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Abstract: This paper deals with the design of switching rules for switched linear
systems with inputs, in such a way that the resulting closed-loop system is
exponentially convergent. Two types of switching rules are addressed, that is
state-based and observer-based rules. The developed theory is illustrated by two
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1. INTRODUCTION

A switched linear system is a hybrid/nonlinear
system which consists of several linear subsystems
and a switching rule that decides which of the
subsystems is active at each moment in time.
These systems have been a subject of growing
interest in the last decades, see e.g. (Liberzon and
Morse, 1999; DeCarlo et al., 2000) and references
therein. Because of the combination of multiple
linear systems/controllers, a well-tuned switched
linear system can achieve better performance then
a single linear system, or can achieve certain
control goals that cannot be realized by linear
systems (Morse, 1996; Narendra and Balakrish-
nan, 1997; Feuer et al., 1997).

Besides these extended possibilities that switched
linear systems have with respect to linear systems,
the design of such a switched system also brings
along difficulties. For example, if all the linear sub-
systems of a switched system are stable, this does
not automatically guarantee the stability of that
switched system. A good example of this apparent
contradiction is given in (Branicky, 1998). An-
other property that a linear time invariant (LTI)

system with asymptotically stable homogeneous
part has, but is not natural for a nonlinear/hybrid
system, is that any solution of an LTI system with
a bounded input converges to a unique solution
that depends only on the input. Nonlinear/hybrid
system that do possess this property are referred
to as convergent. Solutions of convergent system
“forget” their initial conditions and after some
transient depend only on the system input, which
can be a command or reference signal.

Convergency of nonlinear/hybrid systems is an
interesting property, since it results in a limit
solution that is independent of the initial con-
ditions of the system. This is useful in for ex-
ample synchronization problems (Pogromsky et
al., 2002). Another possible area of interest is the
performance analysis of nonlinear systems. For
general nonlinear systems simulation-based anal-
ysis is quite impossible, since all possible initial
conditions need to be evaluated in order to ob-
tain a reliable analysis. For a convergent system,
however, this problem does not exist, since all
initial conditions lead to the same limit solution.
Therefore simulation can be used to analyse and
optimize performance of convergent systems. This
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motivates studies related to the design of conver-
gent systems.

The property that all solutions of a system
“forget” their initial conditions and converge to
some steady-state solution has been addressed
in a number of publications, e.g. (Fromion et
al., 1996; Lohmiller and Slotine, 1998; Fromion et
al., 1999; Pavlov et al., 2004; Angeli, 2002; Pavlov
et al., 2005b). In this paper, the focus lies on the
convergent design of switched linear systems using
only the switching rule as “design variable”. Two
different cases are considered. First, the case is
considered in which the switching rule is based
on static state feedback. Secondly, the case is
considered in which full state information is not
available. In this case a switching rule is discussed
that is based on an observer.

The outline of this paper is as follows. In Section 2
a basic definition on stability is recalled that is
required in the remainder of this article. Section 3
presents various definitions and properties of con-
vergent systems. In Section 4 the design of a
switching rule is discussed that makes the closed-
loop switched linear system convergent. The main
results of this section are presented in two theo-
rems which give sufficient conditions under which
such a switching rule can be found. Two exam-
ples are provided in Section 5 to illustrate these
theorems. Section 6 concludes the paper.

2. PRELIMINARIES

In this article exponential stability will be consid-
ered. For the sake of completeness, this definition
is given here.

Definition 1. A solution x(t, t0, x̄0) of a system
ẋ = f(x, t), defined for all t ∈ (t∗,+∞), is said
to be exponentially stable if there exist positive
δ, C, β such that ||x0 − x̄0|| < δ implies

||x(t, t0,x0)−x(t, t0, x̄0)|| ≤ Ce−β(t−t0)||x0− x̄0||

3. CONVERGENT SYSTEMS

In this section definitions and properties of con-
vergent systems are presented. Those systems are
very closely related to systems with globally ex-
ponentially stable solutions and the definitions
presented here extend those given by Demidovich
(Demidovich, 1967).

