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Abstract: In this paper we present an approach to formulate and solve certain
scheduling tasks using timed discrete event control methods. To demonstrate
our approach, we consider a special class of systems: a cyclically operated
chemical plant with parallel reactors using common resources and a continuous
output. This problem was motivated by a benchmark proposed within the EU
Network of Excellence HYCON. For this class of systems, we show how to pose
the control problem within a discrete event framework by modelling system
components as multirate timed automata. Safety and nonblocking are investigated.
These properties have to be achieved in the presence of a class of bounded

errors/disturbances.  Copyright © 2006 IFAC
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1. INTRODUCTION

In this contribution, we investigate a “paral-

lelised” production line with resource constraints

and continuous output. Such a plant has been pro-
posed as a case study by the Université Catholique
de Louvain for the EU Network of Excellence
HYCON (Simeonova et al., 2005). In this example
two parallel reactors sharing resources as, e.g.,
reactants, hot steam, cool water, are considered.
The reactors are discharged into a shared storage
tank that has a continuous outflow. The plant is
cyclically operated. For this hybrid system, the
goal is to assure non-conflicting work of these
reactors and to prevent over- and underfilling of
the tank.

1 Work partially done in the framework of the HYCON

Network of Excellence, contract number FP6-IST-511368

We present an approach to the scheduling prob-
lem guaranteeing non-blocking and safety despite
disturbances, using a timed automata formulation
of the problem. Motivated by the HYCON case
study we consider a generalised problem consist-
ing of an arbitrary number of parallel reactors,
an arbitrary number of shared resources and one
storage tank.

Describing scheduling problems in a discrete event
framework allows a very intuitive way of problem
formulation. All system components including the
resources can be considered as subsystems which
can be easily described by timed automata and
subsequently composed to form the overall prob-
lem.
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The advantage of using a formal approach, as
opposed to heuristic strategies, is that desired
properties can be guaranteed.

It is well known that only certain classes of timed
automata systems are computationally tractable.
For these classes, however, there are various nu-
merical and symbolical methods for analysis and
computation. Numerical methods are described in
(Pettersson, 1999; Bengtsson and Yi, 2004; Bozga
et al., 1998) and symbolical methods are pre-
sented, for instance, in (Asarin et al., 1995).

This paper is arranged as follows: in Section 2, we
give a formal description of the overall problem. A
short introduction to multirate timed automata is
given in Section 3. In Section 4, the modelling of
the system components is described. In Section 5,
we address control issues and give some remarks
on implementation. Finally, in Section 6, we apply
our approach to the HYCON benchmark example
described in (Simeonova et al., 2005).

2. PROBLEM STATEMENT

Figure 1 presents a schematic view of the chem-
ical plant considered in the sequel. The system
consists of n parallel reactors with k common
resources, e.g., reactants, cold/hot water supplies
and pumps. The reactors are discharged into one
tank that acts as an output buffer and has the
continuous output flow Fout,t. The volumetric flow
Fout,r during the discharging of a reactor is fixed,
the output flow of the tank Fout,t can be adjusted
within a given range. In each reactor the same
process is performed. The goal is to assure non-
conflicting use of resources and to keep the level
of the tank volume between given values vmax and
vmin. Furthermore, due to safety reasons, the tank
outflow may not be interrupted.

Res1

Reactor 1

Reactor n

Resk

vmax

vmin

Fout,t

Fout,r

Fout,r

Fig. 1. A parallelised production line with resource
constraints

A production cycle in the j-th reactor consists
of a set of operations: Oj = {oij}, i = 1 . . .m,
e.g., heating, cooling, reaction, discharging and
so one, which, in turn, are characterised by their
processing times dij . The temporal ordering of
these operations is given. We will also consider
a case when the processing times of operations
are not fixed, but an upper and lower bound is
known: dij ∈ [d∗i −di; d

∗
i +di]. These deviations in

processing times may be caused by disturbances.

There are a set of resources R and sets of
“resource-sensitive” operations O′

j ⊂ Oj , j =
1, . . . , n. A map rj : O′

j → R associates a resource
to each operation oij ∈ O′

j . Here we assume that
these maps are injective, i.e. resources are used
only once within the reaction cycle of a reactor
but multiple use by different reactors is allowed.

Due to technological or safety requirements some
operations must be processed without delay.
These operations are grouped into tasks K l

j =

{ol
ij}, K

l1
j ∩ K l2

j = ∅. Each task must contain at

least one resource-sensitive operation, i.e. K l
j ∩

O′
j 6= ∅ where, within a task, delays are not

permitted. We assume that an isolated opera-
tion also forms a task if it is resource-sensitive.
Otherwise, it can be joined with the neighbour
task. Hence, each operation belongs to some task,⋃

j,l

K l
j = O =

⋃

j

Oj . We denote the set of all tasks

by K = {K l
j}, j = 1, . . . , n, l = 1, . . . , r.

