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the advantages of using the ISpS framework is that the addiisturbance inputs are
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1. INTRODUCTION Robust stability results for discrete-time PWA systems
were presented in (Ferrari-Trecateal, 2002, Sec-

Several results on nominal stability analysis of Piece- tion 3), which deals with Linear Matrix Inequalities
Wise Affine (PWA) systems are available in the litera- (LMI) basedl»-gain analysis for PWA systems; and
ture, see for example (Mignore al,, 2000), (Ferrari-  in (Grieder, 2004, Chp. 8.5), where it was observed
Trecateet al, 2002), (Feng, 2002) for results in that, if a robust positively invariant set can be cal-
discrete-time. These works employ the Lyapunov sta- culated for a nominally asymptotically stable PWA
bility framework and consider Piece-Wise Quadratic system, therocal robust convergence is ensured. For
(PWQ) candidate Lyapunov functions. Recently, in continuous-timénput-to-state stability (Sontag, 1989)
(Lazar and Heemels, 2006) the authors showed thatresults for switched systems and hybrid systems we
nominally exponentially stable discrete-time PWA refer the reader to the recent works (®tial, 2005)
systems can have zero robustness to arbitrarily smalland (Cai and Teel, 2005). However, to the best of the
additive disturbances, mainly due to the absence of aauthors’ knowledge, a global robust stability analysis
continuous Lyapunov function. Therefore, in discrete- methodology fordiscrete-timePWA systems that can
time, it is important that disturbances are taken into be used for both analysis and synthesis purposes is
account when analyzing stability of PWA systems, missing from the literature.

since robustness is relevant for practical applications. As such, we consider discrete-time PWA systems sub-

ject tounboundedhdditive disturbance inputs and we
1 Research supported by the Dutch Science Foundation (STW), émploy the Input-to-State (practical) Stability (ISpS)
Grant “Model Predictive Control for Hybrid Systems” (DMR. B framework (Sontag, 1989), (Jiang, 1993) in order to

and by the European Union through the Network of Excellence optain global robust stability results. For simplicity
HYCON (contract FP6-IST-511368).
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and clarity of exposition, only PWQ candidate 1SpS Xkr1 = G(x, %), keZi, 1)
(ISS) Lyapunov functions are considered, but the re-
sults can also be extendetltatis mutandiso piece-
wise polynomial or piece-wise affine candidate func-
tions. The paper consists of two parts: the first part
deals with ISpS (ISS) analysis, while the second part
provides techniques for input-to-state stabilizing con-
trollers synthesis. In both sections the sufficient con- Next, we define the notions of Input-to-State practical
ditions for ISpS (ISS) are expressed in terms of LMIs, Stability (ISpS) (Jiang, 1993), (Jiareg al., 1996) and
which can be solved efficiently (Boyet al., 1994). Input-to-State Stability (ISS) (Sontag, 1989), (Jiang
and Wang, 2001) for the discrete-time perturbed non-
linear system (1).

wherex, € R" is the statey, € R% is an unknown
disturbance inpuandG : R" x R% — R" is an arbi-
trary nonlinear function. For simplicity of notation, we
assume that the origin is an equilibrium in (1) for zero
disturbance input, meaning th@t0,0) = 0.

One of the advantages of using the ISpS (ISS) frame-

work for studying robust stability of discrete-time

PWA systems is that the additive disturbance inputs

are explicitly taken into account in the analysis and

synthesis procedures. Also, the ISpS framework en-

ables us to obtain robust stability results for PWA

systems in their full generality, i.e. non-zero affine

terms are allowed in the regions in the state-space

partition whose closure contains the origin. Note that [[x«|| < B([[%ol,K) +y([[Vk—gy ) +d, VKkeEZ>1. (2)

this situation is often excluded in oth_er works. In t_h|s If the above condition holds fat — 0, the system (1)

paper we develop a new LMI technique for dealing . :

