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Stability (ISpS) and stabilization of discrete-time, possibly discontinuous, Piece-Wise
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1. INTRODUCTION

Several results on nominal stability analysis of Piece-
Wise Affine (PWA) systems are available in the litera-
ture, see for example (Mignoneet al., 2000), (Ferrari-
Trecate et al., 2002), (Feng, 2002) for results in
discrete-time. These works employ the Lyapunov sta-
bility framework and consider Piece-Wise Quadratic
(PWQ) candidate Lyapunov functions. Recently, in
(Lazar and Heemels, 2006) the authors showed that
nominally exponentially stable discrete-time PWA
systems can have zero robustness to arbitrarily small
additive disturbances, mainly due to the absence of a
continuous Lyapunov function. Therefore, in discrete-
time, it is important that disturbances are taken into
account when analyzing stability of PWA systems,
since robustness is relevant for practical applications.

1 Research supported by the Dutch Science Foundation (STW),
Grant “Model Predictive Control for Hybrid Systems” (DMR. 5675)
and by the European Union through the Network of Excellence
HYCON (contract FP6-IST-511368).

Robust stability results for discrete-time PWA systems
were presented in (Ferrari-Trecateet al., 2002, Sec-
tion 3), which deals with Linear Matrix Inequalities
(LMI) based l2-gain analysis for PWA systems; and
in (Grieder, 2004, Chp. 8.5), where it was observed
that, if a robust positively invariant set can be cal-
culated for a nominally asymptotically stable PWA
system, thenlocal robust convergence is ensured. For
continuous-timeinput-to-state stability (Sontag, 1989)
results for switched systems and hybrid systems we
refer the reader to the recent works (Vuet al., 2005)
and (Cai and Teel, 2005). However, to the best of the
authors’ knowledge, a global robust stability analysis
methodology fordiscrete-timePWA systems that can
be used for both analysis and synthesis purposes is
missing from the literature.

As such, we consider discrete-time PWA systems sub-
ject tounboundedadditive disturbance inputs and we
employ the Input-to-State (practical) Stability (ISpS)
framework (Sontag, 1989), (Jiang, 1993) in order to
obtain global robust stability results. For simplicity
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and clarity of exposition, only PWQ candidate ISpS
(ISS) Lyapunov functions are considered, but the re-
sults can also be extendedmutatis mutandisto piece-
wise polynomial or piece-wise affine candidate func-
tions. The paper consists of two parts: the first part
deals with ISpS (ISS) analysis, while the second part
provides techniques for input-to-state stabilizing con-
trollers synthesis. In both sections the sufficient con-
ditions for ISpS (ISS) are expressed in terms of LMIs,
which can be solved efficiently (Boydet al., 1994).

One of the advantages of using the ISpS (ISS) frame-
work for studying robust stability of discrete-time
PWA systems is that the additive disturbance inputs
are explicitly taken into account in the analysis and
synthesis procedures. Also, the ISpS framework en-
ables us to obtain robust stability results for PWA
systems in their full generality, i.e. non-zero affine
terms are allowed in the regions in the state-space
partition whose closure contains the origin. Note that
this situation is often excluded in other works. In this
paper we develop a new LMI technique for dealing
with non-zero affine terms, which does not rely on
a system transformation and theS-procedure, e.g. as
done in (Ferrari-Trecateet al., 2002, Remark 3). This
technique makes it possible to obtain LMI based suf-
ficient conditions for input-to-state stabilizing con-
trollers synthesis as well, and not just for analysis.

1.1 Notation and basic definitions

Let R, R+, Z and Z+ denote the field of real num-
bers, the set of non-negative reals, the set of inte-
ger numbers and the set of non-negative integers, re-
spectively. We use the notationZ≥c to denote the
set{k ∈ Z+ | k ≥ c} for somec ∈ Z+. Let ‖ · ‖ de-
note the Euclidean norm. For a matrixZ ∈ R

m×n let
‖Z‖, supx6=0

‖Zx‖
‖x‖ denote its induced Euclidean norm.

