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Abstract: In this paper, we consider the task to start the operation of an industrial
evaporation system. Rigorous modelling gives rise to a hybrid automaton with
large nonlinear DAE-models that describe the continuous evolution in the discrete
locations. The optimization problem is solved by a hierarchical procedure that
consists of a branch-and-bound algorithm with embedded nonlinear dynamic
optimization over a finite look-ahead horizon. Important elements of the algorithm
are the introduction of a dynamic choice of the time intervals over which the
controls are constant and of tailored penalty functions in order to obtain solutions

which are close to infeasible trajectories.  Copyright © 2006 IFAC

Keywords: Automaton, hybrid systems, large-scale models, nonlinear
programming, optimal control.

1. INTRODUCTION

Chemical processing systems usually exhibit non-
linear and, in case of changes of the physical state
of the substances (e.g. from liquid to vapour),
switched dynamics. In addition, the states and the
inputs are constrained, and a considerable number
of actuated inputs usually is of discrete nature,
e.g. valves which can be either open or closed.
Besides continuous feedback controllers, there are
logic (switching) controls that establish sequen-
tial procedures and initiate exception routines if
malfunctions of sensors or actuators or serious
disturbances occur. An important function of logic

1 Corresponding author: c.sonntag@bci.uni-dortmund.de.
This work is supported by the EU-funded NoE HyCon

and the Graduate School of Production Engineering and

Logistics at University of Dortmund.

controls is for example the safe shut-down of the
plant in case of dangerous situations. In order to
describe such automated processing plants, hybrid
models with nonlinear dynamics are appropriate.
However, the computation of optimal controls for
such models is very challenging due to the usually
large number of discrete degrees of freedom in
connection with the nonlinear dynamics. As an
example, the hybrid model of a simplified indus-
trial evaporation system is described in this paper,
and the task of optimal start-up of this plant is
formulated. The evaporator is a simplified ver-
sion of a benchmark example that was developed
within the EU Network of Excellence HyCon in
cooperation with an industrial partner.

Due to the complexity of the hybrid model, the
application of techniques which evaluate the opti-
mality conditions, see e.g. (Sussmann, 1999; Bran-
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icky et al., 1998; Shaikh and Caines, 2003), seems
not very promising. It is preferable instead to
either employ techniques based on simpler approx-
imating models , e.g. (Bemporad et al., 2000; Lin-
coln and Rantzer, 2001; Stein et al., 2004), or to
use numeric methods for optimizing the original
dynamics such that fast convergence to a good
solution is obtained, e.g. (Buss et al., 2000; Barton
and Lee, 2002). The approach for solving the opti-
mal control problem for the evaporator presented
in this paper is based on the technique introduced
in (Stursberg, 2004a; Stursberg, 2004b). It con-
sists of a graph search algorithm that fixes discrete
degrees of freedom, and embedded nonlinear pro-
gramming (NLP) is used to select locally optimal
continuous inputs. The hybrid dynamics is eval-
uated within the NLP by hybrid simulation. For
the evaporator, however, this algorithm does not
produce satisfying result without further tuning –
hence, two modifications are introduced here: the
first determines a time discretization for selecting
the inputs based on the progress in the state
space, and the second introduces specific penalty
functions that allow for trajectories of low costs
which are close to the boundary of the feasible
state set.

2. A HYBRID MODEL OF THE
EVAPORATOR

In the processing industries, liquids are often con-
centrated by evaporating volatile solvents such
that non-volatile components (often the products)
are enriched in the liquid phase. Fig. 1 shows a
scheme of the industrial-scale evaporation system
considered in this paper (as a particular instance
of the multi-stage system in (Sonntag and Sturs-
berg, 2005)). During start-up, the initially empty
evaporation vessel (A) is filled with cold liquid
feed consisting of a non-volatile product, water,
and alcohol. The heat supply to the vessel is rea-
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Fig. 1. Flowchart of the Evaporator.

lized by condensing hot steam in a heat exchanger
(B). When the liquid starts to boil, vapor can be
drained from the top of the vessel. If the product
concentration meets desired purity requirements,
the product can be continuously drained from the
bottom of the vessel. The operation is controlled
using four valves and two pumps (C). While the
vapor drain and the liquid feed can be adjusted
continuously by VV 1 and V1, the valves controlling
the inflow of hot steam (VV 2) and the product
drain (V2) are switched between two discrete set-
tings.

