (linear) systems. Results
so far only guarantee that the estimation error
of the continuous state is bounded, but it cannot
be shown that it goes to zero since there are no
guarantees that the active dynamics is correctly
estimated, cf. (Juloski et al., 2002).

It is common to use a quadratic Lyapunov func-
tion when showing estimation error (stability)
properties of the underlying switched observer, see
for instance (Alessandri and Coletta, 2001; Juloski
et al., 2002). By using a common quadratic Lya-
punov function, stability is guaranteed regardless
of the mode switches in the system (and ob-
server). However, the existing results are conser-
vative since the estimation error might converge
or be bounded without the existence of a com-
mon Lyapunov function. By introducing multiple
quadratic Lyapunov functions, one for each ob-
server mode, the conservatism can be relaxed, im-
plying that a larger class of switched (linear) sys-
tems can be handled, see (Pettersson, 2005a; Pet-
tersson, 2005b).
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In this paper, we will study the estimation prob-
lem in the case when the active dynamics of the
switched linear is unknown. A generic illustration
of the observer is given in Figure 1, cf. (Balluchi et
al., 2002). The observer is divided into two parts:

Switched system plant

States (x, q)

States (x̂, q̂)

Mode location

Continous-time

observer

observer

u y

x̂
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Fig. 1. Switched observer of a switched system.

the Mode location observer estimating the active
dynamics and the Continuous-time observer esti-
mating the continuous state of the switched sys-
tem. We will focus on the continuous-time esti-
mation problem in this paper, and not give any
details of the Mode location observer. If the active
dynamics needs to be estimated, we cannot show
that the estimation error of the continuous-time
state converges to zero since there is a possibility
that a wrong location mode is estimated during a
certain time which means that also the continuous
state is estimated wrongly. However, it will be
shown that the estimation error of the continuous
state will be bounded, similar to the results in
(Juloski et al., 2002; Pettersson, 2005b). In this
paper, we will improve the results regarding the
precision of the bound of the estimation error,
which is possible if it is assumed that the active
dynamics is estimated correctly within a certain
time, and the dwell time of the switched linear
system is lower bounded. The first assumption is
reasonable since otherwise the design of the Mode

location observer is not very good. The second
assumption is of no practical importance; see the
comments in the next section.

The outline of this paper is: we start by defin-
ing the switched linear system model in the next
section, followed by a detailed description of the
switched observer with state jumps. In Section 4,
the observer synthesis problem is formulated, fol-
lowed by a section explaining how to solve the
problem using linear matrix inequalities. Finally,
the method is applied to an example.

2. SWITCHED LINEAR SYSTEM

The switched linear systems considered in this
paper are described by the equations

ẋ = Aq(t)x + Bu, y = Cx, (1)

where x ∈ ℜn is the state vector, u ∈ ℜm is the
input vector, y ∈ ℜp is the measurement (output)
vector and q(t) is an index function (discrete
state) q : [0 ∞) → IN = {1, . . . , N} deciding
which one of the linear vector fields that is active
at a certain time instant. Each of the indexes
corresponds to a different model description and
is referred to as a mode of the switched linear
system. By active dynamics we mean the active
subsystem, or model description, of (1).

The change of value of the index function occurs
at certain times, which are defined by the set T .
One possibility is to define switch sets Si,j ⊂ ℜn,
(i, j) ∈ Is, where Is is a set of tuples indicating
which mode changes that might occur in the
switched system. If q(t) = i and the trajectory
reach a state in Si,j at time t+, then q(t+) = j.

We will assume that there are only a finite number
of mode changes in finite time. This does not
exclude sliding motions, since if sliding motions
occur in the switched system, new modes corre-
sponding to the sliding modes are additionally
introduced. The dynamics associated with the
sliding mode is given by a (unique) vector field
specified for instance by Fillipov’s convex combi-
nation (Filippov, 1988). Then, a switched system
with an equivalent dynamics is obtained, where
there is a finite number of switches of the modes
in finite time. The observer is designed for this
equivalent switched system dynamics. To improve
the results regarding the precision of the bound
of the estimation error, we will later give results
where the dwell time of the equivalent dynamics
of a switched linear system is at least a time T .

3. SWITCHED OBSERVER WITH STATE
JUMPS

The dynamics of the Continuous-time observer is
defined as follows:

˙̂x = Aq̂(t)x̂ + Bu + Kq̂(t)(y − ŷ), ŷ = Cx̂, (2)

where x̂ ∈ ℜn is the estimate of the state vector
x and Kj ∈ ℜn×p, j ∈ IN , are the observer gains.
The index function q̂ : [0 ∞) → IN = {1, . . . , N}
decides which one of the observer modes that is
active at a certain time instant, and is the output
of the Mode location observer, see Figure 1.