For a positive definite matrixZ ∈ R
n×n, λmin(Z) and

λmax(Z) denote the smallest and the largest eigen-
value ofZ, respectively. For a sequence{zp}p∈Z+ with
zp ∈ R

l let ‖{zp}p∈Z+‖, sup{‖zp‖ | p∈ Z+}. Let z[k]
denote the truncation of{zp}p∈Z+ at timek∈ Z+, i.e.
z[k],p = zp, p ≤ k. For a setP ⊆ R

n, we denote by
∂P the boundary ofP, by int(P) its interior and
by cl(P) its closure. A polyhedron (or a polyhedral
set) is a set obtained as the intersection of a finite
number of open and/or closed half-spaces. A function
ϕ : R+ → R+ belongs to classK if it is continuous,
strictly increasing andϕ(0) = 0. A functionβ : R+ ×
R+ → R+ belongs to classK L if for each fixed
k∈R+, β (·,k)∈K and for each fixeds∈R+, β (s, ·)
is non-increasing and limk→∞ β (s,k) = 0.

2. INPUT-TO-STATE STABILITY AND
PROBLEM STATEMENT

Consider the discrete-time autonomous perturbed non-
linear system described by

xk+1 = G(xk,vk), k∈ Z+, (1)

wherexk ∈ R
n is the state,vk ∈ R

dv is an unknown
disturbance inputandG : R

n×R
dv → R

n is an arbi-
trary nonlinear function. For simplicity of notation, we
assume that the origin is an equilibrium in (1) for zero
disturbance input, meaning thatG(0,0) = 0.

Next, we define the notions of Input-to-State practical
Stability (ISpS) (Jiang, 1993), (Jianget al., 1996) and
Input-to-State Stability (ISS) (Sontag, 1989), (Jiang
and Wang, 2001) for the discrete-time perturbed non-
linear system (1).

Definition 1. The system (1) is said to beglobally
ISpSif there exist aK L -function β , a K -function
γ and a non-negative constantd such that, for each
x0 ∈R

n and all{vp}p∈Z+ with vp ∈R
dv for all p∈Z+,

it holds that the corresponding state trajectory satisfies

‖xk‖≤ β (‖x0‖,k)+γ(‖v[k−1]‖)+d, ∀k∈Z≥1. (2)

If the above condition holds ford = 0, the system (1)
is said to beglobally ISS.

In what follows we state adiscrete-timeversion of the
continuous-timeISpS sufficient conditions of Proposi-
tion 2.1 of (Jianget al., 1996). This result will be used
throughout the paper to establish ISpS and ISS for the
particular case of PWA systems. For the proof we refer
the reader to (Lazaret al., 2006).

Theorem 2.Let d1,d2 be non-negative constants, let
a,b,c,λ be positive constants withc ≤ b and let
α1(s) , asλ , α2(s) , bsλ , α3(s) , csλ andσ ∈ K .
Furthermore, letV : R

n → R+ be a function such that

α1(‖x‖) ≤V(x) ≤ α2(‖x‖)+d1 (3a)

V(G(x,v))−V(x) ≤−α3(‖x‖)+σ(‖v‖)+d2 (3b)

for all x∈ R
n and allv∈ R

dv. Then it holds that:

(i) The system (1) is globally ISpS;

(ii) If inequalities (3) hold ford1 = d2 = 0, the system
(1) is globally ISS.

Definition 3. A function V that satisfies the hypoth-
esis of Theorem 2 is called anISpS (ISS) Lyapunov
function.

Remark 4.The hypothesis of Theorem 2 allows that
both G and V are discontinuous. If inequality (3a)
holds for d1 = 0, then the hypothesis of Theorem 2
only implies continuity at the pointx = 0, andnot
necessarily on a neighborhood ofx = 0.

