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Abstract: Mechatronic systems in the automotive applications are characterized by
significant nonlinearities and tight performance specifications further exacerbated
by state and input constraints. Model Predictive Control (MPC) in conjunction
with hybrid modeling can be an attractive and systematic methodology to handle
these challenging control problems. In this paper, we focus on a mass spring damper
system actuated by an electromagnet, which is one of the most common elements
in the automotive actuators, with fuel injectors representing a concrete example.
We present two designs which are based, respectively, on a linear MPC approach
in cascade with a nonlinear state-dependent saturation, and on a hybrid MPC
approach. The performance and the complexity of the two MPC controllers are

compared. Copyright © 2006 IFAC
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1. INTRODUCTION

Automotive actuators, such as fuel injectors, are
examples of mechatronic systems (Hrovat et al.,
2000; Barron and Powers, 1996) that are char-
acterized by tight operating requirements (such
as high precision, low power consumption, fast
transition time), significant nonlinearities, as well
as input and state constraints which need to be en-
forced during the system operation. On the other
hand, their dynamics may often be characterized
by relatively low-dimensional models.

Model Predictive Control (MPC) (Qin and Badg-
well, 2003) is a systematic feedback control design

1 Work (partially) done in the framework of the HYCON

Network of Excellence, contract number FP6-IST-511368.

technique which determines the control input via
receding horizon optimal control. Its main appeal
is in being able to enforce pointwise-in-time con-
straints while providing the control designer with
direct capability to shape the transient response
by adjusting the weights in the objective func-
tion being minimized. MPC controllers can han-
dle continuous-valued and discrete-valued control
inputs, accommodate system parameter changes
or subsystem faults, as long as they are reflected
in the model used for on-line optimization.

Automotive actuators can often be adequately
characterized by low dimensional models, and in
this case an explicit implementation of the MPC
controller becomes possible (see e.g. (Giorgetti et

al., 2005)), whereby the solution is pre-computed
off-line and its representation is stored for on-
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Fig. 1. The schematics of a magnetically actuated mass

spring damper system.

line application. The on-line optimization is not
required and the computational effort can be
reduced to the point where the implementation of
these control algorithms becomes feasible within
stringent memory and chronometric constraints of
automotive micro-controllers.

In this paper, we discuss and illustrate this ap-
proach in more detail in application to an electro-
magnetically actuated mass-spring damper sys-
tem. Such a system arises very frequently in au-
tomotive actuation mechanisms (see (Hrovat et

al., 2000; Guzzella and Sciarretta, 2005) and ref-
erences therein), including fuel injectors. In an
actuation system of this kind, there is typically a
moving mass which operates against a spring and
a damper, while being controlled by a magnetic
force from an electromagnetic coil. The force from
the coil is unidirectional (i.e., the coil can only
attract but not repel the mass), and this force
decays inversely proportionally to the square of
the distance between the mass and the coil. This
force is also proportional to the square of the
current, which is controlled to the desired value
by an inner loop controller. By neglecting the
much faster electrical dynamics, in this paper we
consider a second order mechanical system with
the magnetic force being the control input. The
effect of electrical dynamics is incorporated in
an extension of this work, see (Di Cairano et

al., 2006).

We present two controller designs, a linear MPC,
where a nonlinear constraint on the magnetic
force is neglected in the design and subsequently
enforced by cascading a nonlinear state-dependent
saturation, and a hybrid MPC, which considers
also the nonlinear force constraints through a
piecewise affine approximation.

2. PHYSICAL MODEL AND CONSTRAINTS

We consider a linear model for the moving mass
dynamics in the form

[
ẋ1(t)
ẋ2(t)

]

=

[
0 1

− k

m
− c

m

] [
x1(t)
x2(t)

]

+

[
0
1

m

]

u(t),

(1)

where the states are, respectively, the position
[m] of the moving mass x1, and the velocity of
the moving mass x2 [m/sec]. The magnetic force
[N] acting on the moving mass is denoted by u.
The neutral position of the spring corresponds to
x1 = 0 while the coil is located at x1 = x1c = 4 ·
10−3 m. The magnetic force is given by

u(t) = ka

i2(t)

(z(t) + kb)2
,

where z = x1c − x1 is the distance between
the moving mass and the coil, i is the current
[A] through the coil and ka, kb are constant
parameters.

