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Abstract: Our purpose is to complete the analysis of a class of hybrid dynamical
systems with autonomous switchings generated by a hysteresis phenomenon.
Because we yet have found limit period-1 cycles in paper (Quémard et al., 2005b)
and because we deal with nonlinear equations systems, the question of the existence
of more than one solution for them and so of the existence of cycles with more than
one period is rather natural. Equations system for period-2 cycles is determined
and a notion of stability is studied. A realistic application to a thermostat with
anticipative resistance comes to illustrate theoretical results. Copyright © 2006 IFAC
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1. INTRODUCTION

In (Quémard et al., 2005b), we presented the
process for the determination of limit cycles for
a hybrid dynamical systems (h.d.s) class with
autonomous switchings (see also (Bensoussan and
Menaldi, 1997), (Van Der Schaft and Schumacher,
1999), (Zaytoon, 2001)) and we gave the used
original method based on formal calculus and
on interval analysis for the numerical solution
that we applied to a thermal device (Quémard et
al., 20054).

Thanks to the relative simplicity of our model, the
problem of finding those limit cycles was reduced
to the problem of determining the solution (which
was unique in (Quémard et al., 2005b)) of a non
trivial implicit equations system.

But, sometimes, such nonlinear systems can also
display two or more simultaneous solutions which
generally involve the existence of cycles with more
than one period. The varying initial conditions
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can cause a system to choose one stationary solu-
tion rather than other (Zhusubaliyev and Mosek-
ilde, 2003).

Here, we propose to highlight and study this
phenomenon determining by the same reasoning
than in (Quémard et al., 2005b), equations system
to solve in order to study period-2 cycles and we
highlight those results with the application to a
thermostat with anticipative resistance. A main
contribution of this paper is to deal with a realistic
thermal application of industrial interest whose
model, in dimension three, is relatively simple and
a little less complex than, for example, the one
proposed in (Zhusubaliyev and Mosekilde, 2003),
in dimension four.

So, firstly, we present the studied h.d.s class and
the equations system to solve in order to obtain
period-2 cycles. A study of stability is made using
the not original but not usual too point transfor-
mation method of Andronov. Then, we confirm
obtained results with an application to a ther-
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mostat with anticipative resistance. We present
its mathematical model, temperatures variations
simulations and a bifurcation diagram made with
Matlab which confirm the existence of a period-
2 cycle. The study of the sensitivity to initial
conditions and of the two parameters variations
is also illustrated. We conclude this paper under-
lining links between properties of such systems
illustrated in the numerical study and necessary
properties to satisfy in the domain of chaotic be-
haviors.

2. STUDIED H.D.S CLASS

In RY, we consider a basis which, in practice, will
be either the canonical basis or an eigenvectors
basis, generalized or not, which can be useful with
calculuses for example. In relation to this basis, we
consider the following h.d.s of order N

X(t) = AX(t) +q(E()B+C, &(t) = LX(1),

(1)
where A is a square matrix of order N and X, B,
C' are columns matrices of order N and L is a row

matrix of order N, all these matrices having real
entries.

Moreover, we suppose that matrix A has negative
and real but not null eigenvalues and that X and
so ¢ are continuous. Variable ¢ is discrete, taking
value 0 or 1 according to £. It responds to the
hysteresis phenomenon described in Figure 1.

Adq
1 ——
J
0, < 0, 'f

Fig. 1. Hysteresis variable

Values 6; and 6, are respectively the lower and the
upper switching thresholds. Function ¢(&), which
is supposed right continuous, is given explicitly
by:

q(&(t) =1 —q(&(t-))

ip { €(t-) =61 and q({(t-)) =0

or {(t—) =0 and ¢(£(t-)) =1
q(&(t)) = q(&(t-) otherwise

In the first case, ¢ is called switching time.

Finally, we introduce some notations which will
be used later. Let (U,,)nen be a suite. We set:

14 2 A 34 4a
U, =Usnt1,U;, =Usp—2, U, =Usp_1,U, = Uysy.

(2)

3. PERIOD-2 CYCLE EQUATIONS

In (Quémard et al., 2005b), we have proved, as it
seemed rather natural for such non linear systems
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(see (Girard, 2003), (Zhusubaliyev and Mosekilde,
2003)), the existence of limit period-1 cycles, that
is to say the existence of periodic orbits with two
different durations respectively between odd and
even switching times.