In this paper we focus on perturbed discrete-time,
possibly discontinuous, PWA systems of the form

xk+1 = G(xk,vk) , A jxk + f j +D jvk if xk ∈ Ω j , (4)

whereA j ∈ R
n×n, f j ∈ R

n, D j ∈ R
n×dv for all j ∈ S

and S , {1,2, . . . ,s} is a finite setof indexes. The
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collection {Ω j | j ∈ S } defines a partition ofRn,
meaning that∪ j∈S Ω j = R

n and int(Ωi)∩ int(Ω j) = /0
for i 6= j. EachΩ j is assumed to be a polyhedron.
Let S0 , { j ∈ S | 0 ∈ cl(Ω j)}, S1 , { j ∈ S | 0 6∈
cl(Ω j)} and letSaff , { j ∈ S | f j 6= 0}, Slin , { j ∈
S | f j = 0}, so thatS0∪S1 = Saff ∪Slin = S .

The aim of this paper is to derive sufficient conditions
for global ISpS and global ISS, respectively, of system
(4). In order to do so, we consider PWQ candidate
ISpS (ISS) functions of the form

V : R
n → R+, V(x) = x⊤Pjx if x∈ Ω j , (5)

wherePj , j ∈ S , are positive definite and symmetric
matrices. It is easy to observe thatV satisfies condition
(3a) withα1(‖x‖) , min j∈S λmin(Pj)‖x‖2, α2(‖x‖) ,

maxj∈S λmax(Pj)‖x‖2 andd1 = 0.

3. ANALYSIS

In this section we present LMI based sufficient condi-
tions for global ISpS (ISS) of system (4). LetQ be a
known positive definite and symmetric matrix and let
γ1,γ2 be known positive numbers withγ1γ2 > 1. For
any( j, i) ∈ S ×S consider now the following LMI:

∆ ji ,





Ξ ji −A⊤
j Pi −A⊤

j Pi

−PiA j γ1Pi −Pi

−PiA j −Pi γ2Pi



> 0, (6)

where

Ξ ji , Pj −A⊤
j PiA j −E⊤

j U ji E j −Q−M ji .

The matrixE j , j ∈ S , defines the coneC j , {x ∈
R

n | E jx ≥ 0} that satisfiesΩ j ⊆ C j . The role of
these matrices is to introduce anS-procedure relax-
ation (Johansson and Rantzer, 1998). The unknown
variables in (6) are the matricesPj , j ∈ S , which
are required to be positive definite and symmetric,
the matricesU ji , ( j, i) ∈ S ×S , which are required
to have non-negative elements, and the matricesM ji ,
( j, i) ∈ Saff ×S , which are required to be positive
definite and symmetric. For all( j, i) ∈ Slin ×S we
takeM ji = 0. For any( j, i) ∈ Saff ×S , define

E ji , {x∈ R
n | x⊤M ji x < (1+ γ1) f⊤j Pi f j}.

Theorem 5.Let system (4), the matrixQ > 0 and the
numbersγ1,γ2 > 0 with γ1γ2 > 1 be given. Suppose
that the LMIs

∆ ji > 0, ( j, i) ∈ S ×S (7)

are feasible. Then, it holds that:

(i) The system (4) is globally ISpS;

(ii) If 2 (∪i∈S E ji ) ∩ Ω j = /0 for all j ∈ Saff, then
system (4) is globally ISS;

(iii) If system (4) is Piece-Wise Linear (PWL), i.e.
Slin = S , then system (4) is globally ISS.

2 Note that this impliesS0 ⊆ Slin .

PROOF. The proof consists in showing thatV, as
defined in (5), is an ISpS (ISS) Lyapunov function.