In this paper we consider the case when the inner-
loop controller is capable of controlling the current
to the desired set-point on a faster time-scale than
the mechanical dynamics of the system, so that we
may view u(t) as the control input in (1). In order
to realize a given u(t) by the current, i(t), u(t)
must satisfy the following constraints

u(t) ≥ 0, (2a)

u(t) ≤ ka

i2max

(z(t) + kb)2
(2b)

where imax = 10 A denotes the maximum current
through the coil. The first of these constraints re-
flects the fact that the magnetic force is unidirec-
tional (i.e., the electromagnet can only attract and
not repel the moving mass). The second constraint
is due to the limitations of the current which can
be delivered by the power electronic circuits in the
system. Note that (2) defines a non-convex set
in the input+state space, being the intersection
of a halfspace and of the hypograph of a convex
function.

Besides (2), additional constraints are introduced
to bound the moving mass position between the
coil and a symmetric stop on the other end, i.e.,
at −4 · 10−3 m,

−4 · 10−3 ≤ x1(t) ≤ 4 · 10−3. (3)

Even though the moving mass cannot penetrate
into the coil or into the symmetric stop on the
other end, these constraints have to be imposed
explicitly to preserve the validity of model (1).
If this is not done, undesirable moving mass
bouncing can create noise and increase wear of
the parts.

In a number of practical applications it is actually
desirable to control the moving mass so that it
is positioned against the coil with x1 = x1c. As
the moving mass approaches the coil, its velocity
needs to be carefully controlled to avoid high
collision velocities (this is called soft-landing). In
addition, maintaining the velocity of approach rel-
atively low reduces the disturbance to the current
control loop. In this paper we use the constraint

−ε − β(x1c − x) ≤ ẋ ≤ ε + β(x1c − x) (4)
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to limit the velocity of approach, where β =
2500 s−1 and ε = 0.2 m/s. The maximum allowed
absolute value of the moving mass velocity at the
neutral position (i.e., at x1 = 0) is vmax = 10.2
m/s and it is 0.2 m/s at the contact position with
the coil (i.e., at x1 = x1c).

To facilitate the application of Model Predictive
Control, system model (1) is translated into the
discrete-time model

[
x1(t+1)
x2(t+1)

]

=
[

0.89 4.7·10−4

−42.77 0.85

] [
x1(t)
x2(t)

]

+
[

7·10−7

2.85·10−3

]

u(t), (5)

where we have considered the sampling period
Ts = 0.5 ms. With the discrete-time approach,
constraints (2), (3) and (4) are enforced only at
the sampling instants kTs, k ∈ N, for system (5).

3. LINEAR MODEL PREDICTIVE CONTROL

Model Predictive Control (Qin and Badgwell,
2003) is an optimization-based closed-loop control
strategy in which pointwise-in-time design con-
straints on system’s state, input and output can
be explicitly embedded into the controller and, at
the same time, it is a closed-loop strategy, since
at each time instant the optimization is repeated
using the most recent measurements.

The MPC strategy is based on the solution of the
optimal control problem

min
{yk,uk}

N−1

k=0

NJ−1∑

k=0

(yk − ry(t))′Qy(yk − ry(t))+

∆u′
kQ∆u∆uk

subject to ymin ≤ yk ≤ ymax, k = 1, ..., NC

umin ≤ uk ≤ umax, k = 0, ..., NU

∆umin ≤ ∆uk ≤ ∆umax, k = 0, ..., NU

∆uk = 0, k ≥ NU

xk+1 = Axk + Buk

yk = Cxk + Duk, k = 0, . . . , NJ − 1
(6)

where ∆uk = uk − uk−1, u−1 = u(t − 1) is the
previous input, and ry(t) is the output reference
at time step t. NJ is the prediction horizon along
which performance is computed, NC is the horizon
along which the output constraints are enforced,
and NU is the number of free control actions,
so that NU ≤ NJ and uk = uNU

, ∀k = Nu +
1, . . . , NJ

2 .

