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Abstract: This paper addresses the problem of the identification of Hybrid Dynamic 
System (HDS) by focusing the attention on the identification of a global model that 
predicts the continuous outputs of the HDS. The proposed approach considers the 
identification of HDS in terms of the architectures and the learning algorithms developed 
for Feed-Forward neural networks. Copyright © 2006 IFAC 
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1. INTRODUCTION 

 
Over the past years, the study of Hybrid Dynamic 
systems (HDS), which combines continuous and 
discrete dynamics, has attracted increased attention. 
Most works that deal with the control, the analysis 
and the diagnosis of hybrid systems are based on the 
assumption that the model of the hybrid system is 
available (Branicky, 1996, Coquempot et al., 2004). 
Hence, it seems that little attention has been paid to 
the problem of obtaining a model from a given input-
output data generated by a hybrid system (Bemporad 
et al., 2001; Bemporad et al., 2004, Ferrari-Trecate 
et al., 2003 Hoffmann and Engell, 1998; Juloski et 
al., 2004; Simon and Engell, 2001; Vidal et al., 
2004).  
 
Early work on the identification of hybrid systems 
employ statistical methods to detect the discrete 
change of the continuous dynamics (Hoffmann and 
Engell, 1998). Based on this work, Simon and Engell 
(2001) decompose the I/O data obtained by hybrid 
linear systems on wavelets and characterize the 
discrete events (i.e. the switching) as maxima in the 
coefficients of the transform. Once, the switching 
points are detected, the set of data is partitioned into 
sections in which a constant set of model parameters 
is estimated to describe the continuous dynamics. 
 
Most of the proposed approaches for the 
identification of HDS concern the classes of 

switched linear and PieceWise Affine system. They 
can be classified into the Mixed_Integer 
Programming approach (Bemporad et al., 2001), the 
clustering-based approach (Ferrari-Trecate et al., 
2003), the bounded-error approach (Bemporad et al., 
2004), the Bayesian approach (Juloski et al., 2004) 
and the algebraic approach (Vidal et al., 2004). 
 
In (Bemporad et al., 2001), it is shown that the 
identification problem can be reformulated for two 
subclasses of PieceWise Affine systems. These 
reformulations lead to the proposition of algorithms 
based on Mixed-Integer Linear or Quadratic 
Programming, which are guaranteed to converge to a 
global optimum. However, this approach is 
computationally affordable only for a few measured 
data because the complexity of the used algorithms is 
NP-hard. The four other approaches deal particularly 
with the class of PieceWise Affine AutoRegressive 
eXogenous (PWARX) system, i.e., models in which 
the regressor space is partitioned into polyhedra with 
affine ARX sub-models for each polyhedron. The 
basic steps that these approaches perform are: the 
estimation of the parameters, the classification of the 
data attributed to each mode and the estimation of the 
polyhedral regions. However, the clustering-based 
approach (Ferrari-Trecate et al., 2003), the bounded-
error approach (Bemporad et al., 2004) and the 
Bayesian approach (Juloski et al., 2004) require that 
the ARX submodels orders are fixed. Furthermore, 
both of the clustering-based approach and the 
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Bayesian approach require a priori knowledge of the 
number of the modes. 
 
Unfortunately, the existing identification algorithms 
deal only with special linear classes of hybrid 
models. This is a significant limitation, because, to 
the best of our knowledge, there is no work 
addressing the case in which the dynamics can be 
nonlinear and the number of modes, the model 
parameters and the switching sequence are unknown. 
 

     

}

The aim of this paper is to investigate an alternative 
method that seems to be promising for handling this 
more challenging case. However, we will restrict this 
first study to a class of HDS, which is characterised 
by continuous inputs, continuous outputs and binary 
discrete inputs. In the proposed approach, we 
consider the plant as a nonlinear black-box model 
and try to capture its behaviour globally. In this 
context, we will consider Feed-Forward neural 
networks (NNs) as global parametric models in order 
to show that the behaviours of the considered class of 
HDS can be predicted with NNs. This permits to 
obtain global parametric models of HDS without 
needing to cluster the data or to know the current 
mode. To the best of our knowledge, and apart from 
the few remarks addressed by Ferrai-Trecate and 
Muselli (2002), no works have addressed the issue of 
using NNs in the context of HDS identification.  
 
