
HYBRID SYSTEM SIMULATION WITH
SIMEVENTS

Christos G. Cassandras �

� Center for Information and Systems Engineering
Boston University, Brookline, MA 02446 USA

Michael I. Clune and Pieter J. Mosterman ��

�� The MathWorks
3 Apple Hill Drive, Natick, Mass. 01760 USA

Abstract: A new simulation product for hybrid systems is described, which
combines a time-driven component and an event-driven component (SimEvents).
Some of the key issues arising in designing such simulation environments are also
discussed. Copyright © 2006 IFAC

1. INTRODUCTION

A Hybrid System (HS) is often de�ned as a system
that combines continuous with discrete state vari-
ables (Levine and (Eds.), 2005). More important,
however, is the fact that a HS combines time-
driven dynamics (associated with processes mod-
eled through di¤erential or di¤erence equations)
with event-driven dynamics (modeled though
state automata, Petri nets or other modeling
frameworks for Discrete Event Systems (DES)
(Cassandras and Lafortune, 1999)). Tradition-
ally, simulators (such as Simulink R (MathWorks,
2001)) employ a time-driven execution mecha-
nism, while drastically di¤erent ways are em-
ployed for DES. SimEvents (MathWorks, 2005)
is designed to simulate DES, but is embedded
in Simulink and equipped with functionality that
enables an e¤ective co-existence of time-driven
and event-driven components making up a HS.

2. ARCHITECTURE

Figure 1 highlights the main functional compo-
nents of the overall architecture. As a DES simu-

lation engine, SimEvents is driven by an Event
Calendar where all future events to occur are
listed in ascending order of their scheduled time.
SimEvents always processes the �rst event in
this list and updates the DES state accordingly.
When such an event takes place, the Cooperative
Event Driver is responsible for translating it into
a Simulink signal. The Data Exchange module
passes this signal on to Simulink so that it may
trigger a time-driven process or update various
model parameters. Conversely, as a time-driven
process evolves under the control of Simulink, it
may generate events in the form of level-crossing
points (from above, from below, or either) that the
Data Exchange module appropriately translates
so they may be processed by SimEvents blocks.
The most challenging aspect of coordinating time-
driven and event-driven dynamics is that of proper
timing. In the architecture of Fig. 1, the sys-
tem �clock� is maintained by Simulink and the
Cooperative Event Driver is responsible for en-
suring consistency between Simulink blocks and
SimEvents blocks, which interact with the Event
Calendar. Note that when a pure DES is sim-
ulated, the only interaction between SimEvents

Preprints of the 2nd IFAC Conf. on Analysis and Design of Hybrid Systems (Alghero, Italy), 7-9 June 2006

267



and Simulink is a simple link to the system clock
through the Cooperative Event Driver which en-
sures that the sample times applied are consistent
with times in the Event Calendar.

SIMEVENTS
STATE

DYNAMICS

SIMULINK
STATE

DYNAMICS

EVENT
CALENDAR

SIMULINK ENGINE

CLOCK

DATA
EXCHANGE

COOPERATIVE
EVENT
DRIVER

Fig. 1. SimEvents and Simulink collaborative
functionality

3. SIMEVENTS FUNCTIONALITY

In Simulink, communication across blocks is based
on signals. In SimEvents, it is based on both
signals and entities. The �entity� concept is mo-
tivated from the view of a DES as an envi-
ronment consisting of �users� and �resources�:
users request resources in order to perform var-
ious tasks, occupy these resources for a certain
amount of time, and then relinquish them so that
other users may access them. Examples of users
are messages in a communication network and
parts in a manufacturing system. Examples of
resources are switches in a network and machines
in a factory. A typical hybrid system scenario
arises when an entity accessing a resource initi-
ates a physical process (thus, de�ning an event
in SimEvents), which is carried out until some
termination condition is satis�ed (de�ning an-
other event in Simulink). Based on this approach,
SimEvents consists of a number of libraries con-
taining blocks with di¤erent system functionali-
ties. The main libraries are the following:

1. Generators: Blocks that generate entities,
or function calls (i.e., events that call Simulink
blocks), or random variates.

2. Queues: Blocks where entities can be tem-
porarily stored, while waiting to access a resource.

3. Servers: Blocks that model various types of
resources.

4. Routing: Blocks that control the movement of
entities as they access queues and servers.

5. Gates: Blocks that control the �ow of entities
by enabling/disabling access of entities to certain
blocks.

6. Event Translation: Blocks that enable com-
munication between SimEvents and Simulink by
translating events into function calls.

7. Attributes: Blocks that assign and modify
data to entities. Various control actions are then
made based on the values of these data, allow-
ing blocks to di¤erentiate between entities they
process.

8. Subsystems: These allow a combination of
blocks to be executed upon occurrence of speci�c
events (not upon Simulink sample times).

9. Timers and Counters: Blocks that mea-
sure event occurrence times or time elapsing
between events, and blocks that count occur-
rences of particular event types. These data are
supplied to standard display or scope blocks in
Simulink or specialized scopes designed speci�-
cally for SimEvents.

4. SOME DESIGN PROBLEMS IN HYBRID
SYSTEM SIMULATION

We limit ourselves to three key problems that are
ubiquitous in combining time-driven and event-
driven systems.