The purpose of the Mode location observer is to es-
timate the current mode q of the switched system,
but we will not specify the details since we will fo-
cus on properties of the continuous state estimate
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in this paper. We merely indicate by T̂ the set of
times when the Mode location observer switches
mode, which are the times when q̂ changes value.
If the Mode location observer never estimates the
correct discrete mode, the estimation error bound
will be very conservative (related to the worst
combination of system mode dynamics and ob-
server mode dynamics), see (Pettersson, 2005b).
However, if the Mode location observer estimates
the correct discrete states part of the time, say
within ∆ time units, the bound of the estimation
error can be reduced significantly, shown later on.

There is no guarantee that the estimation error
will converge even if the active mode of the
switched system is known and the observer gains
Ki is designed such that the estimation error of
each subsystem converges. What is further needed
in the observer design is to properly update the
estimated states of the observer, at the times in T̂
when the observer mode changes occur. If observer
mode i is active and a mode change occur, the
estimate x̂ will abruptly be changed (jump) to
x̂+, where x̂+ indicates the updated value of x̂.
More specifically, the estimated state jumps will
be updated according to

x̂+ = T1x̂ + T2y, t ∈ T̂ ,

which only depends on the observer states x̂ and
the measured value y. In the next section, we will
show how to calculate T1 and T2, guaranteeing
that the error between the estimated states and
the states of the switched system is bounded.

4. OBSERVER SYNTHESIS

The estimation error dynamics obeys the equation

˙̃x = ẋ − ˙̂x = (Aq̂ − Kq̂Cq̂)x̃ + [Aq − Aq̂]x.

Let us introduce multiple Lyapunov functions, one
for each observer mode i,

Vi(x̃) = x̃T Pix̃, i ∈ IN ,

where each Pi ∈ ℜn×n is a symmetric matrix. The
time derivative for the observer mode i, when the
system state evolves according to mode j, becomes

V̇i(x̃) = x̃T ([Ai − KiC]T Pi + Pi[Ai − KiC])x̃

+ x̃T Pi(Aj − Ai)x + xT (Aj − Ai)
T Pix̃.

(3)
We are now ready for the main theorem. If de-
sirable, we can associate regions xT Qix ≥ 0 to
the switched system (1) where mode i is possible,
see (Pettersson and Lennartson, 2002). If not de-
sirable, the µi,j ’s in the theorem is put to zero.
The advantage of specifying regions where mode
i is possible is to improve the bound given in the
theorem. This is one form of relaxation which is
similar to the one in (Juloski et al., 2002).

Theorem 1. If there exist a solution to
(ǫ ≥ 0, α > 0, µi,j ≥ 0, γ ≥ 0)

1. αI ≤ Pi ≤ βI, i ∈ IN

2. Γi,j =

[

Γ11
i,j Γ12

i,j

(Γ12
i,j)

T Γ22
i,j

]

≤ 0, (i, j) ∈ Is

3. Pj = Pi + dT
i,jC + CT di,j , (i, j) ∈ Is

where

Γ11
i,j = (Ai − KiC)T Pi + Pi(Ai − KiC) + γI

Γ12
i,j = Pi(Aj − Ai)

Γ22
i,j = µi,jQj − γǫ2I

and the states of the hybrid observer is updated
according to 2

x̂+ = (I − R−1
i (CR−1

i )†C)x̂ + R−1
i (CR−1

i )†y

∀t ∈ T̂
(4)

then if for some T0 > 0

sup
t>T0

||x(t)|| ≤ xmax, (5)

we have

lim
t→∞

sup ||x̃(t)|| ≤
√

β

α
ǫxmax. (6)

Furthermore, if the switched system (1) is in every
mode at least a time T and it takes ∆ ≤ T to
identify correct mode of the switched system, then
we have

lim
t→∞

sup ||x̃(t)|| ≤
(

e−
γ
β

(T−∆) − e−
γ
β

T

1 − e−
γ
β

T

)√

β

α
ǫxmax.