2.1 Hybrid Automaton with DAE Dynamics

To model the evaporator, we extend the hybrid
automaton specified in (Stursberg, 2004a) by an
input availability mapping and continuous dy-
namics given as DAEs:

Definition 1. A hybrid automaton with DAE dy-
namics HA = (Z, z0, X, x0, Y, U, V, ψ, inv,Θ, g, j,
f, l) consists of:

• the finite set of locations Z = {z1, . . . , znz
};

• an initial location z0 ∈ Z;
• the continuous state space X ⊆ R

n on which the
vector of (differential and algebraic) continuous

variables x(t) ∈ X is defined (for simplicity
of notation, we do not distinguish between
variables and their evaluations here);

• an initialization of the continuous variables
x0 ⊆ X;

• the continuous output space Y ⊆ R
m on which

the vector of continuous output variables y(t) ∈
Y is defined;

• the space of continuous inputs U = [u−1 , u
+
1 ]×

. . . × [u−nu
, u+

nu
] with u−j , u

+
j ∈ R, and the

continuous inputs are denoted by u(t) ∈ U ;
• a finite set of discrete inputs V = {v1, . . . , vnd

}
with discrete inputs v(t) ∈ V for which vj ∈
R

nv ;
• the input availability mapping ψ : Z → U × V,

U ⊆ U , V ⊆ V that assigns sets of available
continuous and discrete inputs to each location
z ∈ Z;

• the invariant function inv : Z → 2X which
assigns an invariant set inv(z) ⊆ X to each
z ∈ Z; we require that x0 ∈ inv(z0);

• the set of discrete transitions Θ ⊆ Z × Z, and
each transition is a pair θ = (zi, zj) ∈ Θ;

• the function g : Θ → 2X that associates a guard

set g(θ) ⊆ X with each transition θ ∈ Θ; for
each z ∈ Z, the guard sets of all transitions
θ = (z, •) are required to be pairwise disjoint;

• the jump function j : Θ × X → X which
assigns an update j(θ, x) ∈ X of the continuous
variables to each θ ∈ Θ and x ∈ g(θ);

• the flow function f : Z×X×U ×V → R
n that

determines the continuous evolution in each
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location z ∈ Z. For given input trajectories u(t)
and v(t) and a location z ∈ Z, we assume that a
unique solution of Mẋ(t) = f(z, x(t), u(t), v(t))
exists for an initialization x(0) ∈ inv(z), t ∈
R

≥0, and M ∈ R
n×n, Mij = 0 ∀ i 6= j; i, j ∈

{1, . . . , n}; note that f constitutes a system
of semi-explicit differential-algebraic equations
(DAEs) if M is not regular;

• and the output function l : X → Y which
uniquely maps the evaluation of the continuous
variables to output variables y(t) ∈ Y . ⋄

Let Σ =
⋃

z∈Z

⋃
x∈inv(z)(z, x) denote the set of

valid hybrid states σ = (z, x) of HA with z ∈ Z,
x ∈ inv(z). T = {t0, t1, t2, . . . } is the ordered set
of time points tk ∈ R

≥0 which contains the initial
time t0 = 0 and all points of time at which an
input changes or a transition occurs. For tk ∈ T ,
the hybrid states, inputs, and outputs are written
as: σk := (zk, xk), uk := u(tk), vk := v(tk) with
(uk, vk) ∈ ψ(zk), and yk := y(tk).