The proposed approach has the advantage of 
considering the identification problem of HDS in 
terms of the architectures and the learning algorithms 
developed for NNs. It can therefore deal with system 
nonlinearities and can be used to track the behaviours 
of the HDS without a priori knowledge about the 
current mode. However, this approach will result in a 
black-box model with a large number of parameters 
Furthermore, although the obtained NNs represent 
average models that can fairly approximate a given 
HDS, they are not able to predict the behaviours of 
this system with a similar precision in all the modes. 
Finally, the obtained NNs are not adapted for some 
control and analysis problems, but they can be very 
useful to deal with the model-based diagnosis of 
HDS (Messai et al., 2006). 
 
In this paper, the Feed-Forward-neural-networks 
based approach for the identification of HDS is 
presented in Section 2 and, then, this approach is 
illustrated with the help of a benchmark example in 
Section 3. 
 

2. IDENTIFICATION OF THE PARAMETERS 
OF THE NEURAL NETWORKS  

 
Before the presentation of the identification 
procedure, let us, firstly, attempt to explain the 
mechanism by which NNs can learn the behaviours 
of HDS. In fact, the output of the neural network 
depends on the number of the hidden neurons and the 
activation of these hidden neurons. Hence, if the set 
of the hidden neurons is divided into several groups 
and if each of these groups of neurons is active in a 
distinct mode of the HDS, then the neural network 
will fairly approximate the I/O data of the HDS. Of 

course, the real mechanism is more complex since 
several subgroups of hidden neurons can be 
combined to reproduce other modes of the HDS. 
 
As a simple example that illustrates this idea, 
consider the non linear hybrid system represented by 
Figure 1. This system, which switch for the function 
f1 to the function f2 when the input U is equal to 20, 
could be approximated by a NN involving two 
groups of hidden neurons (figure 2 and 3). The first 
group is composed of three hidden neuron, which are 
active for all the values of the inputs U≤20, (fig. 2). 
Therefore, the sum of their outputs will reproduce the 
function f1 when U≤20 and this sum will be equal to 
1 when U>20. On the other hand, the three hidden 
neurons of the second group are saturated when 
U≤20 and the sum of their three outputs will 
reproduce the function f2 when U>20 (fig. 3). 
Consequently, the output of a NN with an output 
neuron using a linear activation function will exactly 
reproduce the HS if and where 

 are the weights between the hidden 
neurons and the output neuron and b is the bias of the 
output neuron. 

{ } 16,..,2,1, =∈iiw ,1−=b

{ 6,..,2,1, ∈iiw

 

 
Figure 1: the HDS to be reproduced by the NN 

 

 
Figure 2: the outputs of the 1st group of hidden neurons 

 

 
Figure 3: the outputs of the 2nd group of hidden neurons 

 

 
Figure 4: the proposed approach 
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The proposed identification approach is depicted in 
figure 4 where the hybrid process is characterised by: 
the binary discrete inputs (ud), the continuous inputs 
(uc) and the continuous outputs (yc). The NNs predict 
the continuous outputs in terms of the past measured 
input/output variables and without using the state 
variables. Furthermore, neither the information about 
the current mode nor the number of the modes are 
needed to work out the NNs. This configuration is of 
practical interest, science accurate models of 
complex hybrid system are often difficult to obtain 
and only data measured by both continuous and 
binary sensors are available. 
 
Feed-forward neural networks, with a hidden layer 
using sigmoidal activation function and an output 
layer with a linear one, can be used to extract 
powerful models from experimental data (Carotenuto 
et al., 1998, Cybenko, 1989). Therefore, the NNs that 
will be used to predict the continuous outputs yc are 
formed by: 
• An output layer, containing linear neurons, that 

provide the continuous outputs, 
• A hidden layer containing neurones with 

sigmoidal activation function, 
• An input layer that receives the data from the 

sensors of the real world hybrid systems. 
 
To begin with the identification procedure, suppose 
that the input/output data is observed with a sampling 
period T and that the state changes of the binary 
inputs are only taken into account at the sampling 
instants. Then, consider: 

)],( ... )3( ),2( , )1([ kuuuuu cccc
k
c =  

)],( ... )3( ),2( , )1([ kuuuuu dddd
k
d =  

)],( ... )3( ),2( ),1([ kyyyyy cccc
k
c =  

where ,  and  represent, respectively, the 
continuous inputs, the discrete inputs and the 
continuous outputs at instants kT; k∈{1,2,…}. The 
dimensions of the vectors u

k
cu k

du k
cy

c(k), ud(k) and yc(k) are 
respectively given by the number of the continuous 
inputs, the number of the discrete inputs and the 
number of the continuous outputs. 