(7)

Proof: We need to prove that the overall energy
function V (x̃(t)) eventually is upper bounded by a
constant. To do this, we will show that the energy
decreases at the switching instants in T̂ when
changing observer modes and that the energy in
every observer mode eventually is upper bounded
by a constant (regardless of the system mode). We
begin by the first part and have to show that

(x − x̂+)T Pj(x − x̂+) ≤ (x − x̂)T Pi(x − x̂). (8)

Let x̂+ be an arbitrary estimated state satisfying
y = Cx̂+. Since also y = Cx, we have

C(x − x̂+) = y − y = 0,

implying that (x−x̂+)T (dT
i,jC+CT di,j)(x−x̂+) =

0. Due to the relation in Condition 3, it means
that (8) becomes

(x − x̂+)T Pi(x − x̂+) ≤ (x − x̂)T Pi(x − x̂), (9)

and it remains to choose x̂+ satisfying y = Cx̂+

such that this inequality is satisfied.

2 (∗)† is the pseudoinverse of (∗), see (Strang, 1988).
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Factorize Pi as Pi = RT
i Ri, where Ri ∈ ℜn×n is a

symmetric positive definite matrix. This is always
possible since Pi is a real symmetric positive
definite (imposed by Condition 1) matrix, see
(Strang, 1988). One choice is for instance,

Ri = Vi

√
ΛiV

T
i ,

where Vi ∈ ℜn×n is the orthonormal eigenvectors
of Pi and

√
Λi is a diagonal matrix consisting of

the square root of the (positive) eigenvalues of Pi.
Now, Condition (9) is equivalent to show that

||Ri(x − x̂+)|| ≤ ||Ri(x − x̂)||, (10)

is fulfilled where x̂+ satisfies y = Cx̂+.

We are now interested to find the updated value
x̂+, lying on the hyper plane y = Cx̂+, that
minimizes the distance ||Ri(x̂

+ − x̂)||. This op-
timization problem can formally be defined as

min
x̂+

||Ri(x̂
+ − x̂)||

subject to: Cx̂+ = y
(11)

which is geometrically illustrated in Figure 2.

{
Rix̂

Rix̂
+

Rix

Cx̂+ = y

ǫi

Fig. 2. The projection of Rix̂ onto the plane
Cx̂+ = y, resulting in the point Rix̂

+.

By introducing ǫi = Ri(x̂
+ − x̂), we have Rix̂

+ =
ǫi + Rix̂, leading to the optimization problem

min ||ǫi||
subject to: CR−1

i ǫi = y − Cx̂

The solution to this problem, the minimum length
least squares solution to y − Cx̂, is

ǫi = (CR−1
i )†(y − Cx̂).

Hence, Rix̂
+ = Rix̂ + (CR−1

i )†(y − Cx̂), which
is equivalent to (4) after a multiplication of R−1

i

from the left.

It remains to show that the condition in (10)
is satisfied for the state jump update (4). By
construction, the vectors Ri(x̂

+ − x̂) and Ri(x −
x̂+) are orthogonal; otherwise ǫi would not be
optimal. Hence, by Pythagoras’ law

||Ri(x − x̂)||2 = ||Ri(x − x̂+) + Ri(x̂
+ − x̂)||2 =

= ||Ri(x − x̂+)||2 + 2(x − x̂+)T RT
i Ri(x̂

+ − x̂)
︸ ︷︷ ︸

0

+

+||Ri(x̂
+ − x̂)||2 ≥ ||Ri(x − x̂+)||2,

where the inequality is true since ||Ri(x̂
+ − x̂)|| ≥

0. Hence, we have shown that (10) and conse-
quently (8) is satisfied, ending the first part of
the proof.

We now need to prove that the energy in ev-
ery observer mode eventually is upper bounded
by a constant (regardless of the system mode).
By adding and subtracting γx̃T x̃, −γǫ2xT x, and
µi,jx

T Qix (where µi,j ≥ 0), V̇i in (3) becomes

V̇i(x̃) = [x̃T xT ]Γi,j [x̃
T xT ]T − µi,jx

T Qix

−γx̃T x̃ + γǫ2xT x

≤ −γx̃T x̃ + γǫ2xT x ≤ −γ

β
Vi(x̃) + γǫ2x2

max,

where the first and second inequality is due to
Condition 2 and the fact that −µi,jx

T Qix ≤ 0
(since µi,j ≥ 0 and xT Qix ≥ 0 in regions where
mode i of the switched system (1) is possible), and
Condition 1 and (5) respectively. This differential
inequality implies that

Vi(x̃(t)) ≤ e−
γ
β

(t−t0)Vi(x̃(t0))

+ βǫ2x2
max(1 − e−

γ
β

(t−t0))

≤ e−
γ
β

(t−t0)Vi(x̃(t0))

+ βǫ2x2
max(1 − e−

γ
β

(t−t0)),

(12)

where t0 ≥ T0. Consequently, the overall energy
V (x̃(t)) decreases at the switching instants and is
upper bounded by a constant. Due to Condition 1,
we then have

||x̃(t)|| ≤
(

e−
γ
β

(t−t0)V (x̃(t0))/α

+
β

α
ǫ2x2

max(1 − e−
γ
β

(t−t0))

) 1
2

.
(13)

Hence, when t → ∞ the exponential functions
converge to zero implying that (6) is satisfied.

