

CODIS – A FRAMEWORK FOR CONTINUOUS/DISCRETE SYSTEMS CO-SIMULATION

Gabriela Nicolescu, Faouzi Bouchhima, Luiza Gheorghe

Ecole Polytechnique de Montreal

Abstract: This paper presents CODIS, a co-simulation framework for continuous/discrete
systems. Based on a well defined synchronization model and a generic architecture for
continuous/discrete simulation models, this framework enables easy specification and
automatic generation of simulation models. The supported simulators are Simulink for
continuous components and SystemC for discrete components. Copyright © 2006 IFAC

Keywords: models, simulation, heterogeneity, accuracy, performance.

1. INTRODUCTION

Modern systems that may be found in various
domains like automotive, defense, medical and
communications, integrate continuous and discrete
models. In a recent ITRS study covering the domain
of mixed continuous discrete systems, the conclusion
is a “shortage of design skills and productivity
arising from lack of training and poor automation
with needs for basic design tools” as one of the most
daunting challenges in this domain (ITRS, 2003).
One of the main difficulties in the definition of CAD
tools for continuous/discrete (C/D) systems is due to
the heterogeneity of concepts manipulated by the
discrete and the continuous components. Therefore,
in the case of validation tools, several execution
semantics have to be taken in consideration in order
to perform global simulation:
- In discrete models (DM), the time represents a

global notion for the overall system and advances
discretely when passing by time stamps of events,
while in continuous models (CM), the time is a
global variable involved in data computation and
it advances by integration steps that may be
variable.

- In discrete models, processes are sensitive to
events while in continuous models processes are
executed at each integration step.

Currently, co-simulation is a popular validation
technique for heterogeneous systems. This technique
was successfully applied for discrete systems, but
very few applied it for C/D systems. The co-
simulation allows joint simulation of heterogeneous
components. This requires the elaboration of a global
execution model, where the different components
communicate through a co-simulation bus via
simulation interfaces performing adaptation.
For C/D systems co-simulation, the simulation
interfaces have to provide efficient synchronization
models in order to cope with the heterogeneous

aspects cited above. This implies a complex behavior
for these interfaces; their design is time consuming
and an important source of error. Simulation
interfaces play also an important role in accuracy and
performance of global simulation. Consequently, the
definition of new co-simulation tools able to provide
simulation interfaces is mandatory.
This paper presents CODIS (COntinuous/DIscrete
Systems simulation), a co-simulation framework for
C/D systems validation. This framework assists
designers in building global simulation models. The
supported simulators are Simulink for continuous
models and OSCI SystemC simulator for discrete
models.

2. CODIS FRAMEWORK

1.1 Synchronisation and generic architecture for

C/D simulation in CODIS

For an accurate synchronisation, each simulator
involved in a C/D co-simulation must consider the
events coming from the external world and it must
reach accurately the time stamps of these events. We
refer to this as events detection. These time stamps
are the synchronization and communication points
between the simulators involved in the co-simulation.
Therefore, the continuous simulator, Simulink, must
detect the next discrete event (timed event) scheduled
by the discrete simulator, once the latter has
completed the processing corresponding to the
current time. In case of SystemC, these events are:
clock events, timed notified events, events due to the
wait function. This detection requires the adjustment
of integration steps in Simulink (see Fig. 1).
The discrete simulator, SystemC, must detect the
state events. A state event is an unpredictable event,
generated by the continuous simulator, whose time
stamp depends on the values of the state variables
(ex: a zero-crossing event, a threshold overtaking

Preprints of the 2nd IFAC Conf. on Analysis and Design of Hybrid Systems (Alghero, Italy), 7-9 June 2006

274

event, etc.). This implies the control of the discrete
simulator advancement in time: in stead of advancing
with a normal simulation step, the simulator has to
advance precisely until the time stamp of the state
event (see Fig. 1).

Integration Step

Synchronization State Event

t
Continuous

Model

…

tDiscrete
Model

Discrete Sim. Step

Adjusting steps in order
to take into account
external events

Fig. 1. C/D Synchronisation in CODIS

Fig.2 illustrates the generic architecture used in
CODIS for the C/D simulation. CM and DM
communicate through a co-simulation bus via
simulation interfaces. Each simulation interface
presents two main layers:
• The synchronization layer provides the

synchronisation requirements discussed above.
For both CM and DM, this layer is composed of
three sub-layers, each of them achieving an
elementary functionality for synchronisation.

• The communication layer is in charge of
sending/receiving data between CM and DM.

More details on synchronization and CODIS
simulation architecture may be found in (Bouchimma
et al., 2005)

Discrete model

Events Detection Sub-Layer

End of discrete sim. cycle
detection and time sending

Context switch

Data exchange

Continuous model

Indication of state events
and time sending

Events detection

Context switch

Signals conversion
and data exchange

Cosimulation bus

Synchronization
layer

Communication
layer

Simulation
interface

Discrete model

Fig 2. Generic architecture for accurate C/D simulation

1.2 Simulation model generation in CODIS

Based on the presented synchronization model and
the generic architecture, a flow for automatic
generation of simulation models was implemented in
CODIS (see Fig. 3). The inputs of the flow are the
CM in Simulink and the DM in SystemC. The output
of the flow is the global simulation model, including
the co-simulation bus and the simulation interfaces.
The interfaces are generated by composing elements
from the CODIS library. These elements implement
the layers in Fig.2. They may be customized in terms
of number of ports and their data type.
The interfaces for DM are automatically generated
by a script generator that has as input user defined
parameters. The model is compiled and the link
editor calls the library from SystemC and a static
library called “simulation library” (see Fig. 3).
The interfaces for Simulink are functional blocks
programmed in C++ using S-Functions. These blocks
are manipulated like all other components of the

Simulink library. The user starts by dragging the
interfaces from the library into the model’s window,
then parameterizes them and finally connects them to
the model inputs and outputs. Before the simulation,
the functionalities of these blocks are loaded by
Simulink from the “.dll” dynamically linked libraries
(see Fig. 3).

Fig. 3. Flow for simulation models generation

3. EXPERIMENTAL RESULTS

To analyze the capabilities of the proposed
framework, we used two illustrative applications: a
manipulator arm controller and a �/� converter.
To evaluate the performances of simulation models
generated in CODIS, we measured the overhead
given by the simulation interfaces. The overhead
caused by the Simulink integration step adjustment
when detecting a SystemC event has been measured
in a maximum of 10% of total simulation time. The
overhead caused by IPC (Inter Process
Communication) used for the context switch and the
communication layers has been measured in order of
maximum 20% of the total simulation time. The cost
of the added synchronization functionality in the case
of SystemC is negligible and does not exceed 0.02%
of the total simulation time.

4. CONCLUSION

This paper presented a simulation framework
enabling continuous and discrete models integration.
These models may be described using powerful tools
for the two domains: Simulink and SystemC.
The experiments have shown a synchronization
overhead of less than 30 % in simulation time.

REFERENCES

International Technology Roadmap for Semiconductor

Design (2003), available at http://public.itrs.net/.
F. Bouchhima, et al. (2005) In: Discrete–Continuous

Simulation Model for Accurate Validation in
Component-Based Heterogeneous SoC Design,
Proceeding of RSP Conference, (IEEE)

275