     

k
cϕ

 
In order to model a HDS by NNs, which predict the 
continuous outputs, we propose to write the relation 
between ),,( 111 −−− k

c
k
d

k
c yuu  and )(kyc in the form: 

  (1) )(),,()( 111 keyuugky k
c

k
d

k
cc += −−−

where g is an unknown function and e is an additive 
term, indicating that y(k) can not be exactly 
determined from the previous observations. 
 
Although, the equation (1) can be used to model the 
HDS, it remains very general to be exploitable and 
the function  will therefore be 
decomposed into two functions φ and h: 

),,( 111 −−− k
c

k
d

k
c yuug

),,( 111 −−−= k
c

k
d

k
c

k yuuφϕ    (2) 

)(),()( kehky k
c += θϕ    (3) 

where is the regressors vector, θ is the parameters 
vector to be identified and h is a function that 
expresses the relation between the regressors and the 

outputs of the NNs. Note that in the case of feed 
Feed-Forward neural networks, the function h is 
decomposed into a set of sigmoidal function f 
representing the neurone of the hidden layer. 

kϕ

 
At this stage, the identification problem of the HDS, 
will be a problem of choosing the optimal structure 
of the NNs. This problem involves the choice of the 
inputs (i.e., the regression vector), the number of the 
hidden neurones and the number of the outputs 
neurones.  
 
Concerning the choice of the number of the output 
neurons, two alternatives are possible. The first one 
is to build a single NN with a number of output 
neurons equal to the number of the continuous 
outputs of the HDS to be identified. Each output 
neuron of this NN corresponds to a continuous output 
of the HDS. The second alternative is to associate a 
NN with each of the continuous outputs of the 
system. In this case the number of NNs will be equal 
to the number of the continuous outputs of the HDS 
to be identified and each NN will predict one of the 
continuous outputs. 
 

To choose the regressors, is decomposed into two 
parts: the regressors of the continuous measured 
and/or estimated variables, , and the regressors of 

the binary discrete inputs, . 

kϕ

k
cϕ

k
dϕ

 

To select , we propose to associate a large 
number of input neurones with each discrete input 
and to use a pruning algorithm, such as the optimal 
Brain Surgeon (OBS) algorithm (Reed, 1993), to 
remove the parameters, and subsequently the input 
neurons, that are not needed. Hence, if we have N

k
dϕ

d 
discrete inputs, each of which is associated with ned 
neurones, the initial regressors  will be composed 
of n

k
dϕ

ed.Nd elements. These elements represent the 
values of all the discrete inputs between the instant 
(k-1)T and the instant (k-ned)T. Then, the initial 
regressors  will be optimised at the end of the 
training by the pruning algorithm. 

k
dϕ

 

On the other hand, the determination of is derived 
from the general linear model given by (Chen et al., 
1990, Ljung, 1987): 

)(
)(
)()(

)(
)()()( 1

1

1

1
1 ke

qD
qCku

qF
qBqkyqA c

n
c

k
−

−

−

−
−− +=   (4) 

where nk is the delay and the polynomials  

and  are respectively 
characterised by the orders n

),( 1−qA

 )(),(),( 111 −−− qDqCqB )( 1−qF
a, nb, nc, nd and nf. The 

identification procedure starts with a regressor vector 
composed of a large identical number of delayed 
inputs and delayed outputs. The delay nk is then 
estimated by modelling the system for various values 
of nk and by choosing the value which will 
correspond to the model providing the smallest 
residual criterion. 
 
Finally, the regression vector is obtained by: i) 
modelling the system with ascending values of the 
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orders of the polynomials used in the equation 4, and 
ii) choosing the model providing the smallest value 
of the final prediction error as suggested by Akaike 
(Ljung, 1987): 

∑
−
+

=
=

N

k
FPE ke

dN
dNV

1

2))((    (5) 

where, N is the number of data in the training data set 
and d is the number of weights and the bias (i.e., the 
parameters) of the NN (Fig. 5). 