Because we deal with non linear systems, it is also
rather natural to think that there can exist more
than one solution for such systems. That is why
here, we present, following the same reasoning
than in (Quémard et al., 2005b), equations for
period-2 cycles, that is to say for cycles with
four different durations o', o2, o3, o* between

switching times.

Let top be a given initial time. Suite t; < t2 <
< tp, < ... corresponds to the successive
switching times in ]to, co[ necessarily distinct since
X(tny1) # X(tn). We suppose that following
assumption Hp(n) is implicitly satisfied in calcu-
luses in which ¢,, appears.

Hypothesis Hp(n) Instant t,, of the n'" switch-

ing (later to ty) exists and is finite.

Let us set in order to reduce notations g, =
A

q(&(tn)), Agn = ¢n — gn—1. We have g(£(2)) = ¢n
on [tnatn—i-l[; n € {051}7 n =1 — g1, AQn =
(-1)"'Aq, A¢g; = £1 and with notations (2),
we 0 have gh = 1— do, 2 = o, 3 = 1 — o,
4 _
d, = qo-
Classical solution of (1) on [t,, tp+1[ gives:

X(t) ==, — AN @B+ 0),  (3)

with I, € RN corresponding to the integra-
tion constants, functions of n. Applying the as-
sumption of the state continuity at ¢,,, X(¢,) =
X (t,—), equation (3) gives:

Vn>1 T, =eT, 1 + A, A'B, (4

where we define Vn > 1, 0, £ ¢, — t,_1 > 0 the
duration between two successive switching times
tn_1 and t,. For n = 0 and ¢ = tp, we obtain:

Lo = X(to) + A ' (B + C). (5)

Let Vn > 1, & = &(t,). We remark that
Vn > 1, & = qubi + qp1tr and Vn > 2,
A, = —Ag, A0 = (—1)"Aq; Al with Al =
6> — 6. Moreover, we have &, = LX(t,—) =
L(e’"ATy,_1 — A~ (g1 B+C)), and also &,_1 =

LX(tn_l) = L(Fn—l — A_l(qn_lB + C)) So, we
obtain:

Vn > 2, L(e’* — IN)Tp—1 — A&, =0
{for n=1, L(e “lAr e (qOB +0) =& =0.

(6)

As explained in (Quémard et al., 2005b), it is
from equations (4) and (6) that we can determine
equations of cycles. Let us characterize a possible
searched period-2 cycle with four different du-
rations between switching times. With notations
(2), let us set:

Ry £ (o),0),00,05,00,1% o, ).

n’ n’ n’ ’n,7 n’ ’n,?

(7)



System of equations (4) and (6) Vn > 1, is
equivalent to system H(R,,,R,+1) =0,Vn,n>1
where H = (Hl,HQ, H3, H4, H5, Hﬁ, H7, Hg)T is a
function that we define by:

(

(8)

Let us suppose that R, has a limit R
(o, 11,02, 12,0%,13,0%, T'). In those conditions,
R is solution to system H(R, R) = 0, namely:

(L(e” 4 — In)T* + A AG =0
I — e’ T - AA~'B =0
L(e” A — I = A A9 =0
% e T4 AqA~'B =0
L(e” ™ = IN)T? + Aqi A8 = 0
% — e’ T2 - AqA 'B=0
L(e” A — IN)I® — Ay AG =0

([ T* - e T% + AqA~'B = 0.

9)

From the second equation of (9) and using the
4th the 6t* and the 8t* equations of the same
system, we obtain:

' =Aq(Iy - e A elol+ohA e(”1+03+04)A)
(IN _ e(a'l+a'2+a'3+a'4)A)flAle-

Identically, the 4" the 6" and the 8" equations
of system (9) become:

F2 _ Afh (IN _60'2A +e(01+02)A _e(a'l+a'2+a'4)A)

(Iy — el7 to toi e y—1 y—1 g,

% =Aq Iy — e A 4 elot o)A _ e(”1+”2+”3)’4)
(In — e("1+"2+"3+"4)A)*1A*1]3_

M= —-Aq(Iy— e A pelo® oA _ e(”2+”3+”4)’4)

(IN _ e(a'l+a'2+a'3+a'4)A)flAle_

Reinjecting those expressions for I'!, i =1, ..,4, in
the 1%¢, 374 5" and 7' equations of (9), we can
deduce:

Hi(Rp, Rpt1) = L7+ — IN)TE | + Aqi A6
Hy(Ry, Rpy1) =TL | —enil: | — A A™'B
H3(Ry, Rog1) = L(en+14 — IN)TE — Aq Af
Hy(Ry, Rpy1) =12, —e®1Th + A A™'B
Hs(Ry, Ryt1) = L(e“n1d — IN)T2, + Aq Af
Ho(Ry, Ryy1) =T3,, — e T2 — A A™'B
Hy(Ry, Rpt1) = L(e7n+14 — IN)T | — AqiAf
( Hg(Ry, Rpy1) =T, —e7nniT3 | + A A 'B.
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L(In — € 4)
(IN _ ea4A + 6(03+U4)A _ e(a2+a3+a4)A)

(IN _ 6(01+U2+U3+U4)A)71A7].B +AO=0
L(Iy —e” )

(IN _ ezrlA + e(a'1+a'4)A _ 6(0'1+0'3+0'4)A)
(Iy —elo T 4o’ +eD ) =1 4=1g L Ag =0
L(Iy —e” %)

(IN _ 602A + 6(01+02)A _ 6(al+a2+a4)A)
(IN _ 6(01+U2+U3+U4)A)71A7].B +AO=0
L(Iy —e”'4)

(IN _ eU3A + 6(0'2+a'3)A _ 6(0'1+0'2+0'3)A)

\ (IN _ e(al+a2+a3+a4)A)—1A—lB + Ae =0.
(10)

But system (10) is not independant because there
exists a linear combination using the four equa-
tions (the 1°¢ equation minus the 2"? is equal
to the 4" equation minus the 3"%). So, here, it
just remains three independant equations for four
unknowns. The 4t" equation will come from the
condition of initial switching defined by equation
(6) and using equation (4) in the case n =1 and
given by:

LM =A™ ((1=go) B+C)) = (1-g0)b1 — gob> = 0.

And so, we obtain the final system:

(Fy = LIy — e 4)
(IN _ 60'4A + 6(z73—§—a'4)A _ e(

(IN _ 6(0'1+U2+U3+U4)A)71A71B + A6 =0

0’2+0'3+0'4)A)

Fy=L(Iy—e” %)
(In — e A ele o)A _ o

(IN _ e(crl+a2+a3+a4)A)—1A—1B + A = 0

crl+a2+a4)A)

Fy = L(602A(IN . ealA +e(al+d4)A)
_60'4A(IN _ 60'3A + 6(0'2+0'3)A))
(IN _ e(Ul+a2+a3+a4)A)—1A—1B -0

(IN _ e(crl+a2+a3+a4)A)—1A—1B
—LATH (1~ q0)B+C) — (1~ qo)f1 — qob2 = 0
(11)

Ve

As proved in theorem 1 in (Quémard et al., 2005b)
for a period-1 cycle, suite (I';),>0 such that
Typry = TV for p > 0, Dypn = T2 for p > 1,
Typ_y =13 for p > 1, Ty 2 T* for p > 1 and
suite (0, )n>0 such that o4pp1 = o' for p > 0,
Ospn = 0® for p > 1, 04p_11 = 0° for p > 1,
Ou4p £ o* for p > 1 define here a trajectory which
is a period-2 cycle for t > t;.

Y
A

Fi = AqL(Iy — e 4 4 el 004 _loitotrahiay



4. STABILITY STUDY

To study the period-2 cycles stability, we use,
like for the period-1 cycles (see (Quémard et al.,
20050)), an adapted point transformation method
of Andronov (Meerov et al., 1979) which is equiv-
alent to the classical idea of the Poincaré map ex-
tended to h.d.s (Girard, 2003) what is highlighted
in an appendix in (Quémard et al., 2005b).

This method consists in a linearization of the
problem in the neighbourhood of a fixed point and
in an application of the Z-transformation.

From (9), we have H(R,R) 0 with R

(o', T, 0%, 12,03%,13, 0% I'"). We linearize the prob-
lem in the neighbourhood of R replacing H(R,,, R,,+1)

made explicit in (8) by relation:

0H OH
ap T, an UYL T, =Y 12
aRn (R7 R) + aRn—i-l (R R) +1 0 ( )
where T}, = R,, — R and T),4+1 = R,+1 — R.
Let us set U = ZL(R,R) and V £ s—(R, R).