The following class of systems is considered

ẋ = f(x,w(t)) (1)

with state x ∈ Rn and input w ∈ PCm. Here,
PCm is the class of bounded (for all t ∈ R)
piecewise continuous inputs w(t) : R → Rm.

Assume that the function f(x,w) satisfies some
regularity conditions to ensure the existence of a
Filippov solution, see e.g. (Filippov, 1988), p.76.

Definition 2. System (1) is said to be exponen-
tially convergent if there is a solution x̄(t) =
x(t, t0, x̄0) satisfying the following conditions for
every input w(t) ∈ PCm: (i) x̄(t) is defined and
bounded for all t ∈ (−∞,+∞), (ii) x̄(t) is globally
exponentially stable for every input w(t) ∈ PCm.

The solution x̄(t) is called a limit solution. As
follows from the definition of convergency, any
solution of a convergent system “forgets” its initial
condition and converges to some limit solution
which is independent of the initial conditions.
For exponentially convergent systems this limit
solution x̄(t) is unique, i.e. it is the only solu-
tion defined and bounded for all t ∈ (−∞,+∞)
(Pavlov et al., 2005a).

For system (1) consider a scalar continuously dif-
ferentiable function V (x). Define a time derivative
of this function along solutions of system (1) as
follows

V̇ =
∂V (x)

∂x
ẋ(t, t0,x0) a.e.

Definition 3. System (1) is called quadratically
convergent if there exists a positively definite
matrix P = PT > 0 and a number α > 0 such
that for any input w ∈ PCm for the function
V (x1,x2) = (x1 − x2)TP(x1 − x2) it holds that

V̇ (x1,x2, t) ≤ −αV (x1,x2). (2)

Lemma 4. (Pavlov et al., 2005a) If system (1) is
quadratically convergent, then it is exponentially
convergent.

The proof of this lemma is based on the following
result, which will be also used in the sequel.

Lemma 5. (Yakubovich, 1964) Consider system
(1) with a given input w(t) defined for all t ∈ R.
Let D ⊂ Rn be a compact set which is positively
invariant with respect to dynamics (1).Then there
is at least one solution x̄(t), such that x̄(t) ∈ D
for all t ∈ (−∞,+∞).

Note that for convergent nonlinear systems per-
formance can be evaluated in almost the same
way as for linear systems. Due to the fact that
the limit solution of a convergent system only
depends on the input and is independent of the
initial conditions, performance evaluation of one
solution (i.e. one arbitrary initial state) for a cer-
tain input suffices, whereas for general nonlinear
systems all initial states need to be evaluated to
obtain a reliable analysis. This means that for
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convergent systems simulation becomes a reliable
analysis tool and for example ‘Bode-like’ plots can
be drawn to analyse the system performance. An
example of simulation based performance analysis
can be found in Section 5.1.

4. CONVERGENCY OF SWITCHED
SYSTEMS

Consider the switched dynamical system

ẋ(t) = Aix(t) + Biw(t)
y(t) = Cix(t) i = 1, . . . , k (3)

where x(t) ∈ Rn is the state, w(t) ∈ PCm is the
input, and y(t) ∈ Rl is the output. These dynam-
ics for example represent the system in Figure 1.
Suppose the collection of matrices {A1, . . . ,Ak},
{B1, . . . ,Bk}, and {C1, . . . ,Ck} is given, and Ai

is Hurwitz for all i = 1, . . . , k. This implies for the
system in Figure 1 that the plant and all linear
controllers are already fixed. The general problem
is to find a switching rule such that the closed-
loop system is exponentially convergent. In this
section, two kinds of switching rules are discussed.
First, a switching rule is addressed that is based
on static state feedback, i.e. i = σ(x,w). Secondly,
the case is considered in which not the entire state
can be measured, but just some output y. For this
case a switching rule is discussed that is based on
an observer.
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Fig. 1. Switched linear system.

4.1 Switching rule based on state feedback

Suppose a common Lyapunov matrix P = PT > 0
exists that satisfies the following inequalities

AT

i P + PAi < 0, i = 1, . . . , k. (4)

Consider the following switching rule

σ(x,w) = arg min
i
{xTZixx + xTZiww} (5)

in which Ziw = 4PBi and Zix are matrices to be
defined.