     

 
Figure 5: structure of the NN model 

 
 

3. APPLICATION EXAMPLE 
 
In order to illustrate the proposed approach let us 
consider the two tanks flow system depicted in the 
figure 6. This system is the benchmark of the 
Specific Action on the diagnosis of hybrid systems 
(AS193) of CNRS1 and GDR MACS2. Although, 
this system can be perfectly described by a set of 
mathematical equations, we will consider it as a 
black-box system equipped with some sensors that 
provide the I/O data. Consequently, the behaviour of 
this system will be firstly simulated using a 
mathematical model of the system. Then, the data 
obtained in simulation are considered as a set of I/O 
data measured by fictive sensors and provided to the 
NNs that predict the next continuous outputs. 

 
Figure 6: the two tanks system 

 
3.1 Description of the system 
 
The system consists of two cylindrical tanks, R1 and 
R2. Each tank has an input pipe and an output pipe. 
The input pipes use built-in identical on-off pumps 
(P1 and P2) and the output pipes are controlled by 
two on-off electro valves, V1 and V2. The tanks are 
connected to each other by means of two pipes, 
located at the bottom of the tanks and at 0.5 m 
height. These pipes are also controlled by on-off 
electro valves, V3 and V4. Finally, each tank is 

                                                 
1 Centre National de la Recherche Scientifique  
2 Groupement de Recherche "Modélisation, Analyse et Conduite 
des Systèmes dynamiques" of CNRS 

equipped with an analogue sensor that measures the 
level of the fluid. 
The system can be represented as a HDS with two 
continuous variables, h1 and h2, representing the 
height of the fluid in the tanks and six binary inputs: 
P1, P2, V1, V2, V3 and V4. 
 
For the purpose of simulation let us consider that the 
dynamics of the pumps are very fast. Hence, we can 
suppose that the input flows are constants when the 
pumps are on and are null when the pumps are off. 
 
According to the Torricelli model, the dynamics of 
the system can be described by the following 
equations: 

{ }1,0                    ,. 111 ∈= PPDQP   (6) 
{ }1,0                   ,. 222 ∈= PPDQP   (7) 

{ }1,0           ,..2 1111 ∈= VVhgAQ   (8) 

{ }1,0         ,..2. 2222 ∈= VVhgAQ   (9) 

{ }1,0       ,.. 33213 ∈−= VVhhQ α   (10) 

,5.0,sup()5.0,sup(. 4214 VhhQ −= α  (11) 

   { }1,04 ∈V

4311 QQQhS −−=&    (12) 
4322 QQQhS ++−=&    (13) 

where ),(.2. 21 hhsigngA −=α  D is the constant 
input flow of both pumps (D=10-4m3/Sec),  
is the input flow of tank i,  is the output flow 
of tank i, Q

{ }2,1, ∈iPiQ

{ }2,1, ∈iiQ

3 is the flow in the pipe C1 and Q4 is the 
flow in the pipe C2. 
 
In order to avoid either the draining or the overflow 
of the tanks, the electro valves V1, V3 and V4 as well 
as the pump P1 are driven by an algorithm which 
guarantees the following levels of the fluids in the 
tanks R1 and R2: 

111 Mhm ≤≤     (14) 

222 Mhm ≤≤     (15) 
with M1=0.6m, M2=0.75m, m1=0.4m and m2=0.2m. 
  
Finally, to further complicate the modelling tasks, the 
pump P2 and the electro valve V2 are considered as 
perturbations which cannot be controlled. Hence, P2 
and V2 were opened and closed according to two 
Nearly Random Binary Sequences of length: 

]30,10[2∈pl  and ]50,30[2 ∈vl .  
 
Although the number of modes of this benchmark 
example is known (64 modes), the identification 
approach is designed to deal with unknown number 
of modes. Hence, the knowledge about the number of 
modes and the current mode will not be used to build 
the NNs. 
 
3.2 The NN identification results 
 
The above hybrid system is modelled by two feed-
forward neural networks according to the approach 
presented in section 2. Each NN predicts the level of 
the liquid in the corresponding tank. 
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During the simulations phase, two data sets, each 
containing N = 5000 data, were generated. The first 
data set, called the identification data set, is used to 
find the optimal structure of the NNs (i.e., the 
number of neurons in each layer and the parameters 
of each NN) and the second data set, called the 
validation data set, is used to verify the accuracy of 
the obtained structures when other data are used. 
 