Let T* be the z-transform of suite (7},)nen (We
give an arbitrary value to o9 = t; — to in order
to have Ty = Ry — R well defined). We have
Z((Th+1)nen) = 2(T* — Tp). We obtain UT* +
2V(T*—Tp) =0and so T* = (271U + V) VT,
Let us set A £ 27U + V| = kg |U + 2V/| where
|K| =4(N + 1). Some calculuses lead to:

U + 2V | = 23N +3

0L 0 0 0 0 0 0

MyzI, 0 0 0 0 0 M

0 0 0 L 0O 0 0 0

goi| 0 Ms MyIy 0 0 0 0

' 00 0 0 0L 0 0

0 0 0 MsMglIy O O

00 000 0 0 L

0 0 0 0 0 M M Iy

_ Z3N+5A’7

where M; = —Ae” AT, My = —e” A, M; =
—e” A My = —Ae” ALY, M5 = —e7 A, Mg =

—e7"AT2, My = —e”' 4 and My = —e” AT®. We
can deduce A = ZN%IA’. We remark that the
coefficient of 2V in A" is null and so, A’ is an
at most N — 1 degree polynomial. The stability
notion corresponds here to the convergence of
suite (R;)nen defined by (7) towards R, that is
to say of suite (T))nen towards zero. We can say
that a cycle is asymptotically stable (see (Meerov
et al., 1979)) if all roots of determinant A" have
moduli less than one, is unstable if there exists at
least one root whose modulus is superior to one
and we cannot conclude about the cycle stability
if there exists one root whose modulus is equal to
one and if the others have moduli less than one.
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5. PRESENTATION OF A THERMOSTAT
WITH ANTICIPATIVE RESISTANCE MODEL

Here, we apply all those previous results to a
thermal application treated in (Cébron, 2000) for
a problem of optimal control. It deals with a
thermostat with anticipative resistance, common
in the industrial market (Cyssau, 1990) which
controls a convector located in the same room.
Figure 2 gives a representation of the physical
system and notations used further.

outside
temperature : £,

thermostat :
temperature x,
convector : power P, (of
temperature z, anticipative
power P, resi )

room :
temperature y D

Fig. 2. Thermal process

The functioning principle of such thermostats is
the following: powers P. and P; are active when
¢(z) = 1 and inactive when ¢(z) = 0. If initially
qg = 1, as P, is active, the desired temperature is
reached by the thermostat temperature x before
the room temperature y which makes ¢ changes
its value from 1 to 0. Nevertheless, because of
the thermal inertia of the room fluid, the room
temperature y can eventually continue to increase
before decreasing but surely less than without
anticipative resistance since active time for P. is
reduced . With this principle, cycle times for the
room temperature are shorter and so, as we can
wait and verify by simulation or experience, the
room temperature variations are reduced. This
fact is of industrial interest for energy saving.

Here, we are in dimension N 3 with X
(z,y,2)" and we consider the R?® canonical basis.
A power assessment and Newton law (Saccadura,
1998) give the following set of equations:

. T —
thtx = —Tty + q(x)Pt

. y—z y_ae
m,CpLy = — - 13
p p?'/ lecy R, (13)

mCCCz = — + q(m)Pc

C

which is in the form (1). We choose the following
realistic numerical values: ¢ = 1, R; 1.5
KW' R, = 135 KW-!, R, = 0.9 K.W~—1,
Q¢ = mCy = 50 JK= Q. = m.C, = 732.5
JK™Y P.=50W, Q, = m,C, = 5000 JK1,
0. = 281 K, 0, = 293 K, 0, = 204 K, P, = 0.8
w.

Simulations with Matlab enable us to obtain time
(Figures 3 and 4) and phase (Figure 5) plots.

In Figures 3 and 4, large variations, medium vari-
ations and small variations represent respectively
temperature variations for the convector, for the
thermostat and for the room. Stars and crosses
highlight the different switching times. We can



Simulation : thermostat (x), convector (+), room (*)

Fig. 3. Time plots

Simulation : thermostat (x), convector (+), room (*)

AN AN VAN VAN AV AN AV AN AV AN A VA VA

B
time (s)

Fig. 4. Time plots (zoom)

Fig. 5. Phase plots

observe that those variations do not look like
those shown in Figure 6 and obtained for other
chosen values in (Quémard et al., 2005b) and in
(Quémard et al., 2005a) to illustrate a period-1
cycle.