. ) : is said to beglobally ISS

with non-zero affine terms, which does not rely on

a system transformation and tBeprocedure, e.g. as

done in (Ferrari-Trecatet al, 2002, Remark 3). This  In what follows we state discrete-timeversion of the

technique makes it possible to obtain LMI based suf- continuous-timéSpS sufficient conditions of Proposi-

ficient conditions for input-to-state stabilizing con- tion 2.1 of (Jianget al, 1996). This result will be used

trollers synthesis as well, and not just for analysis. ~ throughout the paper to establish ISpS and ISS for the
particular case of PWA systems. For the proof we refer
the reader to (Lazaat al, 2006).

Definition 1. The system (1) is said to bglobally
ISpSif there exist a#”.Z-function 3, a ¢ -function

y and a non-negative constaditsuch that, for each

o € R"and all{vp} pez, Withvp € R% forall pe Z.,

it holds that the corresponding state trajectory satisfies

1.1 Notation and basic definitions

Theorem 2.Let di,d> be non-negative constants, let
LetR, Ry, Z andZ, denote the field of real num- 3 b ¢ A be positive constants witlc < b and let
bers, the set of non-negative reals, the set of inte-g,(s) £ as' ay(s) 2 bs', az(s) 2 ¢s' ando € 7.
ger numbers and the set of non-negative integers, re+yrthermore, lev : R" — R, be a function such that
spectively. We use the notatidA>. to denote the
set{k € Z, | k> c} for somec e Z,. Let || - || de- ax([x]) = V(x) < az([|x|}) +ds (3a)
note the Euclidean norm. For a matéxe R™" let V(G(x,v)) =V (x) < —as([|x]|)) + o([[v]]) +d2 (3b)

ZX| . B
[l SUBw0 H denote its induced Euclideannorm. ¢ ), e R"and allv € R%. Then it holds that:
For a positive definite matrix € R™", Ayin(Z) and _ )
Amax(Z) denote the smallest and the largest eigen- () The system (1) is globally ISpS;
value ofZ, respectively. For a sequen{® } pez, with (i) If inequalities (3) hold fod; = d, = 0, the system
2, € R let |{Zp}pez, || 2 sup{l|zp|l | PEZ; }. Letzy (1) is globally ISS.
denote the truncation dizp} pcz, attimeke Z,, i.e.
Zy.p = Zp, P < k. For a set? C R", we denote by  Definition 3. A function V that satisfies the hypoth-
0% the boundary of7, by int(2) its interior and  esis of Theorem 2 is called d8pS (ISS) Lyapunov
by cl(2?) its closure. A polyhedron (or a polyhedral function
set) is a set obtained as the intersection of a finite
number of open and/or closed half-spaces. A function Remark 4.The hypothesis of Theorem 2 allows that
¢ : Ry — R, belongs to class?  if it is continuous, both G andV are discontinuous. If inequality (3a)
strictly increasing an@ (0) = 0. A functionf3 : R x holds ford; = 0, then the hypothesis of Theorem 2
R4+ — R4 belongs to class? . if for each fixed  only implies continuity at the poink = 0, andnot
ke R, B(-,k) € # and for each fixede R ., B(s,-) necessarily on a neighborhoodof: 0.
is non-increasing and lign.., 8(s, k) = 0.

In this paper we focus on perturbed discrete-time,
2. INPUT-TO-STATE STABILITY AND possibly discontinuous, PWA systems of the form

PROBLEM STATEMENT X = (X Vi) 2 A+ F; -+ Dyvicif ¢ € Qj, (4)

Consider the discrete-time autonomous perturbed nonwhereA; € R™", f; € R", Dj € R™% for all j € .7’
linear system described by and.” £ {1,2,...,s} is afinite setof indexes. The
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collection {Q; | j € .} defines a partition oRR", PROOF. The proof consists in showing th&t, as
meaning that)jc »Q; = R" and in{Q;) Nint(Q;) =0 defined in (5), is an ISpS (ISS) Lyapunov function.
for i # j. EachQ;j is assumed to be a polyhedron. ( . -

_ ; i) As by the hypothesid; >0 forall (j,i) € . x.,
Letfoé{J6Y\0€C|(Q,)},y1é{j€5”|0¢ it follows that: I
cl(Qj)} andlet s £ {j € 7 | f; £ 0}, Sin 2 {j €
5 | fj = 0}, so that¥pU .S = YU Sin = 7.