The MPC algorithm can be summarized as fol-
lows: at each sampling instant t

(1) Set x0 = x(t).
(2) Solve (6) obtaining u∗(x(t)) = [u∗

0, . . . , u
∗
N−1].

2 In the MPC literature and in many MPC algorithms

usually NC = NJ = NU = N .

(3) Apply the input u(t) = u∗
0 and discard the

remaining elements of u∗(x(t)).

The complexity of the MPC algorithm clearly
depends on the structure of the optimization prob-
lem. In particular, if the system dynamics and
the design constraints are linear and Problem (6)
involves only continuous variables, the MPC algo-
rithm requires, at each time step t, the solution
of a Quadratic Program (QP), for which solution
algorithms of polynomial complexity exist. On the
other hand if some variables in Problem (6) are
integer-valued, which is the case when the system
model in (6) is a hybrid model, mixed-integer pro-
gramming (MIP) techniques are required, which
have combinatorial complexity.

When designing model-based control systems,
there is a natural trade-off between model com-
plexity and computation required. In particular,
the more complex (and presumably accurate) is
the model, the more complex Problem (6) may
become. In view of this trade-off, in the sequel
we first design an MPC controller, disregarding
constraint (2b). Since dynamics (5) are linear
and constraints (2a), (3), and (4) are also linear,
the MPC algorithm requires the solution of QP
only. If constraint (2b) is almost never active, the
resulting MPC controller, cascaded by a state-
dependent input-saturation, may be sufficient for
adequately controlling the system, and the con-
troller based on linear MPC solution can be sim-
ple and fast. On the other hand, if constraint
(2b) is often active, the predicted trajectory will
largely differ from the actual one, because of the
unmodeled state-dependent input saturation. In
the latter case, the system performance will most
likely be degraded.

For the electromagnetically actuated mass-spring-
damper system, the linear-MPC controller was
designed using the Hybrid Toolbox (Bemporad,
2003). To make the moving mass position track
a given reference signal and to enforce the con-
straints in (4) as output constraints, we define the
output equation

y(t) =
[

1 0
2500 1
−2500 1

]

x(t) (7)

Accordingly, we set

Qy =
[

104 0 0
0 0 0
0 0 0

]

, Qu = 10−10,

ymin =

[
−4·10−3

−∞
−10.2

]

, ymax =
[

4·10−3

10.2
+∞

]

,

umin = 0, umax = 104, ∆umin = −∆umax = ∞,
NJ = 30, NC = 5, NU = 3,

and use the linear dynamic model (5), (7) as
prediction model.

Figure 2 shows the behavior of closed-loop formed
by the linear model and the MPC controller
when tracking a desired reference profile over a
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simulation time interval of 0.1 seconds from the
initial state x(0) = [ 0

0 ]. Figure 2(a) reports the
position, velocity and input profiles with respect
to time, and Figure 2(b) reports the phase plane
in which satisfaction of velocity constraint (4)
is shown. This velocity constraint only becomes
active near the contact position x1c. Because
the controller cannot provide quick decelerations
due to unidirectionality of the magnetic force, it
keeps the constraint (4) inactive in parts of the
trajectory away from the contact point.
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Fig. 2. Ideal linear MPC simulation.

Figure 3 shows the behavior of the closed-loop sys-
tem when a position-dependent saturation block,
enforcing constraint (2b), is cascaded with the
MPC controller. The performance clearly de-
grades, especially when the reference is decreas-
ing. The reason for such degradation is that the
linear MPC controller does not recognize that
braking the mass at large distances away from the
coil is impossible because of the state-dependent
input saturation. This is in fact seen from the
input plot in Figure 3 where the dashed line
corresponds to the output of the MPC controller,
while the solid line corresponds to the output of
the saturation block.