To prove that (7) is satisfied, we assume that the
switched system (1) is in every mode at least a
time T and it takes ∆ ≤ T to identify correct
mode of the switched system. When the switched
system changes mode at time, say, t0 ∈ T , to
mode i, the observer is still in mode j during a
time ∆. Hence, from (12) we have that

V (x̃(t)) = Vj(x̃(t)) ≤ e−
γ
β

(t−t0)Vj(x̃(t0))+

βǫ2x2
max(1 − e−

γ
β

(t−t0)), t0 ≤ t ≤ t0 + ∆.

At time t0 +∆ (∈ T̂ ), we identify correct mode of
the system, and the observer changes correspond-
ingly. The mode is correctly estimated at least in
the time interval t0 +∆ to t0 +T according to the
assumptions. During this time interval,

V (x̃(t)) = Vi(x̃(t)) ≤
e−

γ
β

(t−t0−∆)Vi(x̃(t0 + ∆)), t0 + ∆ ≤ t ≤ t0 + T,

since Condition 2 implies that Γ11
i,i < 0 with

ǫ = 0. At the switch time t0 + ∆, the state x̂ is
updated according to (4), implying that Vi(x̃(t0 +
∆)) ≤ Vj(x̃(t0+∆)). Combining this with the two
inequalities, implies that we at time t0 + T have
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Vi(x̃(t0 + T )) ≤ e−
γ
β

(T−∆)Vi(x̃(t0 + ∆))

≤ e−
γ
β

(T−∆)Vj(x̃(t0 + ∆))

≤ e−
γ
β

(T−∆)
(

e−
γ
β

∆Vj(x̃(t0))

+βǫ2x2
max(1 − e−

γ
β

∆)
)

≤ e−
γ
β

T Vj(x̃(t0))

+βǫ2x2
max(e−

γ
β

(T−∆) − e−
γ
β

T )
)

.

By repeatedly switchings, the energy converges
(at worst) to the bound

Vmax = βǫ2x2
max

(

e−
γ
β

(T−∆) − e−
γ
β

T

1 − e−
γ
β

T

)

,

which gives (7) due to Condition 1, ending the
proof.

A sufficient condition for the existence of a so-
lution to the inequalities in the theorem is that
Γ11

i,j < 0 in Condition 2. This is the formulation of
the estimation problem assuming that the system
mode is known. In this case, the estimation error
obeys (cf. (13) in case when ǫ = 0 and t0 = 0)

||x̃(t)|| ≤
√

β

α
e−

γ
2β

t||x̃0||,

implying that ||x̃(t)|| goes to zero as time goes to
infinity regardless of the value of x(t). When we
do not know the mode, which is handled in the
theorem, we cannot say that the estimation error
goes to zero but is upper bounded according to
(6), which depends on the largest value of ||x(t)||.
This bound is usually very conservative, indicated
by the example later on, since it is obtained hav-
ing the worst possible combination of observer
mode and system mode. However, the result shows
that if the active dynamics is estimated correctly
within a certain time (∆), and the dwell time of
the switched linear system is lower bounded (by
T ), the bound of the estimation error can be re-
duced significantly according to (7). If ∆ → 0 the
bound becomes zero, but if we do not succeed to
estimate the discrete state correctly until the next
mode change of the switched system, implying
that ∆ → T , then we again get (6). Note that
if the switched system stops to switch, and the
correct mode is identified, the estimation error will
converge to zero.

Except the properly updates according to (4), the
theorem uses multiple Lyapunov functions, which
increases the possibility to find the unknown vari-
ables satisfying the conditions in the theorem. Us-
ing a common Lyapunov function (corresponds to
di,j = 0 in the theorem) to prove convergence, the
energy decrease condition (9) is trivially satisfied
by letting x̂+ = x̂, i.e. no updates of the estimated
states are necessary. However, also in this case, the
updates of the estimated states according to (4)
will improve the real convergence rate and should
be used also in case when a common Lyapunov
function is searched for.

