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1. INTRODUCTION

Computer-based control systems and networked con-
trol systems are hybrid systems where continuous
time-driven dynamics and discrete event-driven dy-
namics interact. The temporal non-determinism intro-
duced by computing and communication in the form
of delays and jitter can lead to significant performance
degradation. Software tools are needed to analyze and
simulate how the timing affects the control perfor-
mance.

Timed automata and piecewise linear systems are
common modeling formalisms for hybrid systems.
TrueTime is a MATLAB/Simulink-based simulation
tool that takes a completely different approach. Using
TrueTime it is possible to simulate the temporal as-
pects of multi-tasking real-time kernels and wired or
wireless networks within Simulink together with the
continuous-time dynamics of the controlled plant. The
approach allows simulation at the same level of de-
tail as in the true system. For complete TrueTime de-
scriptions, see (Andersson et al., 2005a; Cervin et al.,
2003; Andersson et al., 2005b). TrueTime is available
for free download at http://www.control.lth.
se/user/dan/truetime

2. SIMULATION ENVIRONMENT

TrueTime consists of a block library with a computer
kernel block and wired and wireless network blocks,
as shown in Figure 1. The blocks are variable-step,
discrete, MATLAB S-functions written in C++. The
kernel block executes user-defined tasks and interrupt
handlers representing, e.g., I/O tasks, control algo-
rithms, and network interfaces. The scheduling policy

Fig. 1 The TrueTime block library.

of the kernel block is arbitrary and decided by the user.
The network blocks distribute messages between com-
puter nodes according to a chosen network model. The
blocks are connected with ordinary continuous-time
Simulink blocks to form a real-time control system.

All blocks are event-driven, with the execution deter-
mined both by internal and external events. Internal
events correspond to events such as “a timer has ex-
pired,” “a task has finished its execution,” or “a mes-
sage has completed its transmission.” External events
correspond to external interrupts, such as “a message
arrived on the network” or “the crank angle passed
zero degrees.” All outputs are discrete-time signals.
The Schedule and Monitors outputs display the alloca-
tion of common resources (CPU, monitors, network)
during the simulation.

2.1 The Kernel Block

The kernel block S-function simulates a computer with
a simple but flexible real-time kernel, A/D and D/A
converters, a network interface, and external interrupt
channels. Internally, the kernel maintains several data
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structures that are commonly found in a real-time
kernel: a ready queue, a time queue, and records
for tasks, interrupt handlers, monitors and timers that
have been created for the simulation. The execution
of tasks and interrupt handlers is defined by code
functions, written either in C++ or MATLAB code.
Control algorithms may also be defined graphically
using ordinary discrete Simulink block diagrams.

Tasks and Interrupt Handlers Tasks are used to sim-
ulate both periodic activities, such as controller and
I/O tasks, and aperiodic activities, such as communi-
cation tasks and event-driven controllers. Each task is
defined by a set of attributes (priority, deadline, period,
etc.) and a code function. Interrupts may be generated
in two ways: externally or internally. An external in-
terrupt is associated with one of the external interrupt
channels of the kernel block. The interrupt is triggered
when the signal of the corresponding channel changes
value. This type of interrupt may be used to simulate
engine controllers that are sampled against the rota-
tion of the motor or distributed controllers that exe-
cute when measurements arrive on the network. Inter-
nal interrupts are associated with timers. Both periodic
timers and one-shot timers can be created

Code The code associated with tasks and interrupt
handlers is divided in segments, where the code of
each segment is executed instantaneously during sim-
ulation. The code can interact with other tasks and
with the environment at the beginning of each code
segment. This execution model makes it possible to
model input-output delays, blocking when accessing
shared resources, etc. The simulated execution time of
each segment is returned by the code function. Besides
A/D and D/A conversion, many other kernel primitives
exist that can be called from the code functions, e.g.,
functions to send and receive messages over the net-
work, create and remove timers, perform monitor op-
erations, and change task attributes.

2.2 The Network Blocks

The TrueTime network blocks distribute messages be-
tween computer nodes according to chosen network
models. For wired networks, six of the most com-
mon medium access control protocols are supported
(CSMA/CD (Ethernet), switched Ethernet, CSMA/CA
(CAN), token-ring, FDMA, and TDMA). The wireless
network block supports simulation of the IEEE 802.11
WLAN and IEEE 802.15.4 ZigBee standards. For a
description of the simple radio model used for simula-
tion of wireless communication, see (Andersson et al.,
2005b).

In the same way that code execution is modelled by
segments as opposed to execution of individual state-
ments, the network transmissions are not modelled
on bit level. Rather, only the interactions between
nodes relevant for the timing behavior of the trans-
missions are modelled. That includes pre- and post-

processing delays, collision detection and collision
avoidance mechanisms, and probabilities of lost pack-
ets. A message contains information about the sending
and the receiving computer node, arbitrary user data
(typically measurement signals or control signals), the
length of the message, and optional real-time attributes
such as a priority. When the simulated transmission of
a message has completed, it is put in a buffer at the
receiving computer node, which is notified by a hard-
ware interrupt.

3. SIMULINK TIMING DETAILS

The TrueTime blocks are event-driven and support ex-
ternal interrupt handling. Therefore, the blocks have a
continuous sample time, and the timing of the block is
implemented using the Simulink zero-crossing func-
tionality. The next time the kernel (or network block)
should wake up (e.g., because a task is to be released
from the time queue, a task has finished its execution,
or a message transmssion has been completed) is de-
noted nextHit. If there is no known wake-up time,
this variable is set to infinity. The basic structure of the
zero-crossing function is

static void mdlZeroCrossings(SimStruct *S) {

Store all inputs;

if (any external interrupt input has

changed value) {

nextHit = ssGetT(S);

}

ssGetNonsampledZCs(S)[0] = nextHit - ssGetT(S);

}

This will ensure that the Simulink call-back function
mdlOutputs executes every time an internal or
external event has occurred. The kernel and network
functions are only called from mdlOutputs since
this is where the outputs (D/A, schedule, network)
can be changed. Further, since several kernel and
network blocks may be connected in a circular fashion,
direct feedthrough is not allowed. We exploit the fact
that, when an input changes as a step, mdlOutputs
is called, followed by mdlZeroCrossings. Since
direct feedthrough is not allowed, the inputs may only
be checked for changes in mdlZeroCrossings.
There, the zero-crossing function is changed so that
the next major step occurs at the current time.
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