Theorem 6. If there exist a solution P = PT > 0
of (4) and Z1x, . . . ,Zkx such that

Zix 6= Zjx and/or Ziw 6= Zjw ∀i, j ≤ k, i 6= j
(6)

and for some ε > 0[
PAi + AT

i P −(AT

i P + PAj)
−(AT

j P + PAi) PAj + AT

j P

]
+

[
−(Zix − Zjx) 0

0 Zix − Zjx

]
≤ −ε

[
In −In

−In In

]
∀i, j ≤ k, i 6= j (7)

then switching rule (5) with matrices Z1x, . . . ,Zkx

makes system (3) quadratically convergent.

Proof: Let P be a common Lyapunov matrix
for the collection {A1, . . . ,Ak} and consider the
Lyapunov function candidate

V (x1,x2) = (x1 − x2)TP(x1 − x2) (8)

If σ(x1,w) = σ(x2,w) the inequality

V̇ ≤ −αV, α > 0

is obviously satisfied. Let σ(x1,w) = p and
σ(x2,w) = q.

V̇ = xT

1 (AT

pP + PAp)x1 + xT

2 (AT

q P + PAq)x2

− xT

1 (AT

pP + PAq)x2 − xT

2 (PAp + AT

q P)x1

+ 2xT

1P(Bp −Bq)w + 2xT

2P(Bq −Bp)w
(9)

The switching rule (5) implies the following con-
straint functions for mode p

S1(x,w) = xT

1 (Zpx−Zqx)x1+xT

1 (Zpw−Zqw)w ≤ 0

and for mode q

S2(x,w) = xT

2 (Zqx−Zpx)x2+xT

2 (Zqw−Zpw)w ≤ 0.

The system is quadratically convergent if for some
ε > 0

V̇ ≤ −ε

[
x1

x2

]T [
In −In

−In In

] [
x1

x2

]
for all (x,w) that satisfy S1(x,w) ≤ 0 and
S2(x,w) ≤ 0. Using the S-procedure, the previous
condition is satisfied if the following inequality
holds

V̇ − S1 − S2 ≤ −ε

[
x1

x2

]T [
In −In

−In In

] [
x1

x2

]
This inequality is equivalent to (7). 2

Remark 7. Note that (7) is an LMI with design
variables P and Z1x, . . . ,Zkx, which can be solved
efficiently using available LMI toolboxes.

4.2 Observer-based switching rule

Consider the observer for system (3)
˙̂x(t) = Aix̂(t) + Biw(t) + LiCi(x− x̂) (10)

with i = 1, . . . , k, x̂ the estimate of state x and
Li ∈ Rn×l the observer gain matrix. Assume
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that a common Lyapunov matrix exists such that
(4) is satisfied. Now consider the observer-based
switching rule

σ(x̂,w) = arg min
i
{x̂TZixx̂ + x̂TZiww} (11)

in which Ziw = 4PBi and Zix are matrices to be
defined.

Theorem 8. If there exist a solution P = PT > 0
of (4) and Z1x, . . . ,Zkx such that conditions (6)
and (7) are satisfied, and if there exist a P2 =
PT

2 > 0 and Li for i = 1, . . . , k, such that for all
i = 1, . . . , k

(Ai − LiCi)TP2 + P2(Ai − LiCi) < 0 (12)

then switching rule (5) with matrices Z1x, . . . ,Zkx

makes system (3) exponentially convergent.

Proof: First it is proven that the state x(t)
of system (3) either lies in a positive invariant
compact set or converges exponentially in time to
this set. Consider the Lyapunov function

V (x) = xTPx

Since there exists a common P such that (4) is
satisfied, it follows that

V̇ (x) ≤ −αV + β∗|x||w| ≤ −αV + β
√

V

for some positive constants α, β∗, and β, and
bounded input w ∈ PCm. Note that there exists
a level set

Ω =
{
x

∣∣∣ V (x) ≤ β2

α2

}
outside of which V̇ < 0. This implies that all
initial V (x(0)) within this level set remain within
the set. All V (x(0)) outside this set converge
exponentially to this set as can be seen from

V̇ ≤ −αV + β
√

V ≤ −1
2
α

(
V − β2

α2

)
Since V is a quadratic function of x(t), it can be
concluded that x(t) also converges exponentially
to the positively invariant compact set Ω.