The aim of this paper is to derive sufficient conditions
for global ISpS and global ISS, respectively, of system o
(4). In order to do so, we consider PWQ candidate for all x€ Qj, (j,i) € # x . and allv e R%. The
ISpS (ISS) functions of the form above inequality yields:

VIR" SR, VX)) =x"Pxif xeQj, (6)  (Ajx+fj+Djv) R(Ajx+ fj+Djv) —x'Pjx
whereP,, j € .7, are positive definite and symmetric < —X' Qx+(1+y2)(Djv) 'R(Djv) —x E[ UjiEjx+
matrices. Itis easy to observe thasatisfies condition (14 wn) fJTpI fj— x| MjiXx < —Amin(Q) ||XH2+
(3a) witha ([|x]|) £ min;c o Amin(P})[|X]12, a2(]1]|) £
maX;c.» Amax(P})[|X||2 anddy = 0.

X
(XT ij (DJV)T)AJ‘i ( fj ) >0,
\"

Dj

(1+ o) maxAmax(R) max]| Dj|?[|v]|*+
ie” jes

(L-+ v2) maxhmax(P) max| ®)

3. ANALYSIS
Hence,
In this section we present LMI based sufficient condi- V(Ajx+ fj +Djv) =V (x) < —az(||X|) + o (||v]|) + d2
tions for global ISpS (ISS) of system (4). L&tbe a o 4
known positive definite and symmetric matrix and let forallxe Qj, (j,i) € & <.~ and allv € R, where
i, ¥2 be known positive numbers witjay, > 1. For as(|Ix|]) éAmin(Q)”XHZ;
A

any(j,i) € ¥ x . consider now the following LMI: 2112
o(|1vI) £ (1+ o) maxhma(R) max| Dj V]

=i ~A/R -A'R
Aji = -RA; wPR —R >0, (6) £ (1+wn) m?/?(Amax(Pl) m%Z(H fj ”2
_F)lAJ _F)I VZF)I (IS8 JEL
where From (6) we also have that for alj,i) € ¥ x .7,
., - - Aji >0=Zj >0=x'(Pj—Q)x>0forallx e Q;.
Zji =P —Aj PA; — Ej UjiEj — Q—M;;. Then, it follows that for allj € . and allx € Q;:
The matrixEj, j € .7, defines the con&j £ {x € A 12 < xTOx< X P:x<m 2
et i - aXAmax(Py) |I1X]|<,
R" | Ejx > 0} that satisfiesQ; C ). The role of min Q)X < X Qx < X Pix < jes max(P1) x|

these matrices is to introduce &yprocedure relax- . . _ a N _ _
ation (Johansson and Rantzer, 1998). The unknown/ich yleldsx\m.n_(Q) =Cs b._ max,e_y/_\maX(P,).
variables in (6) are the matriced, j € ., which Hence, the functioV defined in (5) satisfies the hy-
are required to be positive definite and symmetric, POthesis of Theorem 2 with; 5 0 andd; = (1+
the matricedJj;, (j,i) € ¥ x ., which are required V1) MaXe 7 Amax(R) maXe » || fj[|. Then, the state-
to have non-negative elements, and the matridgs ment follows from Theorem 2.
(J,1) € Zar x ., which are required to be positive (i) To establish global ISS, we need to prove that
definite and symmetric. For aflj,i) € .%jin x . we  in the above setting, we obtaid, = 0 under the
takeMj; = 0. For any(j,i) € Ya x .7, define additional hypothesis. Fgre .jin, if x € Q;j we obtain

