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Abstract: Algorithms to approximate the evolution of probability density functions
for stochastic hybrid systems rely on the knowledge of appropriate short time
propagators. It is shown that a path integral propagator known for continuous
stochastic systems can be adapted to the hybrid case. With this propagator, the
HybPathTree algorithm performs well concerning precision and computational
effort, e.g. in reachability analysis. Copyright © 2006 IFAC
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1. INTRODUCTION

The prediction of probability density functions
for stochastic hybrid systems is relevant to a
variety of technical disciplines. State of the art
methods and applications can be found e.g. in
(Blom and Lygeros 2005). Even for simple sys-
tems, only numerical methods can be applied.
For pure continuous stochastic systems many ap-
proaches are known which introduce a Markov
chain that approximates the probability density at
grid points via finite difference schemes (Kushner
and Dupuis 2001). Path integrals methods can be
applied to compute Markov chain approximations
of continuous stochastic systems, which give bet-
ter results than these classical methods (Wehner
and Wolfer 1983).

The novelty of this paper can be seen from two
perspectives: On the one hand, the path integral
based PathTree algorithm (Ingber et al. 2001) is
extended to a class of stochastic hybrid systems.
On the other hand, existing numerical methods for
analysis of stochastic hybrid systems are improved
by generating the transition probabilities of the
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approximating Markov chain by a short time
propagator resulting from path integrals.

After introducing the model class and the notion
of path integrals in Sections 2 and 3, the stochastic
reachability problem is given in Section 4. For its
solution, extensions of path integrals for hybrid
systems are derived in Section 5, which are the
basis of Markov chain approximations given in
Section 6 that are applied to two tank systems
in Section 7.

2. MODELING

In this paper, we are using a slight adaption of
the description of a generalized stochastic hybrid
system given in (Bujorianu and Lygeros 2003). Let
Q denote the set of discrete states and Xq ⊂ Rd(q)

an open d(q)-dimension subspace assign to each
of those discrete states q ∈ Q. We will refer to
those as continuous state spaces. The closure of
Xq is defined as X̄q = Xq ∩ ∂Xq with ∂Xq

denoting the boundary. The hybrid state space
can now be defined as H =

⋃
q∈Q{q} × Xq with

H̄ =
⋃

q∈Q{q} × X̄q and ∂H =
⋃

q∈Q{q} × ∂Xq

being its closure and boundary respectively.
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The definition of a generalized stochastic hybrid
system can be restated as

Definition 1. A Generalized Stochastic Hybrid
System (GSHS) is a collection

M = ((Q, d,X ), a, σ, Init, λ, R) ,

where

• Q = {1, 2, . . . NQ} is a countable set of
discrete states,

• d : Q → N is a map giving the dimension of
the continuous state spaces, X : Q → Rd(.)

maps each q ∈ Q into an open subset Xq ⊂
Rd(q) (continuous state space assigned to the
discrete state q ∈ Q),

• a : Q × Xq → Rd(·) is a vector field (de-
scribing the system dynamics in each discrete
state),

• σ : Q×Xq → Rd(·)×m is a Xd-valued matrix,
m ∈ N (describing the variance of the noise
in each discrete state),

• Init : B(H) → [0, 1] is a probability measure
on H (distribution of the initial state), where
B(H) is the space of σ-algebras generated by
H (Borel σ algebra).

• λ : H̄ → R+ is a transition rate function
giving probabilistic changes of discrete state,

• R : H̄×B(H̄) → [0, 1] is a transition measure
describing the distribution of the continuous
state after a jump.

In the following, we will assume that there are no
spontaneous jumps, i.e. a jump-rate λ = 0 and
we will call models of this class stochastic hybrid
systems (SHS). Thus, for the transition measure
R : ∂H× B(H̄) → [0, 1] holds.

The execution of such a stochastic hybrid system
can be defined as follows, compare (Bujorianu and
Lygeros 2003):

Definition 2. A stochastic process h(t)=(q(t),x(t))
is called a SHS execution if there exists a sequence
of stopping times T0 = 0,≤ T1 ≤ T2 ≤ . . . such
that for each k ∈ N:

• h0 = (q0, x
q0
0 ) is a Q×X-valued random vari-

able extracted according to the probability
measure Init;

• For t ∈ [Tk, Tk+1), qt = qTk
is constant and

x(t) is a (continuous) solution of the SDE

dx(i) = a(i)(qTk
, x(t))dt+σ(i,j)(qTk,x(t))dΓ(j)(t)

where Γ(j)(t) is the m-dimensional standard
Wiener process

• Tk+1 = Tk + Sik where Sik is the stopping
time of the process, i.e. the time where x(t)
first hits the boundary of ∂Xq,

• The probabilistic distribution of x(Tk+1) is
governed by the law R((qTk

,x(T−k+1)), ·).