Secondly it is proven that the estimation error
e(t) = x(t)− x̂(t) decreases exponentially towards
zero as t → ∞ if (12) holds for all i = 1, . . . , k.
Since both the observer (10) and system (3) use
the same switching rule (11) the error dynamics
become

ė =


(A1 − L1C1)e for σ(x̂,w) = 1

...
(Ak − LkCk)e for σ(x̂,w) = k

If there exists a common Lyapunov matrix P2 for
all (Ai − LiCi), i = 1, . . . , k, i.e. condition (12)
is satisfied, then the equilibrium point e = 0 is
globally exponentially stable.

Finally consider the Lyapunov function and its
derivative given in respectively (8) and (9). Let
σ(x̂1,w) = p and σ(x̂2,w) = q. The observer-
based switching rule (11) implies the following
constraint functions for mode p

S1(x̂,w) = x̂T

1 (Zpx−Zqx)x̂1+x̂T

1 (Zpw−Zqw)w ≤ 0

and for mode q

S2(x̂,w) = x̂T

2 (Zqx−Zpx)x̂2+x̂T

2 (Zqw−Zpw)w ≤ 0.

Substituting x̂i by xi − ei gives

S1(x̂1,w) = S1(x1,w) + S1(e1,w)− f(e1,x1),
S2(x̂2,w) = S2(x2,w) + S2(e1,w) + f(e2,x2),

with

f(ei,xi) = xT

i (Zqx − Zpx)ei + eT

i (Zqx − Zpx)xi.

Subsequently, the S-procedure is applied to obtain

V̇ − S1(x̂1,w)− S2(x̂2,w) ≤ −α1V + g(..)

with

g(..) = −S1(e1,w)−S2(e1,w)+f(e1,x1)−f(e2,x2)

Since ei(t) tends exponentially towards zero as
t →∞, xi(t) lies in Ω or converges exponentially
in time towards this set for i = 1, 2, and w(t) is
bounded, function g tends exponentially towards
zero as a function of time. Thus, using the switch-
ing rule (11) the following inequality is true

V̇ ≤ −α1V + γe−α2t

where α1, α2, γ are some positive constants. This
implies that V (x1(t)− x2(t)) reduces exponen-
tially towards zero as t → ∞ and therefore that
system (3) is exponentially convergent. This com-
pletes the proof. 2

Remark 9. Since there exists a common P for all
Ai, i = 1, . . . , k, condition (12) can always be met
(take Li = 0).

5. TWO EXAMPLES

The theory presented in the previous section is
now illustrated my means of two examples. For
both examples the system in Figure 1 is consid-
ered, of which the dynamics is given by

ẋ = Aix + Biw(t), i = 1, 2
y = Cx

(13)

with x(t) ∈ R3 the state, w(·) ∈ PC1 the input,
and

A1 =

−5 −8 3
10 −2 0
9 −1 −6

 , B1 =

 14
−6

7

 ,

A2 =

−8 −5 −8
13 −8 2
−2 1 −4

 , B2 =

 20
−16

8

 ,

C =
[
1 0 0

]
.
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In the first example this system is made quadrat-
ically convergent using a state dependent switch-
ing rule. For the obtained convergent system the
performance is analyzed and compared to the per-
formance of the corresponding linear systems. In
the second example an observer-based switching
rule is used to render a system exponentially con-
vergent, when only the output y can be measured.

5.1 Performance of a convergent switched system

Consider system (13) with the given matrices.
Using an LMI toolbox the following common
Lyapunov matrix can be found

P =

 0.1973 −0.0179 0.0073
−0.0179 0.1653 −0.0149

0.0073 −0.0149 0.1932

 > 0

such that conditions (6) and (7) are satisfied,
using Zix = AT

i P + PAi, i = 1, 2. Switching
rule (5) thus makes the system (13) quadratically
convergent,

V̇ ≤ −6.6643(x1 − x2)TP(x1 − x2)
≤ −6.6643V.