These data sets that have been used to build the NNs 
were obtained by: 

• Fixing the sampling period to T=1 Sec, 
• Simulating the behaviours of the system 

according to the equations 6 to 13. The initial 
conditions were: mhh  010 ==  for the identification 
data set and  for the validation data 
sets, 

mhh  110 ==

• Adding Gaussian noises with zero mean and a 
standard deviation 01.0=σ  to the data sets. These 
noises were added to evaluate the accuracy of the 
obtained model in the presence of noise. 
 
In order to obtain the structure of the NNs, 5 input 
neurons were associated with each binary input at the 
beginning of the identification procedure. 
Consequently the initial vector was composed by 
30 elements that represent the 5 last states of the 
valves and the last 5 states of the pumps. Note that 
this initial is considered sufficient because we 
have observed that the OBS algorithm eliminates 
some inputs at the end of each training. 

k
dϕ

k
dϕ

 
The identification procedure is initialised with a 
regressor vector, , composed of a sufficiently 
high number of delayed outputs (n

k
cϕ

a=5) in order to 
determine the delay nk. Once this delay is obtained, 
the regressors are selected by modelling the system 
with ascending values of the orders and by choosing 
the orders of the model providing the smallest value 
of the final prediction error. 
 
During the identification phase, the parameters of the 
networks were estimated by means of Levenberg-
Marquardt algorithm (Declerq and Dekeyser, 1995) 
with 20 different initializations and a maximum of 
5000 iterations; these several trials were performed 
in order to select the model with the best 
performances. Then, starting from a structure with 12 
hidden neurons, the Optimal Brain Surgeon (OBS) 
algorithm (Reed, 1993) was used to remove the parts 
that are not needed. Hence, after several simulations, 
according to the approach described in section two, 
we have opted for two NNs with: 

• 21 input neurons that receive the last three 
outputs of the considered sensor (continuous 
variables), the last three binary states of the valves 
and the last three binary state of the pumps, 

• 8 hidden neurons, 
• 1 output neuron using a linear activation 

function. The outputs of this neuron correspond to 
the predicted liquid level in the considered tank. 
 
Figures 7a, 7b, 7c, 8a, 8b and 8c present, 
respectively, the identification and the validation 

results of the selected models. The upper part of 
figures 7a and 8a depicts the predicted and the 
measured liquid levels. The analysis of these figures 
shows that it is difficult to distinguish between these 
levels because the liquid levels predicted by both the 
NNs closely match the measured data. The lower 
parts of figures 7a and 7b show that the residuals, 
which represent the differences between the 
measured and the predicted levels, are very small and 
indicate that the relative errors do not exceed 5% of 
the measured levels. The same remarks apply to 
figures 8a and 8b. These results validate the 
identified models and indicate that the NNs are able 
to estimate the level of the liquid for all the modes of 
the considered systems. 
 
Other results, not presented here, indicated that the 
values of the cross correlation functions between the 
inputs and the outputs are lower than the practical 
threshold given by Landau (2001). These results 
pointed out the independence between the residuals 
and the inputs and show that the NNs are able to 
reproduce all the dynamics of the system. 
Furthermore, the analysis of the autocorrelation 
functions of the residuals has shown that the values 
of these functions belong to the 99% confidence 
intervals. These results confirm the independence 
between the residues and indicate that the residuals 
can be considered as a white noise. Finally, figures 
7c and 8c confirm the analysis of the autocorrelation 
plots and indicate that the distributions of the 
residuals are similar to the distributions of the noise 
that was added to the data sets. 

 
 

4. CONCLUSION 
 
A methodology to build black-box models of HDS 
has been proposed. According to this methodology, 
the behaviours of HDS can be predicted by feed-
forward neural networks that track all the modes of 
the system and the determination of the structure of 
these neural networks can be viewed as a system 
identification problem. This approach was illustrated 
with a simulation example and the obtained results 
provide strong evidence of the good performances of 
the obtained model. Several problems remain open, 
such as the proposition of residual criteria and 
validation method, which guarantee the same validity 
of the NNs for all the modes of the HDS.  
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Figure 7a: identification results for the 1st NN 

 

 
Figure 7b: validation results for the 1st NN 

 

 
Figure 7c: distribution of the residuals for the 1st NN 

 

 
 

Figure 8a: identification results for the 2nd NN 
 

 
N Fig vure 8b: alidation results for the 2nd N

 

 
Fig i u he N ure 8c: d strib tion of t  residuals for the 2nd N
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