3. MULTIRATE TIMED AUTOMATA

Timed automata (TA) (Alur and Dill, 1994) are
finite automata augmented with continuous clocks
whose values grow uniformly at each discrete
state. The set of clock variables is denoted by X . A
clock valuation ν for the set X assigns a real value
to each clock. Clocks can be reset to zero at certain
transitions. There are also clock constraints Φ(X)
defined over X in the following way:

φ := x ≤ c | x < c | x ≥ c | x > c | φ1 ∧ φ2.

That means that each clock constraint can be rep-
resented as an union of inequalities. A transition
may be equipped with a clock constraint which
is interpreted as an enabling or guard condition.
Clock constraints attached to locations can be
interpreted as invariants. In this paper, a tran-
sition condition with upper time limit ∞ occurs
only for the transitions whose switching can be
controlled. Hence, we can assume that these tran-
sitions switch at the first possible time instant.

We consider an extended class of timed au-
tomata, namely multirate timed automata (Alur
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Fig. 2. A timed automaton model of reactor j

et al., 2000). A multirate TA is a tuple T =
(L, L0, Σ, X, I, E, c, λ), where

• L is a finite set of locations, and L0 ⊆ L is a
set of initial locations,

• Σ is a finite set of labels (events),
• X is a finite set of clock variables,
• I is a map that associates some clock con-

straints in Φ(X) to each location, i.e. I : L →
Φ(X),

• E ⊆ L×Σ×Φ(X)×L is a set of transitions,
• c : L × X → R is a function that defines the

rate of change of each clock in a certain lo-
cation. Thus, the clock dynamics in location
l can be described by a simple differential
equation ẋi = cl,i = const. If cl,i is equal to
1 for all indices l, i, we deal with the standard
timed automaton.

• λ : E → 2X associates to each transition a
set of clocks to be reset.

Furthermore, we will use the standard definition
of the product for timed automata (Alur and Dill,
1994). Let A1 = (L1, L01, Σ1, X1, I1, E1, f1, λ1)
and A2 = (L2, L02, Σ2, X2, I2, E2, f2, λ2) be two
timed automata. Assume that the clock sets X1

and X2 are disjoint. Then, the product, denoted
A1||A2, is the timed automaton (L, L0, Σ, X, I, E,
f, λ), where L = L1×L2, L0 = L01×L02, Σ = Σ1∪
Σ2, I = I1 ∩ I2 and X = X1 ∪ X2. The transition
structure E and the reset function λ are defined
by the following rules:

(1) σ ∈ Σ1 ∩ Σ2: for every e1 = (l1, σ, φ1, l
′
1) ∈

E1 and e2 = (l2, σ, φ2, l
′
2) ∈ E2, e =

((l1, l2), σ, φ1 ∧ φ2, (l
′
1, l

′
2)) ∈ E and λ(e) =

λ1(e1) ∪ λ2(e2).
(2) σ ∈ Σ1 \Σ2: for every e1 = (l1, σ, φ1, l

′
1) ∈ E1

and l2 ∈ L2, e = ((l1, l2), σ, φ1, (l
′
1, l2)) ∈ E

and λ(e) = λ1(e1).

(3) σ ∈ Σ2 \Σ1: for every e2 = (l2, σ, φ2, l
′
2) ∈ E2

and l1 ∈ L1, e = ((l1, l2), σ, φ2, (l1, l
′
2)) ∈ E

and λ(e) = λ2(e2).

4. TIMED AUTOMATON MODEL OF THE
PLANT

4.1 Reactors

The first step is the modelling of the reactors using
timed automata. Since the operation sequence is
identical in each reactor, they can be described in
a uniform way, as shown in Fig. 2.

There are two types of locations: woij and oij

which mean “wait before i-th operation starts in
reactor j” and “i-th operation is active in reactor
j”. The events Stoij and Eoij denote start and
end of the i-th operation in the j-th reactor,
respectively. Fig.2 is to be interpreted as follows:
in location oij , the progress of time is measured by
a clock modelled by ẋj = 1, and the clock is reset
to zero when the location is entered, i.e. when
event Stoij occurs. We are only allowed to stay
in the location if xj ≤ di max holds (invariant).
The event Eoij may only occur if xj ≥ di min

holds (guard). Hence, the transition between loca-
tion oij to location wo(i+1)j has to happen when
di min ≤ xj ≤ di max. In location woij , there are
two possibilities: either invariant and guard of the
outgoing transition enforce an immediate switch
to the next location (an example for this case is
location wo2j in Fig.2), or invariant and guard
allow an arbitrary stay within the location (an
example for this case is location wo3j in Fig.2). If
a woij -location is of the former type, o(i−1)j and
oij belong to the same task (see the dashed box
in Fig.2).