This modelling approach can be seen as a col-
lection of several continuous time, stochastic dif-
ferential equations and its domains together with
jumps. These are executed whenever the continu-
ous state x reaches certain areas of the continuous
state-space (the guards).

3. PATH INTEGRALS

The concept of path integrals will be first intro-
duced for a continuous dynamical system, given
by the following stochastic differential equation

dx(i) = a(i)(x)dt + σ(i,j)(x)dΓ(j)(t) (1)

with i = 1 . . . n, j = 1 . . .m, also known as
Langevin Equation. The stochastic term is mod-
elled with a m-dimensional standard Wiener noise
process Γ(t).

In the following, eqn. (1) should be interpreted in
the sense of Stratonovich. For many applications,
the probability p(x, t) of the state vector x at
time t is of interest.

With the knowledge of some initial probability
distribution p(x0, t0) at a certain time t0, the
conditional probability distribution p(x, t) at a
later time t is given by its generator which in this
simple case comes as the Fokker-Planck Equation

∂p(x, t |x0, t0)
∂t

= LFP(x, t) · p(x, t |x0, t0) . (2)

with the Fokker-Planck Operator

LFP (x, t) = −
n∑

i=1

∂

∂x(i)
D

(i)
1 (x, t)+

+
1
2

n∑
i=1

m∑
j=1

∂2

∂x(i)∂x(j)
D

(i,j)
2 (x, t) . (3)

The term D
(i)
1 (x, t) is the i’th component of the

drift that holds information about the underly-
ing deterministic movement of the system, while
D2(x, t) gives the diffusion, i.e. the additional
noise. For a multi-dimensional stochastic process,
the drift operator

D
(i)
1 (x, t) =

a(i)(x, t)+
1
2

n∑
k=1

m∑
j=1

σ(k,j)(x, t)
∂

∂x(k)
σ(i,j)(x, t) ,

and the diffusion operator

D
(i,j)
2 (x, t) =

n∑
k=1

σ(i,k)(x, t)σ(j,k)(x, t) .

can be derived from the Langevin equation (1).

The concept of path integrals uses the fact, that
the conditional probability on the left hand of (2)
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can be recursively applied, if the so called short
time propagator

p (x, t +4t | x̃, t) , (4)

which gives the conditional transition probabili-
ties for short times 4t is known.

The conditional probability at a constant final
time te is given by the so called path integral

p(xe, te |x0, t0) = lim
N→∞

∫
. . .

∫
︸ ︷︷ ︸
N times

N−1∏
i=0

dx(ti)
N−1∏
i=0

p (x(ti+1), ti+1 |x(ti), ti) (5)

by taking the limit to an infinite number N of
(infinitely small) time steps 4t constrained by the
fact that the final time te has to be constant.

Usually, the propagator

p(x̃, t +4t |x, t) = (2π)−
n
2 [det(4tD2(x, t))]−

1
2 ·

exp
(
− 1

2

n∑
l,k

[
(x̃(l) − x(l) −D

(l)
1 (x, t)4t)

1
4t

(D−1
2 (x, t))(l,k)(x̃(k) − x(k) −D

(k)
1 (x, t)4t)

] )
(6)

is used, but this propagator is not unique (Wehner
and Wolfer 1983). With any propagator (4) satis-
fying eqn. (2) up to order4t2 eqn. (5) is a solution
to the Fokker-Planck equation (Risken 1989).

For some processes, the limit of (6) can be com-
puted analytically in closed-form if the short time
propagators are appropriate, e.g. in the case of an
Ornstein Uhlenbeck Process. In general, it is only
possible to find numerical approximations.

4. STOCHASTIC REACHABILITY PROBLEM

Reachability analysis of hybrid systems is a topic
with a lot of recent research effort (Bujorianu
and Lygeros 2003, Bujorianu 2004). Usually there
are two sets of states defined called target states
and unsafe. The probability that a target state
is reached while all unsafe states are avoided has
to be computed to assess the reachability of a
hybrid system (Koutsoukos and Riley 2006). In
contrast to this formulation, here the only interest
lies in the computation of the probability that
some target states are reached at a certain time.

We assume in the sequel, that the execution of a
GSHS admits a smooth probability density. This
is the case e.g. for systems with bijective and de-
terministic reset maps R(·, ·) and eqi-dimensional
continuous state-spaces Xq, i.e. d(q) = d ∀ q ∈ Q
(Bect et al. 2006).

p(h(t), t) = Prob ({x̃(t) ∈ [x̂(t), x̂(t) + dx] (7)
∧ q̃(t) = q(t)}) , (8)

with ∫
H

∑
p(h(t), t)dh = 1 , (9)

where we have introduced the symbol∫
H

∑
dh =

∑
q(t)∈Q

∫
X1

. . .