Subsequently, the fact that

(x1 − x2)TP(x1 − x2) ≥ λmin(P)(x1 − x2)2

(x1 − x2)TP(x1 − x2) ≤ λmax(P)(x1 − x2)2

with λmin(P) and λmax(P) respectively the mini-
mum and maximum eigenvalue of P, leads to the
following upper bound

|x1(t)− x2(t)| ≤
√

λmax

λmin
|x1(0)− x2(0)| e

−6.6643
2 t

≤ 1.3885 |x1(0)− x2(0)| e−3.3321t.

(14)

In order to analyse the performance of this
switched system, only one solution of the system
needs to be evaluated, since the limit solution
of this (convergent) system is independent of its
initial conditions. In Figure 2 the performance of
the switched system is compared with the perfor-
mance of the two corresponding linear systems,
i.e., ẋ = A1x + B1w(t) and ẋ = A2x + B2w(t).
The performance measure applied here is the rel-
ative tracking error of the limit solution√√√√∫ tl+T

tl
(w(t)− y(t))2 dt∫ tl+T

tl
w(t)2dt

, (15)

where T is a time period that is long enough to
obtain a good average of the tracking error and
tl is a moment in time for which all considered
solutions are close enough to the limit solution.
The time tl is in this example determined visually,
but a bound can be calculated as well using (14).

The performance is evaluated for the following
input signals

w(t) = sin(bt), b ∈ [10−2, 103].

i
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Fig. 2. Performance of switched system

From Figure 2 it can be concluded that for
the considered performance measure (15) the
switched system performs better than the linear
systems for the input range b ∈ [100, 102]. This
means that besides improvement of transient be-
haviour (see e.g. (Feuer et al., 1997)), the use
of switched control instead of linear control can
sometimes provide better stationary behaviour.

5.2 Convergency using observer-based switching

In this example the effect of observer-based
switching as opposed to state-based switching is
shown. Consider again system (13) with the given
matrices and consider (10) with gain matrices

L1 =

 10
5

10

 , L2 =

 5
10

−10


which are chosen in such a way that condi-
tion (12) is satisfied for some P2. Thereby all
conditions for Theorem 8 are satisfied, which im-
plies that that system (13) with observer-based
switching is exponentially convergent for any ini-
tial condition x(0), any initial estimation error
e(0) = x(0) − x̂(0) and any input w ∈ PC1.
In Figure 3 the convergency of the system out-
put y is visualized for x(0) = [0; 0; 0], w =
sin(5t), and several initial estimation errors e(0) =
{[10; 10; 10], [100;−100; 0], [−100, 0, 100]} (respec-
tively the dashed ,dash-dotted, and dotted line).
Furthermore, the output of the system with state-
based switching is plotted (solid line) to make
a comparison with the observer-based switching.
Note that only the transient solution is influenced
by the choice of switching, the limit solution is
identical for both types of switching. Therefore,
if the performance analysis of Section 5.1 would
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Fig. 3. Observer-based vs. state-based switching

be repeated for the same system but now with
observer-based switching, then the results would
be identical to those in Figure 2.

6. CONCLUSION

In this paper the following design problem for
switched linear systems has been considered: un-
der which conditions is it possible to design a
switching rule that makes the resulting closed-
loop system convergent? Two cases have been con-
sidered: state feedback and output feedback. Suf-
ficient conditions have been found that guarantee
the existence of a state-based switching rule which
renders the closed-loop system quadratically con-
vergent. For the case with output feedback, the
switching rule is based on the state of an ob-
server of the system, and sufficient conditions have
been found for the existence of a switching rule
that makes the closed-loop system exponentially
convergent. By means of an example it has been
illustrated that a simulation-based performance
evaluation is feasible for a convergent switched
system. In the example it has also been indicated
that switched control can provide better limit
behaviour than linear control.
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