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Abstract: In this paper we consider a class of discrete time piecewise-linear systems
composed by linear discrete time LTI subsystems with autonomous switching. The
aim is to propose a method for the synthesis of a hybrid observer. The approach
proposed here consists on the combination of a discrete observer and a continuous
observer. It is shown that under conditions related to minimum dwell time of each
mode, one can express the switching law as a linear combination of the system
input/output samples. The continuous observer is a piecewise-linear observer
whose dynamics depend on the current active mode. Two estimation schemes are
analyzed : on−line estimation and off−line estimation. Copyright c©2006 IFAC.
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1. INTRODUCTION

Observer design for hybrid systems is an impor-
tant and challenging problem. Applications for
control or fault detection purposes is of first im-
portance. Recently, many papers have considered
such a problem. A discussion on observability
conditions for switched linear systems is proposed
in (Vidal et al., 2004). Moving horizon estima-
tion strategy is discussed in (Ferrari-Trecate et
al., 2002) for piecewise-linear systems. Piecewise-
linear systems are an important class of hybrid
dynamic systems which has attracted a grow-
ing interest (Bemporad et al., 2000),(Johansson,
2003),(Liberzon, 2003). In (Balluchi et al., 2002),
a hybrid observer is proposed for systems with a
hybrid automaton description. The scheme of the
proposed observer consists of two blocs: a discrete
observer, based on the discrete event dynamic

1 Work partially done in the framework of the HYCON
Network of Excellence, contract number FP6-IST-511368

framework, and a continuous observer, based on
the classical state observation theory. The former
identifies the current mode, while the latter pro-
duces an estimate of the evolution of the contin-
uous state of the hybrid system. In this paper,
we study the observation problem for a class of
piecewise-affine hybrid systems where the switch-
ing law depends on the continuous state vector.
The observation scheme proposed here consists on
the combination of an active mode detection and
continuous observer. This paper is organized as
follows. First, we present a solution for detecting
the switching time instant and the corresponding
active mode. This method is the transposition in
discrete time of the idea introduced in (Benali et
al., 2004) for the continuous time case. The adap-
tation to the discrete time case is not immediate
and introduces some specificities. The continuous
observer is based on the switching observer devel-
oped in (Daafouz et al., 2002), whose dynamics
depend on the active mode provided by the dis-
crete observer. Two configurations are considered

Preprints of the 2nd IFAC Conf. on Analysis and Design of Hybrid Systems (Alghero, Italy), 7-9 June 2006

12



: on−line gain attribution, where the two parts
of the observer work simultaneously, off−line gain
attribution, where the hybrid observer works with
a delay compared to the real system. We finish by
an illustrative example and a conclusion.

2. PROBLEM STATEMENT

We consider the class of discrete time piecewise-
linear systems given by :

{
xk+1 = Aixk + Biuk if Hxk ∈ [ai, ai+1]

yk = Cixk for i = 1, 2, · · · , s
(1)

where xk ∈ Rn is the state vector, yk is the
output vector. k refers to the sample index. qk

is the active mode index, and the discrete state of
the hybrid system, it takes its values in the finite
set Q = {1, 2, · · · , s}. Each triplet (Ai, Bi, Ci)
characterizes the dynamics of the system in a
region of the state space. s is the number of
subsystems (also the number of regions). The
switching strategy is specified by the linear form
Hxk =

∑n
i=1 hix

i
k,H = [h1, ..., hn] which indi-

cates the active subsystem and defines a partition
of the state-space where each region is delimited
by Hxk = ai, with ai ∈ R and a1 < a2 < ... < as.

The hybrid observer has to provide an evaluation
of the active mode (discrete state) q̂k ∈ Q,
and an estimate of the state vector x̂k. The
hybrid observer proposed here consists of two
parts: discrete observer and continuous observer
(see figure 1). Knowing the system input and
output (uk, yk, k = 1, ..., N) on a time horizon
N , an evaluation q̂ of the active mode index
q̂k ∈ {1, 2..., s} is calculated. The result is used
by the piecewise-linear observer to determine x̂
an estimation of the continuous state vector x.

Fig. 1. Hybrid observer structure

The two parts of the observer are described in the
following sections.