A continuous input trajectory defined on T is
a sequence φu = (u0, u1, u2, . . . ), and a discrete
input trajectory is given by φv = (v0, v1, v2, . . . ),
meaning that uk and vk are piecewise constant on
[tk, tk+1[. For given φu and φv, a sequence φσ =
(σ0, σ1, σ2, . . . ) of hybrid states σk = σ(tk) =
(zk, xk) is a deterministic feasible run of HA iff:

• σ0 = (z0, x0), with x0 ∈ inv(z0), and
• σi+1 = (zi+1, xi+1) ∈ Σ follows from σi =

(zi, xi) ∈ Σ according to:
◦ xi+1 = x(ti+1) is the continuous state ob-

tained from solving Mẋ(t) = f(zi, x(t), u(t),
v(t)) for t ∈ [ti, ti+1] starting from xi = x(ti),
and x(t) ∈ inv(zi) must apply for all t ∈
[ti, ti+1], and x(t) /∈ g(θ) for t ∈ [ti, ti+1[ and
for all θ = (zi, •).

◦ if xi+1 ∈ g(θ), θ = (zi, z
′): zi+1 := z′,

xi+1 := j(θ, xi+1) ∈ inv(zi+1);
else xi+1 := xi+1, zi+1 := zi. ⋄

2.2 HA Model for the Evaporator

Since product can be drained from the vessel
only if the target region (see Sec. 3) is reached,
it is sufficient to introduce four locations, i.e.
Z = {zNE , zNET , zE , zET }, where ’E’ stands for
evaporating, ’NE’ for not evaporating, and ’T’ for
target. The continuous dynamics of all locations is
modeled by a DAE system with four differential
equations (modeling the the total masses of the
three components m1 (product), m2 (water), and
m3 (alcohol), and the total inner energy U), and
13 algebraic equations that were derived using the
assumption that the system is in thermodynami-
cal equilibrium during evaporation. The algebraic
variables are the mass fractions of the three com-
ponents in the liquid phase (w1, w2, w3) and in
the vapor phase (ξ1, ξ2, ξ3), the temperature in the

evaporator T , the total mass of the liquidmliq, the
volume of the vapor phase Vvap, the energy trans-
fer between the heat exchanger and the evaporator
Q̇, the mean temperature Tm and the pressure
PHE in the heat exchanger, and the flow rate of
hot steam into the heat exchanger ḞHE . If the
system is in location zNE , the variables ξ1, ξ2, ξ3,
and Vvap are set to zero since a vapor phase does
not exist. As an example for the high degree of
complexity and nonlinearity of the DAE-system,
the equation describing the equilibrium conditions
for the mass of the alcoholic component looks like:

m3 = mliq · w3 +
w3 · P 0

3 (T ) · Vvap

R · T ·
[

w1

M1
+ w2

M2
+ w3

M3

] (1)

with the universal gas constant R, the molecular
weights M1, M2, and M3, and P 0

3 (T ) is a third-
order polynomial in T .

Using the justifiable assumption that the liquid
mass mliq and the mass fractions w1, w2, and w3

remain constant for any transition θ, all hybrid
states σ = (z, x) of the evaporator are uniquely
determined by a reduced vector:

xred = [w1, w2, T, L, P ]. (2)

The output variables L and P , which can be
uniquely determined from the state variables, rep-
resent the liquid level and the pressure in the
evaporator 2 . While L follows from the mass and
density of the liquid, P is given by:

P =
w1

M1
· P 0

1 (T ) + w2

M2
· P 0

2 (T ) + w3

M3
· P 0

3 (T )
w1

M1
+ w2

M2
+ w3

M3

,

(3)

where P 0
1 (T ), P 0

2 (T ), and P 0
3 (T ) are third-order

polynomials in T .

A bounded and reduced continuous state space
can be defined as:

Xred =[0, 0.98] × [0, 1] × [300, 440] × [0, 100]×
[0, 5], (4)

and xred ∈ Xred. (Units are omitted for abbrevia-
tion.) During start-up, the upper bounds given in
Eq. 4 must not be exceeded for safety reasons.

