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INTRODUCTION

The hybridχ (Chi) formalism (van Beeket al., 2006a;
Man and Schiffelers, 2006) integrates concepts from
dynamics and control theory with concepts from com-
puter science. It integrates ease of modeling with
a straightforward, structured operational semantics.
Ease of modeling is ensured by means of, among
others, the following concepts: 1) different classes
of variables: discrete, continuous and algebraic; 2)
strong time determinism of alternative composition in
combination with delayable guards; 3) integration of
urgent and non-urgent actions; 4) differential algebraic
equations as in mathematics; 5) concepts for complex
system specification: 5a) process terms for scoping
that integrate abstraction, local variables, local chan-
nels and local recursion definitions; 5b) process def-
inition and instantiation that enable process re-use,
encapsulation, hierarchical and/or modular composi-
tion of processes; and 5c) different interaction mech-
anisms: handshake synchronization and synchronous
communication that allow interaction between pro-
cesses without sharing variables, and shared variables
that enable modular composition of continuous-time
or hybrid processes.

The formal semantics ofχ allows the definition of
provably correct implementations for simulation and
verification.

SIMULATION OF χ MODELS

For simulation of hybridχ models, two simulators
are available: a symbolic simulator and a simulator

1 Work partially done in the framework of the HYCON Network
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based on S-functions (The MathWorks, Inc, 2005b).
Both simulators are defined in terms of a so-called
stepper, which computes the set of possible transitions
for given aχ process. The stepper consists of three
main functions: a functionSa which returns the set of
action steps for given aχ process, a functionSd which
returns the set of time steps for given aχ process,
and a function Tr which returns the reduced set of
transitions. Action steps and time steps can be seen as
symbolic transitions. They contain all information that
is needed to determine the transitions that the process
from which they are derived can perform without
solving predicates. An action step represents zero or
more action transitions and a time step represents zero
or more time transitions.

In general, the set of transitions of aχ specification is
infinite. In particular, the number of time transitions
of a χ process is usually infinite: if a process can
delay for t time units, then, for every 0≤ t ′ ≤ t , it
can also delay fort ′ time units. To get rid of these
additional time transitions, instead of returning all
time transitions of a time step, for each trajectory only
the time transition with longest duration is returned.
Although this reduced set of transitions can still be
infinite, in practice, this is rarely the case.

Note that an implementation of the stepper functions
may impose additional restrictions on theχ syntax.
For instance, for an implementation of function Tr, a
(symbolic) solver is needed to compute the solutions
of action predicates, the solution of delay predicates
(differential algebraic equations), and the maximum
duration of a time transition. Depending on the solver
that is used, additional restrictions may be required.

The stepper functions are defined in such a way that
it is easy to define different implementations. In case
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of the symbolic simulator, the symbolic solving capa-
bilities of Maple (MapleSoft, n.d.) are used for imple-
menting the Tr function. The simulator based on S-
functions interacts with Matlab Simulink (The Math-
Works, Inc, 2005a) via a so-called DE+ simulator.
The DE+ simulator performs action transitions until
the stepper returns a time step. This time step is then
executed by Simulink by solving the delay predicates
(ODEs) and monitoring the root functions (possibly
resulting in state-events) that are specified in the time
step. At the end of the time transition, the DE+ simu-
lator is called again.

VERIFICATION OFχ MODELS

One of the most successful formalisms for hybrid sys-
tem verification is the theory of hybrid automata. In
(Man and Schiffelers, 2006), formal translations be-
tweenχ and hybrid automata (in both directions) have
been defined. The translation from hybrid automata
to χ aims to show that theχ formalism is at least
as expressive as the theory of hybrid automata. The
translation from (a subset of)χ to hybrid automata
enables verification ofχ specifications using existing
hybrid automata based verification tools.

To the best of our knowledge, none of the hybrid au-
tomata definitions from literature is expressive enough
to be used as the target for the translation of hybrid
χ . Therefore, The translation uses a target hybrid au-
tomata definition, calledHAu automata, where the u
stands for urgency, that uses features from different
hybrid automata definitions. In particular, the defini-
tion of the jump predicate in combination with a set of
changeable variables is based on (Aluret al., 1996),
the solution concept that allows piecewise differen-
tiable functions is based on (van der Schaft and Schu-
macher, 2000), and the definition of urgent transitions
was inspired by (Nicollinet al., 1992).

In (Man and Schiffelers, 2006; van Beeket al.,
2006b), we use the verification tool PHAVer (Poly-
hedral Hybrid Automaton Verifyer) (Frehse, 2005) to
show that it is indeed possible to verify properties
of χ specifications using an existing hybrid automata
based verification tool. Since a manual translation is
very time consuming and error prone, the translation
has been automated by implementing it using the pro-
gramming language Python (Python website, 2005).

NORMALIZATION OF χ MODELS

The χ process algebra is a rich language that has
strong support for modular composition by allowing
unrestricted combination of operators such as sequen-
tial composition, parallel composition, and scoping
of local variables and channels. The fact that theχ

process algebra is such a rich language potentially
complicates the development of tools forχ , since the

implementations have to deal with all possible combi-
nations of theχ atomic statements and the operators
that are defined on them. This is where the process al-
gebraic approach of equational reasoning, that allows
rewriting models to a simpler form, is essential.

Instead of defining simulation and verification imple-
mentations on the fullχ language, the process al-
gebraic approach of equational reasoning makes it
possible to transformχ models in a series of steps
to a (much simpler) normal form (process algebraic
linearization), and to define the implementations on
the normal form. The originalχ model and its normal
form are bisimilar, which ensures that relevant model
properties are preserved. The normal form has strong
syntactical restrictions, no parallel composition oper-
ator, and is quite similar to a hybrid automaton. Partial
normalization, keeping the top level parallelism intact,
is also possible. Currently, generation of the normal
form is automated, and correctness of the transforma-
tion to the normal form is proved.
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