The last operation, denoted by Dj , is the dis-
charging of reactor j. Note that the operation
“discharging” always represents a task since the
output tank can be interpreted as an external
resource.
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4.2 Resources

The next step is to model the restrictions on re-
source availability. The simplest way is to build a
finite automaton for each resource Ri and the cor-
responding operations oij = r−1

j (Ri) ∈ O′
j , j =

1, . . . , n as shown in Fig.3. The depicted timed
automaton represents a simple rule: a resource
sensitive operation can be simultaneously carried
out in one reactor only.

To enforce uniqueness of the solution, a sequence
of reactors is predetermined. As all reactors are
equal, this does not restrict generality.

Idle Busy

Stoi1...Stoin

Eoi1...Eoin

Fig. 3. A finite automaton modelling the availabil-
ity of resource i

4.3 Output tank

The last element of the plant is the output tank.
Its timed automaton model model is presented in
Fig. 4. The transitions StD and ED denote “start
discharging” and “discharging is finished”. The
clock variable v models the amount of liquid in the
tank. Here, a = Fout,r − Fout,t and b = −Fout,t,
where Fout,r is the volumetric rate of the flow from
any reactor j to the tank, whereas Fout,t is the
volumetric rate of the output flow from the tank.
If the value of v becomes too small or too big, the
automaton goes to one of the locations modelling
a forbidden situation.

ED

v:=0
v̇=0 v≤vmax

v≥vmax

v≤vmin

v≥vmin

v̇=a

v̇=b

StD

StD

overfilling

underfilling

Fig. 4. A timed automaton modelling the output
tank

5. CONTROL ISSUES

Two specifications have to be enforced: 1. the
closed-loop system must be non-blocking; 2. the
closed-loop system must be safe, i.e. the locations
underfilling and overfilling must be rendered un-
reachable..

In the following we present several possible control
strategies to enforce the specifications. Note that
we can provide a formal guarantee for the specifi-
cations to hold, even if the actual design process
contains some heuristics.

5.1 Non-blocking

It is obvious that the synchronous product of
the n reactor models (Fig.2) and the k resource
availability models (Fig.3) may give rise to block-
ing. This may happen if a resource, say Ri, is
being allocated by an operation oij in reactor j,
an operation o(i−1)k is finished in reactor k and
operation oik belonging to the same task as oi−1,k

attempts to allocate Ri. In this situation, oik must
start at the same time as o(i−1)k finishes, which is
clearly impossible as the corresponding resource
is being used by another reactor. To avoid this
situation, the start of tasks has to be delayed
appropriately. This is being done by assigning one
timed automaton to each task K l

i = {ol
µj}, µ =

1, 2, . . . . We assume that the index µ describes
the temporal ordering of operations within the
task (Fig.5). These automata are similar to the
resource models, but with additionally introduced
time constraints. The first location is added be-
cause in the beginning of the process the operation
can start immediately.

x≥0

x≥0

x≤0

x≥wl

x≤∞ x≤∞x:=0x:=0x:=0

ẋ=1ẋ=1ẋ=1

Eol
j

Stol
j

ol
1

Fig. 5. A timed automaton modelling resource
availability

The parameter wl can be found as a solution
of a simple scheduling problem. There is a fixed
relation between the temporal position of an op-
eration within the task and within the overall
sequence of operations in the reactor. The latter

is denoted by i and given by i =
l−1∑

q=1
|Kq

j |+µ. The

start and end times of ol
µj are sl

µj and f l
µj and its

durations is dl
µj . The goal is to ensure that

min
µ:ol

µj
∈O′

j

(sl
µ,j+1 − f l

µj) = 0, (1)

where sl
µ1 = sl

11 +
µ−1∑

k=1

dl
k1, f l

µ1 = sl
µ1 + dl

µj ,

sl
µ,j = f l

1(j−1) + wl +
µ−1∑

k=2

dl
kj , dl

µj = dl
µ, j > 1.

This can be done easily. The situation becomes
more complicated if we suppose that the pro-
cessing durations are only known unprecisely, i.e.,
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dl
µj ∈ [d∗i − di; d

∗
i + di]. Condition (1), then takes

the form

min
µ:ol

µj
∈O′

j

min
dl

µj
,dl

µ(j+1)
∈[d∗

i
−d

i
;d∗

i
+di]

(sl
µ(j+1)−f l

µj) = 0.