(i) As by the hypothesis∆ ji > 0 for all ( j, i)∈S ×S ,
it follows that:

(
x⊤ f⊤j (D jv)⊤

)
∆ ji





x
f j

D jv



≥ 0,

for all x ∈ Ω j , ( j, i) ∈ S ×S and allv ∈ R
dv. The

above inequality yields:

(A jx+ f j +D jv)
⊤Pi(A jx+ f j +D jv)−x⊤Pjx

≤−x⊤Qx+(1+ γ2)(D jv)
⊤Pi(D jv)−x⊤E⊤

j U ji E jx+

(1+ γ1) f⊤j Pi f j −x⊤M ji x≤−λmin(Q)‖x‖2+

(1+ γ2)max
i∈S

λmax(Pi)max
j∈S

‖D j‖2‖v‖2+

(1+ γ1)max
i∈S

λmax(Pi)max
j∈S

‖ f j‖2. (8)

Hence,

V(A jx+ f j +D jv)−V(x) ≤−α3(‖x‖)+σ(‖v‖)+d2

for all x∈ Ω j , ( j, i) ∈ S ×S and allv∈ R
dv, where

α3(‖x‖) , λmin(Q)‖x‖2,

σ(‖v‖) , (1+ γ2)max
i∈S

λmax(Pi)max
j∈S

‖D j‖2‖v‖2,

d2 , (1+ γ1)max
i∈S

λmax(Pi)max
j∈S

‖ f j‖2.

From (6) we also have that for all( j, i) ∈ S ×S ,
∆ ji > 0⇒ Ξ ji > 0⇒ x⊤(Pj −Q)x≥ 0 for all x∈ Ω j .
Then, it follows that for allj ∈ S and allx∈ Ω j :

λmin(Q)‖x‖2 ≤ x⊤Qx≤ x⊤Pjx≤ max
j∈S

λmax(Pj)‖x‖2,

which yields λmin(Q) , c ≤ b , maxj∈S λmax(Pj).
Hence, the functionV defined in (5) satisfies the hy-
pothesis of Theorem 2 withd1 = 0 and d2 = (1+
γ1)maxi∈S λmax(Pi)maxj∈S ‖ f j‖2. Then, the state-
ment follows from Theorem 2.

(ii) To establish global ISS, we need to prove that
in the above setting, we obtaind2 = 0 under the
additional hypothesis. Forj ∈Slin , if x∈Ω j we obtain
d2 = 0 due tof j = 0. For anyj ∈Saff, if x∈Ω j it holds
thatx 6∈ ∪i∈S E ji . This yields:

(1+ γ1) f⊤j Pi f j −x⊤M ji x≤ 0,

and thus, from the first inequality in (8) it follows that
the functionV defined in (5) satisfies the hypothesis
of Theorem 2 withd1 = d2 = 0. Then, the statement
follows from Theorem 2.

(iii) This is a special case of part (ii). 2

The matrixQ gives the gain of theK -function α3

and is related to the decrease of the state norm, and
hence, to the transient behavior. If ISpS (ISS) is the
only goal, Q can be chosen less positive definite to
reduce conservativeness of the LMI (7). The numbers
γ1,γ2 and the matrices{Pj | j ∈ S } yield the constant
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d2 = (1+ γ1)maxi∈S λmax(Pi)maxj∈S ‖ f j‖2 and the
gain of theK -function

σ(s) = (1+ γ2)max
i∈S

λmax(Pi)max
j∈S

‖D j‖2s2.

Note that a necessary condition for feasibility of the
LMI (7) is γ1γ2 > 1. As it would be desirable to obtain
a constantd2 and gain of the functionσ as small
as possible, one has to make a trade-off in choosing
γ1 and γ2. One could add a cost criterion to (7) and
specify γ1,γ2 as unknown variables in the resulting
optimization problem, which might solve the trade-
off. Although in this case (7) is a bilinear matrix
inequality (i.e. due toγ1Pi , γ2Pi), since the unknowns
γ1,γ2 are scalars, this problem can be solved efficiently
via semi-definite programming solvers (software), e.g.
(Sturm, 2001), (L̈ofberg, 2002), by setting lower and
upper bounds forγ1,γ2 and doing bisections.

Remark 6.If the disturbance inputs are bounded,
which is a reasonable assumption in practice, it can be
proven that ISpS implies global ultimate boundedness.
This means that the ISpS property also implies the
usual robust stability (convergence) property, e.g. as
the one defined in (Grieder, 2004, Chp. 8.5), while the
result of Theorem 5 part (i) applies to a more general
class of PWA systems.