3. DISCRETE OBSERVER: ACTIVE MODE
DETECTION

In this section we present a method for detecting
the switching time instant and the corresponding
active mode using the input/output data on a
time horizon. First, the autonomous case is con-
sidered. A generalization is proposed in the next
section for the non-autonomous case. We consider
the following piecewise-linear system:

{
xk+1 = Aixk

yk = Cixk

if Hxk ∈ [ai, ai+1]
for i = 1, 2, · · · , s

(2)

The switching time instants are determined by the
value of the quantity Hxk. As we have only the
collected output data yk on a fixed horizon, the
simplest idea is to express Hxk function of these
available outputs. This idea has been investigated
in (Benali et al., 2004) in the continuous time case
and appears quite easy to exploit. It is possible
to express Hx(t) as a linear combination of the
output y(t) and its successive derivatives without
any assumptions. We show that the transposition
in the discrete time case cannot be used without
additional assumptions.

As in the continuous cas, we try to express Hxk as
a linear combination of the outputs yk taken on a
time horizon of length N . The relation between
the outputs and the switching function will be
then written as :

Hxk = [Hxk]α =
N−1∑

j=0

αjyk+j (3)

where α =
[
α0 α1 · · · αN−1

]
are output weight-

ing coefficients to be computed.
Where in the continuous time case the successive
output derivatives y(n), n = 1, · · · , n involve al-
ways the same active mode, in the discrete time
case the samples yk+j , j = 1, · · · , N do not nec-
essarily correspond to a same active mode. In a
consequence it is not possible to find α such that
equation (3) is valid when a commutation occurs
on [0, ..., N − 1].

The idea is, first to find α independent of the
discrete state such that the equation (3) is valid
whenever the discrete state keeps constant on the
interval [0, ..., N−1], second to detect the commu-
tation when it occurs, at last find the new discrete
state.

Before starting the theorem let us recall a few
definitions associated with the problem of joint
observability (Vidal et al., 2004). We define Gk

Gk =




C1 C2 · · · Cs

C1A1 C2A2 · · · CsAs

· · · · · · · · · · · ·
C1A

k−1
1 C2A

k−1
2 · · · CsA

k−1
s




13



Definition 1. (The joint observability index ) The
joint observability index is defined as

µ = max
k

(rank(G))

Definition 2. (The joint observability matrix )
Gµ is called joint observability matrix of the
system Si = (Ai, Ci), i = 1, ..., s

Lemma 1. There exist αc =
[
αc

0 αc
1 · · · αc

µ−1

]
s.t : Hxk = [Hxk]αc , where

[Hxk]αc =
µ−1∑

j=0

αc
jyk+j (4)

whenever the discrete state q ∈ Q keeps constant
on [k, ..., k + µ− 1] if and only if

rank
([

GT
µ hT

])
= µ (5)

with h = [ H H ... H︸ ︷︷ ︸
s times

]

If all Si = (Ai, Ci) is observable µ > n.

Proof of lemma.1 :
If : if rank

([
GT

µ hT
])

= µ there h = [ H H ... H︸ ︷︷ ︸
s times

]

is a linear combination of the rows of the matrix
Gµ, then exist

[
αc

0 αc
1 · · · αc

µ−1

]
such that

H =
µ−1∑

j=0

αc
jCiA

j
i ∀i ∈ Q (6)

then [Hxk]αc =
µ−1∑
j=0

αc
jCiA

j
ixk =

µ−1∑
j=0

αc
jyk+j

where yk+j is the output of system Si.
Only if : if there exist

[
αc

0 αc
1 · · · αc

µ−1

]
s.t

Hxk =
µ−1∑

j=0

αc
jyk+j , ∀xk

while yk+1 is the output of any system Si (q is
constant on [k, ..., k + µ− 1]), then

Hxk =
µ−1∑

j=0

αc
jCiA

j
ixk, ∀xk, ∀i ∈ Q

and H =
µ−1∑
j=0

αc
jCiA

j
i , ∀i ∈ Q and h is linear

combination of the rows Gµ. 2

If Si = (Ai, Ci) is observable then xk is linear
combinaison of the outputs yk, yk+1, ..., yk+µ−1

and the Hxk is also a linear combinaison of
yk, yk+1, ..., yk+µ−1, so there exist
αi =

[
αi

0 αi
1 · · · αi

µ−1

]
, for all i ∈ Q s.t

[Hxk]αi =
µ−1∑
j=0

αi
jyk+j =

µ−1∑
j=0

αi
jCiA

j
ixk then

H =
µ−1∑

j=0

αi
jCiA

j
i (7)

Theorem 1. Suppose that the following assump-
tions are verified :

(1) Si, i = 1, ..., s observable.
(2) rank

([
GT

µ hT
])

= µ.
(3) the hybrid system exhibits transitions with

time separation greater than or equal to some
µ > 0 (dwell time hypothesis).