The continuous inputs u1 and u2 represent the
settings of the valves VV 1 and V1, and are defined
on the range [0 %, 100 %], where 0 % means
completely closed. For all z ∈ Z, both continuous
inputs are available. A discrete input is defined as
the vector vj = (V2, VV 2) and the discrete input
space by V = {(0 %, 80 %), (0 %, 100 %), (11.5 %,
80 %), (11.5 %, 100 %)}. If z ∈ {zNE , zE}, the
product drain valve must remain closed, such

2 The dynamics of the process is nevertheless determined

by the higher-order DAE-system since the latter cannot
be solved explicitly for xred, i.e. the use of xred does not

reduce the model complexity.
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that the available discrete inputs are reduced to
VzNE ,zE

= {(0 %, 80 %), (0 %, 100 %)}. Otherwise,
all discrete inputs are available.

Between all pairs of locations, transitions in both
directions can occur, i.e. |Θ| = 12. The transitions
can be divided into three classes: (a) transitions
occurring if the product concentration reaches or
leaves the target region (see Sec. 3), (b) transitions
occurring when the liquid begins or stops to
evaporate, and (c) transitions for which both
is true. While the guard condition for (a) only
depends on the current value of w1, the guard
set for (b) is assumed to be given by P = 0.4,
with P defined according to Eq. 3. The guard for
(c) is the conjunction of the two previous ones.
The invariants of the locations are bounded by
the set of states defined by the guard conditions
and the boundaries in Eq. 4. Although the state
variables ξ1, ξ2, ξ3, and Vvap are reset with discrete
transitions of the hybrid model, the variables
in xred are not affected due to the modeling
assumptions described above.

3. THE OPTIMAL CONTROL PROBLEM

The following type of optimal control problem
is considered in this paper: Given are an initial
state σ0 ∈ Σ and a target set Σt ⊂ Σ with
Σt = {(zt, x)|∃1zt ∈ Z : x ∈ Xt ⊂ inv(zt)}. It
is assumed that the ordered set of time points
T = {t0, t1, t2, . . . , tf} is finite, and that the con-
tinuous and discrete inputs can only be changed
at tk ∈ Ts ⊂ T , while φσ remains defined on T .
The set Φu,s contains all possible continuous input
trajectories φu = (u0, u1, u2, . . . ) defined on Ts,
and Φv,s contains all possible φv = (v0, v1, v2, . . . ).
The control task is then to determine input tra-
jectories φ∗u and φ∗v that lead to a feasible run φ∗σ
of HA from σ0 into Σt such that a cost function
Ω is minimized:

min
φu∈Φu,s,φv∈Φv,s

Ω(tf , φσ) (5)

s.t. φσ = (σ0, . . . , σf ) with σ0 = (z0, x0),

σf := (z(tf ), x(tf )) ∈ Σt.

The initial state of the evaporator is given by
x0,red = [0.12, 0.85, 327, 1, 0.282], denoting a state
with very low product concentration, low level,
and no evaporation (z0 := zNE). The control
task is to drive the system into the location zt =
zET and the target region Xt,red = [0.8, 0.84] ×
[0.16, 0.2]× [370, 420]× [60, 64]× [0.5, 4] in a time-
optimal fashion.

Using the cost function Ω = tf in (5) and optimiz-
ing over the complete time horizon [t0, tf ] is often
computationally intractable since |Ts| choices for
u and v lead to an exponential growth of the
solution space with increasing |Ts|. In this case,

a substitute for Ω may be chosen which allows
for an appropriate cost evaluation of trajecto-
ries also over shorter time horizons. A possible
choice is a cost function which combines tf with
a notion of distance of any intermediate state
σk to the target region Σt. It was found for the
evaporator, however, that this choice for Ω does
provide only solutions for which tf is somewhat
worse than the optimal value. Reasoning about
the expected behavior of the system led to the
following heuristically-chosen cost function:

Ω(xs,red) =





α · |ws,1 − ws,1,t| + β · |Ls − Ls,max|
if |ws,1 − ws,1,t| > 0.09,

β · |ws,1 − ws,1,t| + α · |Ls − Ls,t|
if |ws,1 − ws,1,t| ≤ 0.09.