4. SYNTHESIS

In this section we address the problem of input-to-state
(practically) stabilizing controllers synthesis for per-
turbed discrete-time non-autonomous PWA systems:

xk+1 = g(xk,uk,vk) , A jxk +B juk + f j +D jvk

if xk ∈ Ω j , (9)

whereuk ∈ R
m is the control input andB j ∈ R

n×m for
all j ∈ S . The nomenclature in (9) is similar with the
one used in Section 2 for system (4).

In this paper we take the control input as a PWL state-
feedback control law of the form:

uk , h(xk) , K jxk if xk ∈ Ω j , (10)

whereK j ∈R
m×n for all j ∈S . The aim is to calculate

the feedback gains{K j | j ∈ S } such that the PWA
closed-loop system (9)-(10) is globally ISpS and ISS,
respectively. For this purpose we make use again of
PWQ candidate ISpS (ISS) Lyapunov functions of the
form (5).

For any( j, i) ∈ S ×S , consider now the following
LMI:

∆ ji ,

(
∆11

ji ∆12
ji

∆21
ji ∆22

ji

)

> 0, (11)

where

∆11
ji ,





Z j ∗ ∗
−(A jZ j +B jYj) γ1Zi −Zi

−(A jZ j +B jYj) −Zi γ2Zi



 ,

the term∗ denotes−(A jZ j +B jYj)
⊤ and, for j ∈ Saff

∆22
ji , diag([





Zi 0 0
0 Zi 0
0 0 Zi



 ,





Q−1 0 0
0 Q−1 0
0 0 Q−1



 ,





Nji 0 0
0 Nji 0
0 0 Nji



]),

∆12
ji = ∆21

ji
⊤

,

,





(A jZ j +B jYj)
⊤ 0 0 Z j 0 0 Z j 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0



 ,

while for j ∈ Slin ,

∆22
ji , diag([





Zi 0 0
0 Zi 0
0 0 Zi



 ,





Q−1 0 0
0 Q−1 0
0 0 Q−1



]),

∆12
ji = ∆21

ji
⊤

,

,





(A jZ j +B jYj)
⊤ 0 0 Z j 0 0

0 0 0 0 0 0
0 0 0 0 0 0



 .

The operator diag([L1, . . . ,Ln]) denotes a diagonal
matrix of appropriate dimensions with the matrices
L1, . . . ,Ln on the main diagonal, and the element 0
denotes everywhere a zero matrix of appropriate di-
mensions. The unknown variables in (11) are the ma-
tricesZ j ∈R

n×n, j ∈S , which are required to be pos-
itive definite and symmetric, the matricesYj ∈ R

m×n,
j ∈ S , and the matricesNji , ( j, i) ∈ Saff ×S , which
are required to be positive definite and symmetric. The
matrix Q is a known positive definite and symmet-
ric matrix and the numbersγ1,γ2 > 0 with γ1γ2 > 1
play the same role as described in Section 3. For any
( j, i) ∈ Saff ×S , define

E ji , {x∈ R
n | x⊤N−1

ji x < (1+ γ1) f⊤j Pi f j}.

Theorem 7.Let system (9), the matrixQ > 0 and the
numbersγ1,γ2 > 0 with γ1γ2 > 1 be given. Suppose
that the LMIs

∆ ji > 0, ( j, i) ∈ S ×S (12)

are feasible and let{Z j ,Yj | j ∈ S } and{Nji | ( j, i) ∈
Saff ×S } be a solution. For allj ∈ S let Pj , Z−1

j

and let K j , YjZ
−1
j . For all ( j, i) ∈ Slin × S take

M ji = 0. For all ( j, i) ∈ Saff ×S take M ji = N−1
ji .