S e R X Max < (1 fTPfY d> =0 due tof; =0. For.anyj € Satt, if x€ Qj itholds

i = {xe R ix< (4T Rfj} thatx ¢ Uic »&ji. This yields:

Theorem 5.Let system (4), the matriQ > 0 and the (1+ ) R f —x Mjx <0,

numbersys, y» > 0 with y1)» > 1 be given. Suppose ) N

that the LMlIs and thus, from the first inequality in (8) it follows that
) . the functionV defined in (5) satisfies the hypothesis

4ji >0, (ji)e s xs @) of Theorem 2 withd; = d> = 0. Then, the statement

are feasible. Then, it holds that: follows from Theorem 2.

(i) The system (4) is globally ISpS; (i) This is a special case of part (ii). O

(i) 12 (Uier&i)NQj =0 for all j € S, then

system (4) is globally ISS; The matrixQ gives the gain of the’ -function a3

and is related to the decrease of the state norm, and
hence, to the transient behavior. If ISpS (ISS) is the
only goal,Q can be chosen less positive definite to
reduce conservativeness of the LMI (7). The numbers
2 Note that this implies’y C .. y1, > and the matrice$P; | j € .’} yield the constant

(iii) If system (4) is Piece-Wise Linear (PWL), i.e.
Sin = -7, then system (4) is globally ISS.
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d2 = (1+ y1) maXe o Amax(P) maxjc o

fj||> and the  the termx denotes-(A;Z;j +B;Yj) " and, forj € Zas

gain of the# -function Z 00
a(s) = (1+ y2) MaXAmax(R) max| D %5 o = diaq[(o Z 0) !
ies jes 0 0z
Note that a necessary condition for feasibility of the Qlt o o Nij 0 O
LMI (7) is yaye > 1. As it would be desirable to obtain 0 Qt o |],[o0oNio0]),
a constantd, and gain of the functioro as small 0 0 Qt 0 O N;j

as possible, one has to make a trade-off in choosing

v+ and y». One could add a cost criterion to (7) and Ajliz = AJ?ilT A
specify y1, 5 as unknown variables in the resulting (AiZj +B;Y))T
optimization problem, which might solve the trade- =
off. Although in this case (7) is a bilinear matrix

inequality (i.e. due tonR, y»PR), since the unknowns . )

V1, are scalars, this problem can be solved efficiently While for j € in,

via semi-definite programming solvers (software), e.g. Z 00 Qt o o
(Sturm, 2001), (bfberg, 2002), by setting lower and A% £ diag([ (0 Z; O) , ( 0 Ql oo )]),

0

upper bounds foy, y» and doing bisections. 0 0z 0 0 Qt
Remark 6.If the disturbance inputs are bounded, AjlizzAJ?ilT =

whichis a reason.able_ assumption_in practice, it can be (AZ; JrBij)T 00Z;00
proven that ISpS implies global ultimate bogndgdness. vy 0 000 00|.
This means that the ISpS property also implies the 0 0000

usual robust stability (convergence) property, e.g. as . .
the one defined in (Grieder, 2004, Chp. 8.5), while the The operator dials,...,Ln|) denotes a diagonal

result of Theorem 5 part (i) applies to a more general matrix of appropriate dimensions with the matrices
class of PWA systems L1,...,Ly on the main diagonal, and the element O

denotes everywhere a zero matrix of appropriate di-
mensions. The unknown variables in (11) are the ma-
tricesZ; e R™", j € .7, which are required to be pos-
4. SYNTHESIS itive definite and symmetric, the matricgse R™",
j € .7, and the matriceNlj, (],i) € S x ., which
In this section we address the problem of input-to-state are required to be positive definite and symmetric. The
(practically) stabilizing controllers synthesis for per- matrix Q is a known positive definite and symmet-
turbed discrete-time non-autonomous PWA systems: ric matrix and the numberg, y> > 0 with y1y5 > 1
play the same role as described in Section 3. For any
(i,i) € Hat x ., define

i & {xeR"[x"Ny™x < (1+y) ' Rfj}.