(6)

Note that before evaluating Ω(xs,red), all vari-
ables of xred are scaled to the range [0, 1] ac-
cording to xs,red = D−1 · xred − c, with D =
diag(0.98, 1, 140, 100, 5) and c = [0, 0, 2.1429, 0, 0]T .
In Eq. 6, ws,1 is the scaled product concentration,
ws,1,t = 0.804 the scaled target concentration,
Ls the scaled liquid level, Ls,max = 1 the upper
bound for Ls, Ls,t = 0.62 is the scaled target level,
and α and β denote weighting constants. The
motivation for this choice of Ω(xs,red) is that the
fastest way to increase ws,1 should be to maximize

the energy transfer Q̇ between the heat exchanger
and the evaporation vessel (and thus, the evapora-
tion rate of the volatile components). The energy
transfer increases with the difference between the
liquid temperature T and the temperature of the
hot steam. If the liquid level L is held close to
its maximum value, a minimal temperature of the
liquid is achieved. After the product concentration
has reached a threshold which is close to its target
value, the level has to be driven into the target
region. In order to push the increase of ws,1 which
exhibits slow dynamics, the constant weights were
chosen according to α

β
= 4 if |ws,1−ws,1,t| > 0.09.

For |ws,1 −ws,1,t| ≤ 0.09, the weights were chosen

according to β

α
= 4 to put the focus on driving Ls

into the target.

4. THE OPTIMIZATION APPROACH

The approach used here for optimizing the start-
up of the evaporator is based on the graph search
algorithm presented in (Stursberg, 2004a; Sturs-
berg, 2004b). This section first reviews the basic
principle, and then describes necessary modifica-
tions to solve the case study.

4.1 Graph Search with Embedded NLP

The main idea of the approach is to separate the
optimization of the discrete and continuous de-
grees of freedom by encoding the discrete choices
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in an acyclic graph. For each node of the graph,
optimal values for the continuous degrees of free-
dom are determined using nonlinear programming
in which numerical simulation of the hybrid model
over a constant time horizon is employed to evalu-
ate the cost for the corresponding evolution of the
system. Each node of the graph is characterized by
a structure n = (φσ, φu, φv, ca, cp) which contains
the state (φσ) and input (φu, φv) trajectories by
which the hybrid state σk = (zk, xk) assigned to
the node was reached, the cost ca that was accu-
mulated on the path into σk, and, to determine the
most promising nodes for further investigation, a
prediction cp of the cost for the remaining path
into the target region. Two different techniques
are used to prune the search graph: upper bounds
of the accumulated cost are iteratively determined
to remove branches that will lead to provably infe-
rior solutions. Furthermore, if the hybrid states of
two nodes are in close neighborhood, a cost com-
parison criterion is applied to prune the locally in-
ferior node. The neighborhood of the hybrid state
(zk, xk) of a node is modeled using an ellipsoidal
set defined by

(x− xk)T · Pv · (x− xk) ≤ ǫ, (7)

with a small ǫ.

4.2 Progress-Dependent Simulation Times

Due to the large variations of the gradients over
X, and in particular due to the fact that |L̇| ≫
|ẇ1|, the use of a constant simulation time is a
bad choice for the evaporator. For example, large
time periods drive L outside the permitted range
for most inputs, while such steps are necessary
to obtain the required change in w1. Rather than
using a fixed time to advance between nodes, we
employ a criterion for terminating the simulation
that is bound to the progress inX. If σk = (zk, xk)
is the initial hybrid state, the simulation is termi-
nated if the continuous state trajectory reaches
the boundary of a hyper-ellipsoid 3 defined by
(x− xk)T · Pp · (x− xk) = r2.