Then, it holds that:

(i) The closed-loop system (9)-(10) is globally ISpS;

(ii) If (∪i∈S E ji )∩Ω j = /0 for all j ∈ Saff, then the
closed-loop system (9)-(10) is globally ISS;

(iii) If system (9) is PWL, i.e.Slin = S , then the
closed-loop system (9)-(10) is globally ISS.

PROOF. By applying the Schur complement (Boyd
et al., 1994) to (12), for any( j, i) ∈ S ×S we obtain

∆11
ji −∆21

ji
⊤∆22

ji
−1∆21

ji > 0,
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which yields the equivalent matrix inequality:

Φ ji ,





Γ ji ∗ ∗
−(A jZ j +B jYj) γ1Zi −Zi

−(A jZ j +B jYj) −Zi γ2Zi



> 0, (13)

where the term∗ denotes−(A jZ j +B jYj)
⊤ and

Γ ji , Z j − (A jZ j +B jYj)
⊤Z−1

i (A jZ j +B jYj)

−Z jQZj −Z jN
−1
ji Z j .

By pre- and post-multiplying (13) with

(
Z−1

j 0 0

0 Z−1
i 0

0 0 Z−1
i

)

and by substitutingZ−1
j with Pj , YjZ

−1
j with K j and

N−1
ji with M ji turns inequality (13) into the equivalent

matrix inequality:




Ξ ji ∗ ∗
−Pi(A j +B jK j) γ1Pi −Pi

−Pi(A j +B jK j) −Pi γ2Pi



> 0,

for all ( j, i) ∈ S × S , where the term∗ denotes
−(A j +B jK j)

⊤Pi and

Ξ ji , Pj − (A j +B jK j)
⊤Pi(A j +B jK j)−Q−M ji .

Then, it follows that the LMI (7) is feasible for the
closed-loop system (9)-(10) for all( j, i) ∈ S ×S .
The rest of the proof is analogous to the proof of
Theorem 5. 2

5. ILLUSTRATIVE EXAMPLE

In this example we illustrate the result of Theorem 7
part (ii). Let

A(Ts) ,








1 Ts
T2

s
2!

T3
s

3!

0 1 Ts
T2

s
2!

0 0 1 Ts

0 0 0 1








, B(Ts) ,








T4
s

4!
T3

s
3!
T2

s
2!
Ts








denote the dynamics corresponding to a discrete-time
quadruple integrator, i.e.xk+1 = A(Ts)xk + B(Ts)uk,
obtained from a continuous-time quadruple integrator
via a sampled-and-hold device with sampling period
Ts > 0. Letxi , i = 1,2,3,4, denote thei-th component
of the state vector. LetX , {x ∈ R

4 | −2 < x4 < 2},
let Ω1 , {x∈R

4 | x4 ≥ 2} and letΩ4 , {x∈R
4 | x4 ≤

−2}. Let Ω2 , {x ∈ X | x4 ≥ 0} andΩ3 , {x ∈ X |
x4 < 0}. Consider now the following perturbed piece-
wise affine system:

xk+1 =







A1xk +B1uk + f1 +D1vk if xk ∈ Ω1

A2xk +B2uk + f2 +D2vk if xk ∈ Ω2

A3xk +B3uk + f3 +D3vk if xk ∈ Ω3

A4xk +B4uk + f4 +D4vk if xk ∈ Ω4,
(14)

where A1 = A4 = A(1.2),B1 = B4 = B(1.2), A2 =
A(0.9),B2 = B(0.9), A3 = A(0.8),B3 = B(0.8), f2 =
f3 = 0, f1 = f4 = [0.10.10.10.1]⊤ and D1 = D2 =

D3 = D4 = [1111]⊤. The LMIs (12) were solved3 for
Q = 0.01I4, γ1 = 2 andγ2 = 4, yielding the following
weights of the PWQ ISS Lyapunov functionV(x) =
x⊤Pjx if x ∈ Ω j , j = 1,2,3,4, feedbacks{K j | j =
1,2,3,4} and matrixM:

P1 = P4 =







0.3866 0.7019 0.5532 0.1903
0.7019 1.5632 1.3131 0.4688
0.5532 1.3131 1.2255 0.4552
0.1903 0.4688 0.4552 0.1955