(4) CiAi 6= CjAj , ∀i, j ∈ Q.
(5) αc

µ−1 6= αi
µ−1.

Then :
{

If [Hxk]αc = [Hxk]αi , then qk = i
Else the switching instant is tc = k + µ− 1

Proof of theorem.1 :
First it is important to notice that we only prove
the result on [0, N ], N ≥ µ. In fact when a com-
mutation will be detected at time k ∈ [0, N ] we
will reinitialize the detection procedure. [Hx0]αc

gives the discrete state q0 = i on [0, µ− 1] thanks
to lemma 1 and dwell-time hypothesis. Let us
examine [Hx1]αc .

Case 1: [Hx1]αc 6= [Hx1]αq0
gives the informa-

tion of a commutation at µ.
Case 2: [Hx1]αc = [Hx1]αq0

. Assume that a
commutation (from q0 = i to q1 = l 6= i) occurs
at µ then
[Hx1]αi =

∑µ−1
j=0 αi

jyj+1 =
∑µ−1

j=0 αi
jCiA

j
ix1 +

(αi
µ−1ClAlA

µ−2
i − αi

µ−1CiA
µ−1
i )x1.

[Hx1]αc =
∑µ−1

j=0 αc
jyj+1 =

∑µ−1
j=0 αc

jCiA
j
ix1 +

(αc
µ−1ClAlA

µ−2
i − αc

µ−1CiA
µ−1
i )x1.

we have
∑µ−1

j=0 αi
jCiA

j
ixk =

∑µ−1
j=0 αc

jCiA
j
ixk then

[Hx1]αc − [Hx1]αi = (αc
µ−1 − αi

µ−1)(ClAl −
CiAi)A

µ−2
i x1 = 0 only if αc

µ−1 = αi
µ−1 or (ClAl−

CiAi) = 0 which contradict the assumptions (4,5).
Remark : The previous theorem gives condi-
tions under which the switching instant can be
detected. The only situation where no conclusion
can be made is Aµ−2

i x1 ∈ Nul(ClAl−CiAi) which
is far from being realistic.

3.1 Generalization to the non-autonomous case

According to the same procedure described for
the autonomous piecewise-linear systems, we de-
fine Qk expressed as a linear combination of the
output samples taken on a time horizon µ:

Qk =
µ−1∑

j=0

αjyk+j = αYk (8)

with Yk =
[
yk yk+1 · · · yk+µ−1

]T . For each
mode, we have :
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Yk = Oixk + ΓiUk (9)
where Oi the observability matrix and Γi is the
Toeplitz matrix :

Oi =




Ci

CiAi

...
CiA

µ−1
i


 , Γi =




0 · · · · · · 0

CiBi
. . . . . .

...
...

. . . . . .
...

CiA
µ−2
i Bi · · · CiBi 0




Uk =
[
uk uk+1 · · · uk+µ−1

]T . By substitution of
equation (9) in (8), we obtain Qk = αOixk +

αΓiUk with αOi =
µ−1∑
j=0

αjCiA
j
i . If α = αc, then

Qk = Hxk + αcΓiUk.
Using (8) with α = αc, the switching function
Hxk is then given by

Hxk = αcYk + βc
i Uk (10)

where βc
i = −αcΓi.

The term βc
i in (10) states that s different evalua-

tions of Hxk are computed. As in the autonomous
case, different coefficients αi are used. For each
subsystem, the quantity Hxk is evaluated in two
different ways, [Hxk]αc,βc

i
and [Hxk]αi,βi given by

{
[Hxk]αc,βc

i
= αcYk + βc

i Uk

[Hxk]αi,βi = αiYk + βiUk

where βi = −αiΓi

The active subsystem q̂k and the switching instant
tc are given by

{
If [Hxk]αc,βc

i
= [Hxk]αi,βi then q̂k = i

Else the switching instant is tc = k + µ− 1

4. HYBRID OBSERVER

In this section the continuous observer is analyzed
considering the complete hybrid system obtained
by composing the hybrid system and the hybrid
observer. The continuous observer is a piecewise-
linear observer of the form:

{
x̂k+1 = Aix̂k + Biuk + Li(yk − ŷk)
ŷk = Cix̂k if q̂k = i ∈ Q

(11)

The hybrid observer has (s × s) situations of
type (qi, q̂i) ∈ Q × Q. To each (qk, q̂k), the error
dynamics is given by :

ek+1 = (Ai − LiCi)ek if qk = q̂k = i (12a)
ek+1 = (Ai − LiCi)ek + vk if qk = j, q̂k = i

(12b)

with

vk = ((Aj −Ai)− Li(Cj − Ci))xk + (Bj −Bi)uk

(13)

The equation (12a) describes the situation where
the active mode is correctly identified, and the
second equation (12b) describes a situation where
the estimated mode is different from the actual
active mode.
In this paper, we will study two possible estima-
tion schemes :

(1) Off−line estimation : The previously pre-
sented analyses a set [y1, ..., ytf

] and gives the
discrete state q̂k = qk ∀k ∈ [1, ..., tf ]. The
continuous observer uses the exact knowledge
of qk to construct x̂k.

(2) On−line estimation : The hybrid observer
and the hybrid system works simultaneously.
In this case the input/output data provided
by the hybrid system are analyzed by the
hybrid observer in real time.

4.1 Off−line state estimation

To analyze the off−line estimation case, let us
consider a time instant tf > µ. The input/output
data information is available for k ≤ tf . Using a
moving window of size µ, the discrete observer an-
alyzes the data and provides q̂k. The method pro-
posed in the previous sections guarantees, under
section 3, that q̂k = qk, this information is used
by the continuous observer. The error dynamic is
governed by the following equation :

ek+1 = (Ai − LiCi)ek (14)

The observer gains Li are computed so that the
estimated state x̂k converges towards the state of
the system xk for all the initial conditions i.e :

∀e0 ∈ Rn lim
k→∞

‖ek‖ = 0 (15)

To obtain these observer gains, we use the LMI
(Linear Matrix Inequalities (Boyd et al., 1994)
approach developed in (Daafouz et al., 2002). An
indicator vector ξk = [ξ1

k, ξ2
k, . . . , ξs

k]T is defined
as

ξi
k =

{
1 if q̂k = i
0 else (16)

The estimation error is :

ek+1 =
s∑

i=1

ξi
k(Ai − LiCi)ek (17)

Global convergence of (17) is ensured by selecting
the gains Li; i = 1, · · · , s such that the error
stability condition established in (Daafouz et al.,
2002) are satisfied. It consists in finding positive
definite matrices Si and matrices Fi and Gi for
i = 1, · · · , s solution of the following inequalities :
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[
Gi + GT

i − Si GT
i Ai − FT

i Ci

AT
i
Gi − CT

i Fi Sj

]
> 0 (18)

with j = 1, · · · , s. In this case, the matrices Li are
given by

Li = G−T
i FT

i

The asymptotic stability is guaranteed by the

Lyapunov function V = εT
s∑

i=1

ξi
kPiε with Pi =

S−1
i .

4.2 On−line state estimation

We recall that to detect the active mode, we use
the input/output samples available on a time hori-
zon of size µ. Let us consider a switch occurring
at time tc. The discrete observer detects at tc + 1
this commutation. However the new mode is only
identified at the instant tc+µ. In the on−line state
estimation case the continuous observer work si-
multaneously with the discrete observer, therefore
on the interval [tc, tc + µ− 1], we must provide q̂k

for the continuous observer. Different schemes can
be investigated during the interval time [tc, tc +
µ − 1] as the discrete state is unknown and the
continuous state cannot be correctly calculated.
In this paper we propose to keep the discrete state
with its last known value tc − 1 and estimate the
continuous state with the observer designed for
value qtc−1, with this option it can prove that the
estimation error remains bounded.