To avoid wide oscillations and long settling pe-
riods, the saturation constraint (2b) should be
taken into account in the MPC setup. Unfortu-
nately, (2b) is a nonconvex constraint that cannot
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Fig. 3. Effects of saturation (2b).

be handled by standard linear MPC. Next section
shows how such a constraint can be handled by a
hybrid MPC approach.

4. HYBRID MODEL PREDICTIVE CONTROL

We approximate constraint (2b) by a (continuous)
piecewise linear function f(x1) = rix1+qi, if x1 ∈
[x̄i, x̄i+1), i = 0, . . . ℓ where {x̄i}ℓ−1

i=1 are the break-
points of the function profile. In this paper we
consider a piecewise linear approximation with
three segments (ℓ = 3), where the breakpoints are
x̄0 = −x1c, x̄1 = 1.58 · 10−4 m, x̄2 = 1.82 · 10−3

m and x̄3 = x1c. Next, we introduce two binary
variables δ1, δ2 ∈ {0, 1} defined by the logical
conditions

[δ1 = 1] ↔ [x1 ≤ x̄1]
[δ2 = 1] ↔ [x1 ≤ x̄2]

(8)

and two continuous variables z1, z2 ∈ R defined
by the logical conditions

z1 =

{
(r1 − r2)x1 + (q1 − q2) if δ1 = 1
0 otherwise

(9a)

z2 =

{
r2x1 + q2 if δ2 = 1
r3x1 + q3 otherwise,

(9b)

and impose that

u ≤ z1 + z2, (10)

where clearly z1 + z2 = f(x1). Constraints (2a),
(3), (4), (8), (9), (10), together with (5), are
easily modeled in Hysdel (Torrisi and Bempo-
rad, 2004), and the equivalent Mixed Logical Dy-
namical (MLD) hybrid model (Bemporad and
Morari, 1999)

x(k + 1) = Ax(k) + B1u(k) + B2δ(k) + B3z(k),
(11a)

E2δ(k) + E3z(k) ≤ E1u(k) + E4x(k) + E5,
(11b)

corresponding to the saturated magnetic actuator
is obtained, where the matrices A, Bi, i = 1 . . . 3,
Ej , j = 1, . . . 5, are generated automatically using
the Hybrid Toolbox (Bemporad, 2003).
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The hybrid MPC optimization problem is formu-
lated as

min
{uk}

N−1

k=0

∆xT
NQN∆xN+

N−1∑

k=0

∆xT
k Qx∆xk + ukQuuk (12a)

subject to MLD dynamics (11), (12b)

where Qx = QN =
[

2·106 0
0 0

]
, Qu = 10−7, N = 3,

and ∆x1(k) = x1(k) − ry. Because of the binary
variables δ, the hybrid MPC strategy (12) requires
the solution of mixed-integer quadratic programs.
Note that only two binary variables are considered
for each prediction step, so that the resulting
optimization problem is of very small size.

The resulting closed-loop trajectories for the sim-
ulation scenario described in Section 3 when the
hybrid MPC is applied are reported in Figure 4.
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(a) State and input trajectories.
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Fig. 4. Closed-loop system response using the hybrid

MPC controller (12).

Note that the PWL approximation (8), (9) is a
lower bound to the maximum force profile, so that
the force generated by the hybrid MPC algorithm
never exceeds the saturation limits. With respect
to the simulation of the linear MPC cascade by
the saturation block (reported as dashed line in
the position trajectory plot in Figure 4) we note
that the system reacts a little slower when starting
from the neutral position x1(0) = 0, with null

MPC controller Cumulative position Input energy

error (mm2) (kN2)

Linear (ideal) 51.4679 29.1918

Linear saturated 97.8608 26.6314

Hybrid 83.1005 26.6588

Table 1. Comparison of the three MPC sce-

narios

velocity x2(0) = 0. This is the effect of the con-
servative approximation of the force constraint.
While such negative effect can be eliminated by
introducing a more refined approximation, the
positive effects of the hybrid MPC controller are
clear when the reference decreases. Both the over-
shoot and the settling period are reduced, because
the controller is now aware of the limited available
force and it provides the braking action in the
region where a larger magnetic force is available.