,

P2 =







0.3574 0.6052 0.4420 0.1407
0.6052 1.2725 0.9894 0.3278
0.4420 0.9894 0.8812 0.3046
0.1407 0.3278 0.3046 0.1328







,

P3 =







0.3779 0.6410 0.4597 0.1453
0.6410 1.3414 1.0298 0.3390
0.4597 1.0298 0.9007 0.3118
0.1453 0.3390 0.3118 0.1334







,

K1 = K4 =
[
−0.3393−1.1789−1.8520−1.7028

]
,

K2 =
[
−0.5584−1.7607−2.4729−2.0012

]
,

K3 =
[
−0.6814−2.0895−2.8249−2.1705

]
,

M =







0.0156 0.0075 0.0023 0.0005
0.0075 0.0212 0.0082 0.0016
0.0023 0.0082 0.0146 0.0044
0.0005 0.0016 0.0044 0.0081







.

One can easily establish that the hypothesis of Theo-
rem 7 part (ii) is satisfied, i.e.E1i ∩Ω1 = /0 andE4i ∩
Ω4 = /0 for all i = 1,2,3,4, by observing that

min
x∈Ω1

x⊤Mx = min
x∈Ω4

x⊤Mx

= 0.4340

> 0.3221= max
i=1,2,3,4

(1+ γ1) f⊤1 Pi f1

= max
i=1,2,3,4

(1+ γ1) f⊤4 Pi f4.

Hence, system (14) in closed-loop with (10) is glob-
ally ISS. The gain of theσ function corresponding
to γ2 = 4 is 15.8772. This yields an ISS gain equal
to 42.52 for system (14)-(10) via the relationγ(s) =

α−1
1

(
2σ(s)
1−ρ

)

= 42.52s (see (Lazaret al., 2006) for

details), whereρ = c
b ∈ [0,1) andγ is theK -function

from (2). The closed-loop states trajectories obtained
for initial statex0 = [6 6 4 4]⊤ are plotted in Figure 1
together with the additive disturbance input history.
The disturbance input was randomly generated in the
interval [0 1] until sampling time 60 and then it was
set equal to zero. As guaranteed by Theorem 7, the
closed-loop system (14)-(10) is globally ISS, which
ensures asymptotic stability in the Lyapunov sense
when the disturbance inputs converges to zero, as it
can be observed in Figure 1.

3 For simplicity we used a common matrixN for all possible mode
transitions that can occur when the state is in mode one or mode
four, i.e. N = N11 = N12 = N13 = N44 = N42 = N43, which yields
M = N−1.
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Fig. 1. States trajectories and disturbance input histo-
ries for the closed-loop system (14)-(10).

6. CONCLUDING REMARKS

In this paper we presented LMI based sufficient condi-
tions for global input-to-state (practical) stability and
stabilization of discrete-time perturbed, possibly dis-
continuous, PWA systems. The importance of these
results cannot be overstated since, recently, in (Lazar
and Heemels, 2006) the authors showed that nomi-
nally exponentially stable discrete-time PWA systems
can have zero robustness to arbitrarily small additive
disturbances and hence, special precautions must be
taken when implementing stabilizing controllers for
PWA systems in practice.

State and input constraints have not been considered in
order to obtain global ISpS (ISS) results. However, the
usual LMI techniques (Boydet al., 1994) for specify-
ing state and/or input constraints can be added to the
sufficient conditions presented in this paper, resulting
in local ISpS (ISS) of constrained PWA systems. Also,
a local (i.e. in some subset of∪ j∈S0Ω j ) ISS result is
obtained under the hypothesis of Theorem 5 (Theo-
rem 7) part (ii), in the case whenE ji ∩Ω j 6= /0 for some
( j, i) ∈ Saff ×S .

The future work deals with extensions to PWA sys-
tems affected by parametric uncertainties and the use
of norm based candidate ISS Lyapunov functions.
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