4.3 Exclusion of Infeasible State Trajectories

As discussed in Sec. 3, Ls(t) should be held close
to 100 % for parts of the start-up procedure. In
order to permit this behavior while preventing the
generation of infeasible state trajectories (Ls(t) >
1 would terminate the simulation), the NLP step
is modified as sketched in Fig. 2: It shows two
state trajectories leading into the neighborhood
of an invariant boundary. If xred,k is reached

3 In the general case, this criterion is used only within

inv(zk); for the evaporator, however, it can be applied even

for transitions occurring within [tk, tk+1] for tk, tk+1 ∈ Ts.

Fig. 2. Penalty computation for hybrid states near
to invariant boundaries.

from xred,k−1 during simulation, the latter is
stopped and a new node is created. When the
NLP step is then carried out for xred,k, it is
likely that the NLP solver uses a guess for uk

which leads into the infeasible region (marked as
uI

k in Fig. 2). In this case, the simulation would
immediately stop again, and the solver would lack
the information about the performance of this
guess. To avoid this problem, the point xred,k

is first projected onto an ellipsoid surrounding
xred,k by using a numerical approximation of the
gradient ẋred(z, xred,k, u

I
k, vk). The distance of the

resulting point to the boundary of the invariant
then constitutes an infeasibility penalty π1. As a
result, the NLP solver would prefer a choice for uk,
for which ẋred points in direction of the feasible
region; then π1 := 0. In Fig. 2, the choice uII

k

leads to ẋred(z, xred,k, u
II
k , vk) and a feasible next

state xred,k+1. As an additional penalty, states
close to the boundary of inv(zk) are penalized

by a function π2 = a · (
L(t)−LP1

LP2
−LP1

)b with positive

constants a and b (see Fig. 2). The two penalties
π1 and π2 are only used within the NLP step, but
not to assess the nodes within the search tree.

5. OPTIMIZATION RESULTS

Fig. 3 shows a projection of the optimization re-
sult for the start-up of the evaporator into the
(w1, T, L)-space. Nodes that have been explored
are marked by an ’x’, and pruned nodes are shown
as a ’+’ (neighborhood) or an ’o’ (cost). The solid
line represents the state trajectory of the best
solution found. The following parameterization of
the search algorithm was used: The neighborhood
ellipsoids (according to Eq. 7) were parameter-
ized as Pv = diag(106, 106, 1, 100, 4 · 104), ǫ = 1,
and the ellipsoid for the progress criterion were
chosen small in the directions of w1 and w2, i.e.
Pp = diag(1600, 1600, 0.01, 0.0025, 100), r = 2.
Fig. 4 shows the continuous input trajectory cor-
responding to the best found solutions: The inputs
are determined by the algorithm such that the
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vapor drain through VV 1 is maximized while L
is held at 100 % using appropriate settings for
V1. Towards the end, V1 is closed to drive the
liquid level into the target region. V2 is always
closed since w1 is the last variable to reach the
target region, and VV 2 remains open. During the
optimization, 600 nodes were investigated, and 96
solutions were found. The complete optimization
run took around 6 hours on a PC with Pentium-IV
2.8 GHz. The best solution was determined after
746 seconds, and using the input trajectories de-
fined by this solution, the target region is reached
after 13937 seconds.
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Fig. 3. Explored nodes and the state trajectory of
the best solution.
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solution.

6. CONCLUSIONS

The problem of optimizing the start-up of a hybrid
model of an industrial-scale evaporator with com-
plex nonlinear continuous dynamics was tackled
using a graph search algorithm with embedded
nonlinear programming. To obtain feasible and
good solutions with the algorithm, two modifica-
tions had to be introduced: (a) a state-dependent

termination criterion for the embedded hybrid
simulation, and (b) a modified cost function for
the NLP step to rule out infeasible evolutions
while allowing optimization near or on the bound-
ary of invariants.

The next steps of this research are as follows:
We try to develop schemes that are able to find
feasible solutions for similarly challenging prob-
lems without the requirement of first determining
specifically tuned cost functions (as described in
Sec. 3). In addition, we aim at extending the
solution concept presented here to the multi-stage
evaporator as described in (Sonntag and Sturs-
berg, 2005).
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