Table 1 compares the cumulative square position
error,

∑

k(x1(k) − r(k))2, and cumulative square
inputs (=actuator’s energy),

∑

k u(k)2, for the
different MPC control scenarios. The tracking per-
formance clearly degrades from the linear MPC
controller in the ideal case of no force saturation,
to the saturating one, while the hybrid controller
has better performance (15%) with respect to the
linear-saturated one, despite the slightly conserva-
tive approximation of constraint (2b). Moreover
one must consider that a certain component of
the tracking error is due to the one-step delay
in reacting to reference changes, due to the non-
anticipative implementation of the MPC algo-
rithms. Such an error, that with respect to data
in Table 1 has a value of 25.5, is independent
of the controller applied, and thus should not be
considered in comparing performances. Following
this reasoning, the increase of net performance
of the hybrid MPC algorithm is about 20% with
respect to the linear-saturated one.

5. EXPLICIT IMPLEMENTATION OF THE
CONTROLLER

The implementation of the MPC controllers de-
scribed in the previous sections in a typical au-
tomotive micro-controller with the sampling time
Ts = 0.5 ms can be very difficult because of
the time required for the online solution of the
underlying optimization problem. With the mo-
tivation to complete off-line a large part of the
computations we developed explicit versions of the
MPC controllers.

In (Bemporad et al., 2002) it is shown that the
solution to Problem (6) can be obtained as a
function of the parameters x0 and ry (i.e., the
actual state and output reference) by using multi-
parametric quadratic programming (mp-QP). Us-
ing the mp-QP solver in the Hybrid Toolbox, we
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obtain an explicit feedback law u(x, ry) in contin-
uous piecewise affine form consisting of 80 regions,
which can be evaluated on-line very quickly. The
mp-QP algorithm also returns the value func-
tion V (x, ry) = J∗(x, ry), which is a piecewise
quadratic function.

It must be stressed that the implicit MPC con-
troller and the explicit one produce the same
results, but there is a difference in the amount
of computation required at each sampling step.
More specifically, this difference is between the
solution of an online optimization problem versus
the evaluation of a set of inequalities and the
computation of an affine state feedback term.

Figure 5 shows a section of the three-dimensional
polyhedral partition of the explicit linear MPC
controller, for ry = 0. There is an affine state feed-
back controller associated to each region in the
partition. Figure 5 also shows the state trajectory
superimposed over the polyhedral partition.

In the case of hybrid MPC, we use the algorithm
of (Bemporad, 2003) to obtain a representation
of the MPC controller as a set of (possibly over-
lapping) piecewise affine controllers. During the
on-line operation, at each step for each controller
the value function is evaluated, and the input cor-
responding to the minimum cost is applied. Thus
the explicit hybrid MPC solution involves the ad-
ditional operation of comparing online the value
functions. In addition, the number of regions in-
creases to 671 regions, thus the controller requires
a larger storage memory in the micro-controller
and a larger number of comparison operations to
find the active region.

6. CONCLUSIONS

We have compared two MPC solutions to the
problem of controlling an electromagnetic actu-
ator: one is based on linear MPC and handles one
of the constraints via a-posteriori saturation; the
other one is based on a hybrid model of the system
and accounts for all the constraints in the design
phase.

The hybrid MPC, which takes into account a
piecewise linear approximation of the position
dependent force constraint, achieves better per-
formance than the linear MPC solution with su-
perimposed saturation. Its main drawback is in
higher complexity of the controller. Thus, the ul-
timate choice between these two MPC solutions
can only be made once considering available com-
puting resources and the aggressiveness of perfor-
mance specifications.

An electromagnetically actuated mass-spring damper
laboratory experiment is currently under con-
struction at the University of Siena.
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Fig. 5. Section of the linear explicit controller partitions

obtained for ry = 0.
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