1. Event-driven vs Time-driven Computa-
tion. In a DES or HS setting, the computation of
many quantities is not required until a particular
event occurs. However, all Simulink computation
blocks are executed in a time-driven fashion. This
causes an e¢ ciency problem as well as a potential
integrity problem.

To illustrate the e¢ ciency issue, consider two sig-
nals x and y and an addition block that generates
z = x + y. If x and y are constant and only
change values at times tx and ty respectively, then
a time-driven adder needlessly evaluates z at all
sample times (as de�ned by the system clock).
The solution provided in SimEvents is to place the
adder block in a discrete event subsystem that is
triggered only by events occurring at times tx and
ty.

The integrity issue manifests itself when the pe-
riod � of the sampling mechanism is such that an
event, say the one changing x at time tx, occurs in
the interior of an interval [t; t+�]. In this case, the
value of z over all times in [tx; t+�) is incorrect.
Moreover, if the event at tx is intended to trigger
some other system action, this action can only be
taken at time t+�. Although most sophisticated
simulators are capable of detecting such variable-
changing events in their sampling mechanisms,
this still imposes a requirement on the timing
engine of the simulator instead of making it a
process which is naturally triggered by an element
of the Event Calendar in Fig. 1.

2. Declarative vs Imperative Semantics. A
time-driven system naturally employs declarative
semantics, i.e., an equation implies a constraint

268



that the variables involved must satisfy. This fact
is crucial when a system includes feedback loops:
in Simulink a feedback loop is interpreted as an
�algebraic loop� that must be resolved in order
for the system simulation to be executed.

In an event-driven system, imperative semantics
are used, i.e., an equation implies a strict assign-
ment (which is why the symbol �:=�is sometimes
used instead of �=�). A feedback loop in this case
typically means that an event has been detected
in some process at time t, which may change an
input variable for that process immediately after
t (e.g., disable a process at t as soon as one of
its state variables �rst crosses a given threshold).
Combining components from both settings can,
therefore, create ambiguities regarding the mean-
ing of loops. In order to resolve this issue, a special
SimEvents block termed �Signal Latch� is intro-
duced in such loops to e¤ectively translate a signal
from a Simulink block into an event processed by
SimEvents blocks, before generating a new signal
input to the same Simulink block.

3. Event concurrency. In an event-driven sys-
tem, it is possible for multiple events to occur
concurrently. The order in which these events are
executed is controlled by means of a �priority�
scheme which is part of the underlying DES de-
sign. It is also possible for an event to trigger the
occurrence of one or more other events, which in
turn triggers a number of events, with all this
activity taking place in zero time. Such event-
ordering capability does not normally exist in a
time-driven environment, where events are only
de�ned as level crossings arising in the evolution of
a continuous process (although this issue is explic-
itly addressed in some more advanced simulators,
as in (Mosterman, 2002)). This presents a major
challenge in a hybrid system setting.

To illustrate this issue, consider a Simulink �en-
abled subsystem�where some time-driven process
x(t) is initiated by an enabling signal, labeled e1,
generated by a SimEvents block event at time t0
with x(t0) = 0. The subsystem is de�ned so that
the rising edge of an enabling signal s(t) at any
time t resets the process to x(t) = 0. Further,
the process must stop as soon as x(t) = c at some
t1 > t0. This de�nes a level-crossing event, labeled
e2, which disables this enabled subsystem. The
process can subsequently be re-enabled when the
next e1 event takes place. Suppose, however, that,
under certain conditions, event e2 immediately
triggers event e1, i.e., the subsystem is disabled
at time t1 and immediately enabled again. The
correct behavior in this case is to re-initialize the
process so that x(t+1 ) = 0. However, the Simulink
timing engine is not designed to process event
e1 followed by event e2 in zero time; instead, it
observes that s(t�1 ) = s(t+1 ) = 1 and allows the

process to remain enabled with x(t+1 ) = c. The
only way to resolve this problem is by allowing
s(t) to jump from s(t�1 ) = 1 to s(t1) = 0 and
from s(t1) = 0 to s(t+1 ) = 1 again, an operation
that basic Simulink blocks are not equipped to
perform. In other words, a hybrid system simu-
lator must allow a signal to take multiple values
at each point in time. The alternative (without
possibly resorting to some advanced functionali-
ties) is to introduce an arti�cial miniscule delay
between the concurrent events e1 and e2, allowing
the subsystem to process two events at di¤erent
times.

The broader issue that this problem points to
is that of designing a timing mechanism capable
of driving di¤erential or di¤erence equations and
processing discrete events from an event calendar
where concurrent events are possible, hence an
ordering scheme is also necessary. This issue boils
down to the question �who should control the
system clock �the time-driven component or the
event-driven component of a hybrid system?�

REFERENCES

Cassandras, C. G. and S. Lafortune (1999). In-
troduction to Discrete Event Systems. Kluwer
Academic Publishers.

Levine, W. and D. Hristu (Eds.) (2005). Handbook
of Networked and Embedded Control Systems.
Birkhauser.

MathWorks (2001). Simulink: A Program for Sim-
ulating Dynamic Systems, User Guide. The
MathWorks, Inc.

MathWorks (2005). SimEvents User�s Guide. The
MathWorks, Inc.

Mosterman, P. J. (2002). HyBrSim - a modeling
and simulation environment for hybrid bond
graphs. Journal of Systems and Control En-
gineering 216, 35�46. Part I.

269