5. SOLUTION USING LINEAR MATRIX
INEQUALITIES

Theorem 1 has to be valid whether the observer
gains Ki are decided a priori or not. The un-
knowns in Theorem 1 will be found by iteratively
fixing ǫ to a value and search for the smallest β
satisfying the conditions to find a low bound on
the right-hand side of (6). If there is no solution
for the fixed value of ǫ, the value is increased. Fur-
thermore, without loss of generality, α is scaled to
1 to prevent the Pi’s to be positive semi-definite.

Whether the observer gains Ki are decided a

priori or not, Theorem 1 can be reformulated as
a linear matrix inequality (LMI) problem in the
unknown variables Pi, di,j , µi,j , γ and possible
Ki. In the case of unknown K ′

is they have to be
constrained in some way to prevent them from
being too large. One possibility is to introduce
the condition

[
λ2

i Ip×p WT
i

Wi In×n

]

≥ 0, i ∈ IN

implying that KT
i Ki ≤ λ2

i Ip×p, cf. (Pettersson,
2005a; Pettersson, 2005b).

6. EXAMPLE

We now illustrate the observer synthesis in this
paper in case of two modes of the (autonomous)
switched linear system (1) given by

A1 =

[

1 −5

0 1

]

, A2 =

[

1 0

5 1

]

, B =

[

0

0

]

, C =

[

1

−2.4

]
T

.

The system and observer time switchings are
indirectly given by specifying switch sets defined
by linear hyper planes according to

Si,j = {x ∈ ℜn | si,jx = 0}, (i, j) ∈ {(1, 2), (2, 1)},

Ŝi,j = {x̂ ∈ ℜn | ŝi,j x̂ = 0}, (i, j) ∈ {(1, 2), (2, 1)},
where the switch planes of the observer are put
equal to the switch planes of the system to mimic
the switching behavior, according to

s1,2 = ŝ1,2 = [1.56 1], s2,1 = ŝ2,1 = [1 − 1.56].

We assume that the design of the the observer
gains is not known a priori but is a part of the
synthesis problem. We will study the solution in
case when λ = λ1 = λ2 = 5.

It should be noted that there does not exist a
solution to Theorem 1 with a common P ; hence,
the suggested observer synthesis in this paper
is less conservative than existing results using a
common quadratic Lyapunov function. Solving
the corresponding LMI problem of Theorem 1
with multiple Lyapunov functions, results in a
solution

K1 =
[
1.79 − 1.02

]T
, K2 =

[
−3.44 − 3.54

]T
,
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with α = 1, β = 5.70, ǫ = 4.98, γ = 1.88.
According to (6) in the theorem, we therefore have
the bound ||x̃(t)|| ≤ 11.87xmax. The switched
system changes mode every 0.45 time units; hence
T = 0.45. The bound can be improved according
to (7) if we can identify the correct mode within
a time ∆ < T .

Figure 3 shows a trajectory simulation x of the
switched linear system, in the case when xmax =
1, together with the estimated states x̂ updating
the estimator states according to (4) at the switch-
ing instants. As can be seen from the figure, the
estimated states converge to the switched linear
states exactly. Consequently, the times ∆ → 0.

−1 0 1

−1.5

−1

−0.5

0

0.5

1

1.5

x1

x
2

Fig. 3. The estimated states x̂ (dash-dotted) con-
verges to the switched linear system states x
(solid line) using the projection.

To compare, a trajectory simulation of the esti-
mated states x̂ when not updating the estimator
states according to (4) at the switching instants
is shown in Figure 4. In this case, it can be seen
that the estimated states converge to a limit cycle.
Hence, it is advantageous to update the continu-
ous estimator states at the switching instants.

7. CONCLUSIONS

In this paper, it has been shown how to estimate
the continuous states of a switched linear systems
by designing a switched observer including state
jumps. By using multiple Lyapunov functions and
properly update the continuous estimated states
when the mode changes occur, an observer is
synthesized by solving a linear matrix inequality
problem. The bound of the estimation error is
reduced compared to earlier result, if it can be
shown that the active dynamics is estimated cor-
rectly within a certain time, and if the dwell time
of the switched linear system is lower bounded.
Future research will deal with the question how to
guarantee that the estimation error actually goes
to zero, as in the example.

−2 −1 0 1 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x1

x
2

Fig. 4. The estimated states x̂ (dash-dotted) con-
verges not to the switched linear system
states x (solid line) since projection is not
used.
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