Xicr1 = 9%, Uk, i) = Ajx+ Bjui + fj +Djvi
if % €Qj, 9)

whereu, € R™ is the control input an@; € R™™ for
all j € . The nomenclature in (9) is similar with the  Theorem 7.Let system (9), the matri® > 0 and the
one used in Section 2 for system (4). numbersyi, y» > 0 with y1y5 > 1 be given. Suppose

In this paper we take the control input as a PWL state- that the LMIs
feedback control law of the form: Aji >0, (j)eS xS 12)

U2 h(x) 2 Kjxe if X €Qj, (10) are feasible and |qTZj',Yj | j € .7} and{N; | (Aj,i) el
) o Sait X '} be a solution. For alf € . let Py = Z7
whereK; e R™"forall j € .#. The aim s to calculate

Ao .
the feedback gaingK| | j € .#} such that the PWA and letK; = Y‘Zi_ : For all (j,1) € in x .7 tzilie
closed-loop system (9)-(10) is globally ISpS and 1SS, Mii = 0. For all (,i) € Sar x 7 take Mji = Nj™.
respectively. For this purpose we make use again of 1N€n it holds that:

PWQ candidate ISpS (ISS) Lyapunov functions of the (j) The closed-loop system (9)-(10) is globally ISpS;

form (5).
©) . ' (i) If (Uier&i)NQj =0 for all j € S, then the
For any(j,i) € ¥ x ., consider now the following  closed-loop system (9)-(10) is globally ISS;
LMI:
N A'lil A_1i2 (i) If system (9) is PWL, i.e.%n = .7, then the
Aj = (A]éil A%z) >0 (11)  closed-loop system (9)-(10) is globally ISS.
where .
7 PROOF. By applying the Schur complement (Boyd
i o tal, 1994) to (12), f j,i) €. x.7 we obtai
Al 2 (—(Ajzj+Bij) Yz —Zi), etal, 1994)1o0 (12), O;anyfil)e 7 e onam
—(AZj+BJY)) —Z yZi At — A3 AZ2AR > 0,
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which yields the equivalent matrix inequality:

[ i * %
@i = | —(AZj+BjY)) nzZ -z | >0, (13)
—(AZj+ByY)) ~Z yoZ

where the termx denotes-(A;Z; +B;Y;) " and

i 22— (AiZj+ByY)) 'Z Y(AjZj + B}Y))

-ZiQZ - ZiN;'z;.

zjfl 0 o0
0zt 0)
0 o0zt
and by substituting; * with P;, Y;Z;* with K; and
N;;* with Mj; turns inequality (13) into the equivalent
matrix inequality:

By pre- and post-multiplying (13) Wit}<

=ji * *
—R(Aj+BjKj) pnR —R | >0,
—R(Aj +BjKj) —R y:R
for all (j,i) € . x ., where the term« denotes
—(Aj+BjK;j)"R and
=ji £ P — (Aj+BjK)) "R(A; + BjKj) - Q— M.

Then, it follows that the LMI (7) is feasible for the
closed-loop system (9)-(10) for alj,i) € ¥ x .7.
The rest of the proof is analogous to the proof of
Theorem 5. O

5. ILLUSTRATIVE EXAMPLE

In this example we illustrate the result of Theorem 7
part (ii). Let

2 T3 T4

;
AT)2 |01 Ts 5| BT)2 |3
00 1 Ts %sl
000 1 T

D3=D4=[1111". The LMIs (12) were solvedi for
Q = 0.01l4, y1 = 2 andy, = 4, yielding the following
weights of the PWQ ISS Lyapunov functidhx) =
X"Pix if x€ Qj, j =1,2,3,4, feedbacks(K; | j =
1,2,3,4} and matrixM:

[0.3866 07019 05532 01903
0.7019 15632 13131 04688
0.5532 13131 12255 04552 ’
0.1903 04688 04552 01955