The corresponding error dynamics is given by the
equation (12).
A new indicator vector ξ̂k = (ξ̂1

k, ξ̂2
k, · · · , ξ̂s

k)T is
associated in order to establish a correspondence
between discrete q̂i and the triplet (Ai, Bi, Ci) :

ξ̂i
k =





1 if q̂k = i
0 if q̂k 6= i

ξ̂i
k = ξ̂i

k−1 if q̂k is not available.
(19)

the estimation error is given by:

ek+1 =
s∑

i=1

ξ̂i
k(Ai − LiCi)ek + vk (20)

This error cannot be asymptotically stable be-
cause of the term vk. However, we can calcu-
late the gain Li, such that the error estimation
is Input-to-State stable (Jiang et al., 1999). For
that, we use the result proposed in (Daafouz et
al., 2005). The gain Li is calculated by solving
the optimization problem :

Min η
Pi = P ′i
Gi = G′i
Fi, α

under




1− Pi A′iGi − C ′iF
′
i A′iGi − C ′iF

′
i

GiAi − FiCi Pj − 2Gi 0
GiAi − FiCi 0 2Gi − η1


 < 0

(21)

if the minimization problem has a solution P ∗i ∈
Rn×n, G∗i ∈ Rn×n, F ∗i ∈ Rn×m et η∗ ∈]1,∞[, the
gains Li are given by :

Li = G∗−1
i F ∗i

The Input-to-State stability is guaranteed by the
Lyapunov function V (ek, ξ̂i

k) = eT
k Pkek with Pk =

s∑
i=1

ξ̂i
kP ∗i . The estimation error verifies:

‖ek‖ ≤
√

η∗(1− 1
η∗

)k/2‖e0‖+ η∗‖v‖∞ (22)

As the LMI resolution implies that η∗ is necessar-
ily greater than 1, when k −→ ∞ the estimation
error is bounded ‖ek‖ ≤ η∗‖v‖∞ if vk is bounded.
exist X > 0 and U > 0, such that ‖xk‖∞ ≤ X,
‖uk‖∞ ≤ U and

‖vk‖∞ ≤ V = max
i 6=j

‖((Aj −Ai)− Li (Cj − Ci))‖X+

‖(Bj −Bi)‖U

5. ILLUSTRATIVE EXAMPLE

To illustrate the observation scheme proposed
here, we consider a piecewise-linear system given
by (1) with:

A1 =
[

0.80 0.22
−0.22 0.80

]
, A2 =

[
0.79 0.29
−0.29 0.50

]

B1 =
[

0.20
0.20

]
, B2 =

[
0.50
−0.50

]

C1 = C2 =
[
1 1

]
, H =

[
0 1

]

The switching function Hxk is defined by :
{

if (0.2 ≤ Hxk ≤ 10) then i = 1
else i = 2

For this system we find µ = 4 and

αc =
[−11.87 39.65 −45.18 18.65

]

In off−line state estimation, the gains of the
observer are obtained solving the LMIs (18):

L1 =
[−0.7660

2.5341

]
, L2 =

[
0.5441
0.1030

]

Figure (2) shows the actual active mode (full
line), the reconstructed active mode (stars ∗) and
estimation error norm.

Notice that the modes are perfectly identified, and
the error estimation norm decreases towards zero.
A zoom shows that after the 15th sample the error
norm is almost null.
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Fig. 2. off−line estimation case : mode evaluation
(in the top) and the error estimation norm
(in the bottom).

In on−line state estimation, the gains of the
piecewise-linear observer are obtained by solving
the optimization problem (21) :

η∗ = 11.3122,, L1 =
[−0.0621

1.3035

]
, L2 =

[
0.0524
0.8879

]

The actual mode (full line) and the evaluated
mode (dotted line) and estimation error norm are
given on the figure (3).
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Fig. 3. on−line estimation case : mode evaluation
(in the top) and the error estimation norm
(in the bottom).

At the beginning of the estimate k = 1, we
initialized the discrete state estimated at q̂k =
2, k = {1, 2, 3}, whereas the true discrete state is
qk = 1. Since the acquisition of the 4th sample,
the discrete observer provides q̂k = 1, at the
instant time k = 5 a switch occurs: qk = 2. The
discrete observer keeps its old value q̂k = 1 for
k = {5, 6, 7}. For the continuous component, we
notes that starting from the sample k = 10 the
norm of the estimation error is stabilized around
zero. A zoom on the interval [10, 25], shows that
the error norm is not null but it is bounded.

6. CONCLUSION

In this paper, we propose a hybrid observer for
a class of piecewise-linear systems. The associ-
ation of a discrete state detection method and
a piecewise-linear switched observer leads to a
hybrid observer witch may operates off-line or on-
line. In the off-line case, the observation error is
guaranteed to converge toward zero whereas in the
on-line case, it is guaranteed to be bounded.
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