Simulation : thermostat (x), convector (+), room (*)

0 2000 4000 6000 8000
tim

10000 12000 14000 16000 18000
e s)

Fig. 6. Illustration of a period-1 cycle

Indeed, it seems that there exists two maxima
and two minima for the room and the convector
temperatures. The phase plot in space (z,y,z)
(Figure 5) confirms this, showing that the system
completes two full rotations before repeats itself.
This is an illustration of a period-2 cycle (there
are four different durations between the different
switchings) that one can find in the thermostat
with anticipative resistance system.

The following numerical study enables to confirm
the existence of period-2 cycles for this studied
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class of h.d.s computing the possible different
durations between two successive switching times.

6. NUMERICAL STUDY

6.1 Determination of the period-2 cycle
We solve system F' = (F|, Fy, F3, Fy)* (11) with
four unknowns o', o2, 0%, 0* programming in
Matlab a classical algorithm of Newton (Dennis
and Schnabel 1983) taking as initial conditions,
values of o', 0%, 0%, o* given by simulation:

= 132. 8371 s, 02 = 529.7769 s, 03 = 142.3932
s, 04 = 226.8447 s. We also choose those following
stop conditions FTF < 107'% and ¢ < 1000 (i
being the number of iterations) in order that the
algorithm can stop if there is no convergence.
After 754 iterations, we obtain those following
results: o' = 142.1941 s, 02 = 523.5236 s, 0° =
157.7412 s, o* = 301.2583 s which confirm the
existence of four different durations and so the
existence of period-2 cycles.

Then, with Maple and using the found numerical
values for ¢*, i = 1,..,4 given above, we determine
the period-2 cycle values:

Xing1 ~ (293.00 292.9596 306.3574 r

)
Xinga =~ (293.00 292.9696 308.7245)7,
Xgupr = (294.00 292.9979 315.6553)7,
Xgupz = (294.00 292.9503 314.3314)7,

which are well in accordance with Figures 3 and
4.

Moreover, Maple is also used for stability study.
We compute roots z;, ¢ = 1,2 of determinant A
made explicit in Section 4 and we obtain z; =
0.73569, zo = 0.00345 whose moduli are all less
than one. So, we can conclude positively with the
point transformation method of Andronov about
the stability of this period-2 cycle.

6.2 Study of the period-2 cycle

From system (11), we can observe that, if we
exchange values of ! and ¢ on the one hand and
values of ¢ and o on the other hand, we obtain
exactly the same system than previously since it is
just a question of considered initial discrete state
in the description of the orbit. So, in this case, we
can conclude that o = 157.7412 s, 0> = 301.2583
s, 08 = 142.1941 s, 0* = 523.5236 s is also a
solution of system (11) which describes the same
stable period-2 cycle than before.

1 _

Moreover, if now, we set o o3 and o2
o*, equations F; and Fh are identical and Fj is
reduced to zero. So, in this case, it amounts to
the system of two equations for two unknowns
solved in (Quémard et al., 2005b) to find a period-

1 cycle. Solving F; = 0 and F, = 0, we obtain



ol = 0% = 147.8814 s and 0? = 0! = 406.8390
s which also is a solution for system (11). The
application of the point transformation method
of Andronov with Maple enables us to conclude
negatively about the stability of this period-1
cycle (determinant A" has two roots -1.07178 and
-0.05866).

So we can conclude that there is a period-doubling
which arises with the lost of stability of the
period-1 cycle. As we show computing of, 4
1,..,4, the period-1 cycle coninues to exist but
now as a saddle cycle (see (Zhusubaliyev and
Mosekilde, 2003), (Guckenheimer and Holmes,
1991), (Peitgen et al., 1992)).

With initial conditions chosen above, the Newton
algorithm, which is very efficient to estimate zeros
of a non linear function, converges towards the
period-2 cycle presented above. Nevertheless, with
other initial conditions, it can converge towards
the period-1 cycle. So, to highlight the sensitivity
to initial conditions of this Newton algorithm
(see (Zhusubaliyev and Mosekilde, 2003), (Peitgen
et al., 1992), (Baker and Gollub, 1990), it is
interesting to locate all initial values for which
the method converges towards a same zero. Using
Matlab, we can find a solution to this problem
colouring with the same colour all initial points
leading to a same zero.

For a question of computing swiftness for the
computer and of visibility on figures, we restrict us
to plottings in dimension two, setting fixed values
for example for o' and o3. We plot coulour points
in the plane (02,0%). For ¢! = 0% = 148 s, we
obtain Figure 7, for o' = 135 s, 0 = 148 s, we
obtain Figure 8.