∫
XNQ

dx · · · dx .

As in the case of continuous systems, the evolution
of probability densities can be described by means
of a partial differential operator, the so called
infinitesimal generator of the stochastic process,

LSHS(h, t) = −
n∑

i=1

∂

∂x(i)
D

(i)
1 (h, t)+ (10)

+
1
2

n∑
i=1

n∑
j=1

∂2

∂x(i)∂x(j)
D

(i,j)
2 (h, t) , (11)

with boundary condition

p(h, t) =
∫
H

∑
p(h̃, t)R(h,dh̃)dh̃ , (12)

for all h ∈ ∂H.

The generator describes the behavior of the
process in the interior of the state space. The
interconnections of the different discrete states
q ∈ Q is given by the boundary conditions on
each continuous domain ∂Xq. A mathematically
rigorous introduction of infinitesimal generators
can be found in (Bujorianu and Lygeros 2004) or
much earlier (Feller 1952).

The conditional probability

p(h̃, t | h0, t0) =

Prob
(

h(t) ∈ [h̃, h̃ + dh]
∣∣∣ h(t0) = h0

)
(13)

gives the probability that a stochastic hybrid sys-
tem comes from the hybrid state h0 = (q0,x0)T

at time t0 to a state h(t) ∈ [h,h + dh] with
dh = (0,dx)T at time t > 0.

The probability density of the hybrid state at
time t̃ depends on the conditional probability and
the initial density p(h(t), t) of the hybrid state
h ∈ H at time t. This is given by the equation

p(h(t̃), t̃) =
∫
H

∑
p(h(t̃), t̃ |h(t), t) p(h(t), t) dh(t)

The stochastic reachability problem can now be
posed as the determination of the probability

Prob (h(T ) ∈ He | p(h0, t0)) (14)

that the hybrid system reaches an area He of the
hybrid state space at time t under the knowledge
of the initial hybrid state distribution p(h0, t0).
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This probability (14) can be derived formally by
calculating

p(h(T ), T ) =∫
He

∑∫
H̄

∑
p(h(T ), T |h0, t0) p(h0, t0)dh0dh .

5. HYBRID SYSTEMS PATH INTEGRALS

Using basic properties, an equation

p(h(t3), t3) =∫
H̄

∑
p(h(t3), t3|h(t2), t2)p(h(t2), t2|h(t1), t1) dh(t2)

(15)

that is similar to the Chapman-Kolmogorov equa-
tion for continuous systems can be derived.

The existence of path integrals for stochastic
hybrid systems was claimed first in (Prasanth
2003). A generalization of the idea of Fokker-
Planck equations for stochastic hybrid systems is
described in (Bect et al. 2006).

If one iterates eqn. (15) while the time steps get
smaller, one gets in the limit for the long time
conditional probability

p(h(t), t |h(t0), t0) = lim
N→∞

∫
H̄

∑
. . .

∫
H̄

∑ N−1∏
i=0

p(h(ti+1), ti+1 |h(ti), ti) p(h(t0), t0) dh(ti) (16)

for stochastic hybrid systems, assumed that ti+1 =
ti +4t and t = limN→∞ tN holds.

This is similar to eqn. (5) but it will be very diffi-
cult to find propagators p(h(ti+1), ti+1 |h(ti), ti).
As the limit of the integrals (5) only is computable
in rare and very simple cases even for continuous
systems, numerical methods have to be found to
approximate the hybrid path integral (16). Known
numerical methods for continuous path integrals
can be extended which is discussed in the next
section.

6. MARKOV CHAIN APPROXIMATIONS

By introducing finitely many mesh points h̄i =
(q̄i, x̄i) ∈ H, each representing a finite gener-
alized volume 4Hi = (q̄i,4Vi) that partitions
the hybrid state space H (in fact the continuous
state spaces X q̄i), we can approximate the con-
tinuous probability density p(h(t), t) by a discrete
probability vector p(t) = (p1(t), . . . pNd

(t))T . The
probabilities pi(t) can be calculated as

pi(t) =
∫
4Hi

∑
p(h(t), t)dh =

∫
4Vi

p
(
(q̄i,x(t))T , t

)
dx .

The evolution of these approximated probability
densities is given as the iteration of a Markov
chain

p(t +4t) = TH
(
p(t) + T ∂Hp(t)

)
. (17)

The elements of the transition matrix TH are
given by

THi,j =
1

4Vj

∫
4Hj

∑ ∫
4Hi

∑
p(h̃(t +4t), t +4t|h(t), t)dhdh̃ , (18)

i.e. by evaluation of the integral of the short
time propagator (6) over the volume 4Hj of all
possible start points next to the mesh point j and
the volume 4Hi of end points respectively.