[0.3574 06052 04420 01407
0.6052 12725 09894 03278
0.4420 09894 08812 03046| ’
10.1407 03278 03046 01328

[0.3779 06410 04597 01453]
0.6410 13414 10298 03390
0.4597 10298 09007 03118|’
10.1453 03390 03118 01334

0.3393 -1.1789 —1.8520 —1.702@ ,
0.5584 —1.7607 —2.4729 —2.001@ ,
0.6814 —2.0895 —2.8249 —2.170@ ,

0.0156 00075 00023 00005
0.0075 00212 00082 00016
0.0023 00082 00146 00044| -
0.0005 00016 00044 00081

PL=Py =

Ke= [~
Ko =[~
-

Ks=

M

One can easily establish that the hypothesis of Theo-
rem 7 part (i) is satisfied, i.e51i N Q1 = 0 anddés N
Qs=0foralli=1,2,3,4, by observing that

minx" Mx = minx" Mx
XeQq XEQy

= 0.4340
_ T
>0.3221= i:T%A(H yi)fl Ry

(1+wn)f/Rfa

max
i=1,2,34
Hence, system (14) in closed-loop with (10) is glob-
ally ISS. The gain of theg function corresponding

to b = 4 is 158772. This yields an ISS gain equal

denote the dynamics corresponding to a discrete-timeto 4252 for system (14)-(10) via the relatigrfs) =

quadruple integrator, i.e4.1 = A(Ts)Xk + B(Ts)uk,

obtained from a continuous-time quadruple integrator

via a sampled-and-hold device with sampling period
Ts> 0. Letx, i = 1,2, 3,4, denote thé-th component
of the state vector. Le&X = {x € R* | -2 < x4 < 2},
letQ; £ {xcR*|x4>2} and letQq 2 {x € R*| x4 <
—2}. LetQy 2 {xe X |x >0} andQsz = {x € X|

X4 < 0}. Consider now the following perturbed piece-
wise affine system:

A+ Biug+ f1+Dive if X e
X — Aoxy + Bouy + T2 + Dov ?f Xc € Q2
Asxc+ Bauk+ f3+Davic  if xc€ Qs
AsXe +Baug + f4a+Dav  if X € Qa,
(14)
where AL =A4 = A(1.2),Bl =Bs = B(l.Z), A =

A(0.9),B, = B(0.9), Az = A(0.8), B3 = B(0.
f=0, f; = f, = (01010101

8), fo =
and Dy =Dy =

300

a;t (21%%)) = 42525 (see (Lazaret al, 2006) for

details), where = { € [0,1) andy is the.# -function
from (2). The closed-loop states trajectories obtained
for initial statexo = [66 4 4" are plotted in Figure 1
together with the additive disturbance input history.
The disturbance input was randomly generated in the
interval [0 1] until sampling time 60 and then it was
set equal to zero. As guaranteed by Theorem 7, the
closed-loop system (14)-(10) is globally ISS, which
ensures asymptotic stability in the Lyapunov sense
when the disturbance inputs converges to zero, as it
can be observed in Figure 1.

3 For simplicity we used a common matiikfor all possible mode
transitions that can occur when the state is in mode one or mode
four, i.e.N = Np; = N2 = Ni3 = Ngg = Ng2 = Ngg, which yields
M=N"1
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Fig. 1. States trajectories and disturbance input histo-
ries for the closed-loop system (14)-(10).

In this paper we presented LMI based sufficient condi-
tions for global input-to-state (practical) stability and
stabilization of discrete-time perturbed, possibly dis-
continuous, PWA systems. The importance of these
results cannot be overstated since, recently, in (Lazar
and Heemels, 2006) the authors showed that nomi-
nally exponentially stable discrete-time PWA systems
can have zero robustness to arbitrarily small additive
disturbances and hence, special precautions must be
taken when implementing stabilizing controllers for
PWA systems in practice.
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