300 450

Fig. 7. Influence of initial conditions for fixed
values for o' = 0% = 148 s

300

350

400
x2

250 500

Fig. 8. Influence of initial conditions for fixed
values for o' =135 s, 0% = 148 s

288

Light grey set and black set represent all initial
points which lead to the period-2 cycle differen-
tiating zero o! = 157.7412 s, 02 = 301.2583 s,
0% = 142.1941 s, o* = 523.5236 s (light grey
set), and zero o! = 142.1941 s, 02 = 523.5236
s, 0° = 157.7412 s, o* 301.2583 s (dark
set). Finally, dark grey set represents all initial
points for which the Newton algorithm converges
towards the period-1 cycle. Those figures bring
out the different fractal attraction basins and the
sensitivity to initial conditions principally near
the boundaries of the different attraction basins.

6.3 Influence of parameters variations

Vary some parameters can be very useful in order
to study the hybrid dynamical system (1). Yet, the
only one-parameter variation enables to highlight
the period-doubling observed previously. Here, we
choose to vary the resistance of the convector
R.. Thus, keeping the same initial conditions and
plotting at each iteration of the Newton algorithm
0? and o* (we prefer those durations instead of o*
and o3 because their difference is more important
and so we can have a better visibility) while pa-
rameter R, is varying, we obtain in Figure 9 a
diagram of bifurcation for our system. It under-
lines that the curve divides into two branches at
approximatively R, = 1.21. Calculuses of roots of
A’ enable us to improve this value approximation
to R. = 1.20844 since it is from this value for R,
that one of the real root crosses the boundary of
stability at —1 and from this, the period-2 orbit
appears.

Fig. 9. Bifurcation diagram for thermostat system
with the one parameter R, variation

Now, we can vary simultaneously two parameters.
Here, we choose to change values of thermal
parameters R. and P.. The remaining thermal
parameters are supposed to be constant and have
the same numerical values than in section 5. At
each value for R, and P, from system (11) and
using a Newton algorithm, we can determine if
numerical values lead to a limit cycle and if it is
the case, we can define the nature of the found
cycles. Here, we limit our study only detecting
period-1 cycles and period-2 cycles but in the
future, it would be very interesting to detect cycles
with more than two periods if they exist. The
division of parameters space for our system (1)
into domains of different modes of oscillations



is shown in Figure 10. Sets of light grey points

1.4

Fig. 10. Influence of parameters variations to the
system mode of oscillations

represent sets of values for R. and P, which lead to
period-2 cycles, those of grey points are values for
which the system gives period-1 cycles and finally,
sets of black points define R. and P, values which
lead neither to period-1 cycles nor to period-2
cycles.

7. CONCLUSION

This work completes paper (Quémard et al.,
2005b) beginning to answer to questions formu-
lated at the end of the study of limit period-
1 cycles. Indeed, it establishes that the studied
class of h.d.s (1) with autonomous switchings
generated by a hysteresis phenomenon can also
admit period-2 cycles with four different durations
between successive switchings. Some formal and
numerical characterizations of this type of cycles
are given in this paper. Theoretical results are
confirmed by the good adequation with simula-
tions using Matlab.

The considered application for that is here in-
teresting because it deals with a thermal device
of industrial interest and because its model is
a tridimensional model a little less complicated
that the one studied in (Zhusubaliyev and Mosek-
ilde, 2003) and from which, some chaotic behav-
iors have been observed. Nevertheless, a limit of
the numerical study is to only detect period-1 and
period-2 cycles. Then, some properties like the
sensitivity of the model to initial conditions and
like the period-doubling with the diagram of bi-
furcation are illustrated. They concern necessary
conditions in the domain of chaotic behaviors.
Moreover, Figure 11, which presents a simulation
of temperatures variations with Matlab for an-
other set of values for the studied thermostat with
anticipative resistance model, highlights irregular
oscillations and strange behaviors particularly for
the room temperature.

So, even if numerical errors which can come from
the computer have not to be neglected, the pos-
sibility to obtain chaotic behaviors for our h.d.s
class is reinforced with yet the existence of mul-
tiple cycles and of some necessary properties for
that. So, it is an interesting open question which
would also show how complexity can arise from
simple models.
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Simulation : thermostat (x), convector (+), room (*)

Fig. 11. Ilustration of irregular oscillations for
some particular values
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