The term T ∂H represents the transitions from
the boundaries due to the reset probability R(·, ·)
given as

T ∂H
i,j =

1
4Vj

∫
4Hj

∑ ∫
4Hi

∑
R(h(t),dh̃(t))dh(t) . (19)

This is an extension of an algorithm for continuous
systems called PathInt, for which local consis-
tency and convergence have to be proven still
(Wehner and Wolfer 1983).

The computational problem of this HybPathInt
algorithm lies in the nonsparseness of the matrix
T = TH+THT ∂H , since the number of volumes
grows exponentially with the order of the system.

This problem is overcome with the algorithm
HybPathTree, which extends the PathTree
algorithm for continuous systems (Ingber et al.
2001). This algorithm only uses transitions from
h̄i to the nearest neighbors, i.e. a predefined
subset of mesh points h̄j with the property that
q̄i = q̄j , and whose volumes 4Vj all lie next to the
volume 4Vi.

This leads to a sparse transition matrix T with
good approximation properties. It should be
mentioned that these algorithms are similar to
the Markov Chain approximation algorithms in
(Kushner and Dupuis 2001), although they are
mainly dealing with continuous systems and use
different short-time-propagators.

7. EXAMPLES

Figure 1 shows the setup for the first example
which is an extended version of a classical example
in hybrid systems analysis, (Chase et al. 1993).

The switching rules for the outflow are
• Switch to the next tank if the current tank

gets empty.
• If a tank gets full, immediately switch to that

tank.
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• Keep lowering the current tank if none of the
above conditions are fulfilled

Fig. 1. Tanks System – Switched Outflow

Fig. 2. Switched Outflow – Random Trajectory

Fig. 3. Switched Outflow – HybPathTree

Changing the systems configuration as shown in
Figure 4 changes the dynamics of the system com-
pletely. For the deterministic case the switched
outflow system exhibits periodic behavior whereas
the behavior of the switched inflow system is
chaotic.

The switching conditions for the inflow are
• Switch to the next tank if the current tank

gets full.
• If a tank gets empty, immediately switch to

that tank.

• Keep filling the current tank if none of the
above conditions are fulfilled

In order to avoid Zeno-behaviour in this case, we
add the condition that if two tanks are empty at
the same time, the tank with the smaller number
will be filled first and the switching is locked for
a small but non-zero time Tfill.

Fig. 4. Tanks System – Switched inflow

Fig. 5. Switched Inflow – Random Trajectory

Fig. 6. Switched Inflow – HybPathTree

For both systems, the continuous state space is
restricted by an invariant condition for the overall
volume that can be expressed by

∑3
i=1 xi = 1 .

The accessible state space is only two dimensional
and has a triangular shape (see Figure 2). Addi-
tional Gaussian noise that doesn’t contradict this
conservation law is assumed. This reflects pressure
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fluctuations between concurring outflows or in-
flows respectively. Sample random trajectories are
displayed in Figures 2 and 5. It is assumed further
that all tanks have the same level at time 0.

The results of the HybPathTree algorithm are
given in Figure 3 and Figure 6. The brightness
indicates the value of the sum of probability dis-
tribution

∑3
q p({q}×Xq) shown on the continuous

state space X = Xq∀q ∈ Q. Dark areas indicate
either high or low values of the probability den-
sity whereas light areas give the areas of middle
probability. The densities are given for the times
0.5, 1.0, 1.5, . . . , 4.5 displayed at the top of each
graph. Axis labeling is omitted for the sake of sim-
plicity - the triangles show all of the allowed 2-D
state space. Computations times are some minutes
on a standard PC. With the help of Monte-Carlo
methods pictures can be produced with a similar
resolution but with an order of magnitude higher
computation times.

Figure 3 shows that the behavior of the stochastic
switching outflow system is approximately peri-
odic, similar to the deterministic case. At any
time, it is very unlikely that the system is in a
state where two tanks are empty, i.e. in one of
the corners of the triangles. In contrast to that,
Figure 6 shows that the stochastic switched inflow
system after completely filling one tank (move-
ment to the right corner until time 1) has a large
ambiguity of the current state. This leads to the
movement of the red area from time 1.5 to 3.5 to
the left border of the triangle. The distribution
shows that at time 4.5, the state can nearly be
anywhere with the same probability.

8. CONCLUSIONS

It has been shown how path integral methods can
be adapted to numerical prediction of probability
densities for stochastic hybrid systems. The bene-
fit for reachability analysis is ease of computation
due to a sparse Markov chain structure and a good
approximation quality because of precise short
time propagators.
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