(2)
The main difference, compared to the previous
case is that the processing time of the first opera-
tion is a priori unknown. Thus, wl is calculated in
a worst-case fashion and is therefore, conservative.

5.2 Safety

In a first step, we form the synchronous product of
the reactor models (Fig.2), the extended resource
availability models (Fig.5) and the tank model
(Fig.4). As we have previously determined suit-
able waiting times wl, in this step only nonblock-
ing schemes are considered. If all processing times
are known, using standard verification procedures,
we can check whether the locations “Overfilling”
and “Underfilling” can be reached for a given
fixed outflow rate. If yes, it is an easy exercise
to suitably adjust the outflow rate.

The analysis shows that for fixed and physically
reasonable processing times a fixed outflow can be
determined such that safety is guaranteed.

underfilling overfilling

EDStD

StD

StD
v:=0
v̇=0

v̇=a v̇=b

v̇=bv̇=b

v≤vmin v≥vmax

v≤v∗

v≥v∗

Fig. 6. A modified timed automaton of the output
tank

If processing times are known imprecisely, one
needs an additional degree of freedom. One possi-
bility to achieve an additional degree of freedom
is to introduce additional waiting times for the
discharging of the reactors. This is illustrated
in Fig.6. The figure shows that the start of a
discharging process is only allowed if the liquid
volume is below a certain threshold. In this way,
overfilling can be avoided. To avoid underfilling,
we need the maximal cycle duration tc,max, i.e. the
maximal time between two discharging operations
in the same reactor provided the processing times

of all operations take maximal values. tc,max can
be obtained by applying verification procedures
to the product of reactor models and resource
availability models for uncertain processing times.
Then, the outflow of the output tank can be set
to

Fout,t =
nFout,rdd

tc,max
,

where dd is the duration of the discharging oper-
ation.

An alternative is to switch the output rate online
between several values Fout,ti, i = 1, q. In this
case, the tank model has to be modified according
to Fig.7.

To implement the necessary verification proce-
dures we can use slightly modified versions of
standard algorithms (see, e.g. (Pettersson, 1999;
Bengtsson and Yi, 2004; Bozga et al., 1998) and
references therein). This procedure can be consid-
ered as the computation of the set of all reachable
states of the timed automaton under considera-
tion. Obviously, this set will consist of a set of
locations and sets of clock valuations associated
with these locations. Fortunately, these sets of
clock valuations can be represented through the
union of parallelograms on the space X , which
makes the procedure computationally tractable.

6. EXAMPLE

We now consider the specific example described
in detail in (Simeonova et al., 2005). The plant
consists of two reactors. In each reactor the fol-
lowing sequence of operations is performed: filling
(d∗1 = 0.17h), heating (d∗2 = 0.45h), temperature
regulation (d∗3 = 3.44h), cooling (d∗4 = 0.92h)
and discharging (d∗5 = 0.17h). The operations
filling, heating and cooling are resource-sensitive.
The set of operations has been partitioned into
three tasks: K1

j ={filling}, K2
j ={heating, temper-

ature regulation, cooling} and K3
j ={discharging},

j = 1, 2. The time for heating is only known
imprecisely: d2 ∈ [d∗2 − d2, d

∗
2 + d2] where d2 =

d2 = 0.13h. The minimal and maximal volume of
liquid in the tank is Vmin = 0 and Vmax = 50m3.

We applied the method presented in the previ-
ous section to obtain a solution which guarantees
safety and nonblocking for all possible variations
of parameters. For example, the particular sched-
ule for the worst case d2 = d∗2 + d2 is shown in
Fig.8.

j=1

j=2
0 1 2 3 4 5 6 7 8 9 10 11 12

T,h

Fig. 8. Resulting schedule for d2j = d∗2 + d2, j =
1, 2
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Fig. 7. A timed automaton modelling the output tank

The maximal admissible constant tank outflow is
Fout,t = 10.23m3/h. This results in the change of
the liquid volume in the tank as shown in Fig.9.

10

20
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40

50

1 2 3 4 5 6 7 8 9 10 11

T, h

V, m3

Fig. 9. Liquid volume in the tank

7. CONCLUSIONS AND FUTURE WORK

In this contribution, we investigated the use of
timed automata for the scheduling of a class of
parallel production lines. We have addressed the
case when uncertainties regarding certain oper-
ating times are present. Although the prescribed
approach contains heuristic elements in the design
procedure, we can guarantee that non-blocking
and safety are obtained. We have applied this
procedure to a specific process which has been
suggested as a benchmark problem within the EU
Network of excellence HYCON.
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