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1. INTRODUCTION

As far as biology is concerned, the last 20 years
marked an astonishing advancement due to pioneering,
high-throughput techniques (e.g. micro-arrays) that al-
lowed biologists to shed light to numerous aspects of their
field. However researchers realized that the perspective
of information gathering was insufficient to provide ex-
planations to difficult questions and lead to the next big
step. That possibly explains the recent tendency to express
biological processes in terms of a complete system. While
in the past, biologists would only observe a target organ-
ism, nowadays the first priority is to infer the underlying
mechanism that produces the observation.

Such attempts gave birth to a new field called systems
biology that applies the aforementioned way of thinking:
first a large number of information is collected, then a
model for the underlying model is proposed and finally
its fitness is validated by a new series of experiments.
The general course comprises the thorough observation
of the biological process so as to understand all of its

characteristics. Then the appropriate model family has to
be selected, and finally, each parameter must be refined.

In what follows, we focus our attention on the already
studied organism Bacillus subtilis. In this paper we em-
phasize on the conversion of the model that describes
the biological process to a valid PDMP model. Piece-
wise Deterministic Markov Processes are a sub category
of stochastic hybrid models (SHM). SHMs were initially
developed to capture all the characteristics of systems
containing a combination of digital and analogue compo-
nents and found a wealth of applications in cases such
as automated highway systems, air-traffic management
systems, manufacturing systems, robotics and real-time
communication networks.

Apparently, PDMP seem to be applicable to system
biology, apart from being friendly to study and imple-
ment. Reasons for choosing this class of SHM will be
analyzed later on. Immediately after the expression of the
bio-process as a PDMP model, we encounter the difficulty
of defining each parameter of the model. The complexity
of testing all possible parameter configurations is expo-
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nential and would require tremendous computational time
and resources. Our work takes into consideration what is
biologically feasible and observable in order to identify
all the parameter values. Contrary to what is currently
present in the literature, our ultimate goal is to infer the
parameters and give a valid PDMP model for the target
biological process with respect to the quantitative aspect.

2. STOCHASTIC HYBRID MODELS

The great interest of research community for the field
of stochastic hybrid systems in recent years led to the in-
troduction of different types of stochastic hybrid models.
The main difference between these classes of stochastic
hybrid models lies in the way the stochasticity appears
[1]. In some models continuous evolution may be gov-
erned by stochastic differential equations, while in others
not. Likewise, some models include forced transitions,
which take place whenever the continuous state tries to
leave a given set, others only allow transitions to take
place at random times (spontaneously at a given possi-
bly state-dependent rate), while others allow both. Finally
the destination of discrete transitions may be given by a
probability kernel. In this report the model that will be
analyzed is the Piecewise Deterministic Markov Processes
[2], which is the class of models that will be used for B-
subtilis. Apart from the PDMP there are also the Switched
Diffusion Processes (SDP) [3] and the Stochastic Hybrid
Systems (SHS) [4]. An overview of them can be found in
[1].

2.1 Piecewise Deterministic Markov Processes (PDMP)

PDMPs are a class of non-linear continuous-time
stochastic hybrid processes which covers a wide range of
non-diffusion phenomena. PDMP involve a hybrid state
space, with both continuous and discrete states. The par-
ticularity of this model is that randomness appears only
in the discrete transitions; between two consecutive tran-
sitions the continuous state evolves according to a non-
linear ordinary differential equation. Transitions occur ei-
ther when the state hits the state space boundary, or in
the interior of the state space, according to a generalized
Poisson process. Whenever a transition occurs, the hybrid
state is reset instantaneously according to a probability
distribution which depends on the hybrid state before the
transition. We introduce formally PDPM following the
notation of ( [5], [6]). Let Q be a countable set of discrete
states, and let d : Q → N and X : Q → Rd(.) be two maps
assigning to each discrete state i ∈ Q an open subset of
Rd(i). We call the set

D(Q, d, X) =
⋃
i∈Q

{i}×X(i) = {(i, x) : i ∈ Q, x ∈ X(i)}

the hybrid state space of the PDMP and α = (i, x) ∈
D(Q, d, X) the hybrid state. We define the boundary of
the hybrid state space as

∂D(Q, d, X) =
⋃
i∈Q

{i} × ∂X(i).

where as usual ∂X(i) denotes the boundary of the open
set X(i).

A vector field f on the hybrid state space D(Q, d, X)
is a function f : D(Q, d, X) → Rd(.) assigning to each
hybrid state (i, x) ∈ D a direction f(i, x) ∈ Rd(i). The
flow of f is a function Φ : D(Q, d, X)×R → D(Q, d, X)
with

Φ(i, x, t) =
[

ΦQ(i, x, t)
ΦX(i, x, t)

]
,

ΦQ(i, x, t) ∈ Q and ΦX(i, x, t) ∈ X(i), such that (i, x),
Φ(i, x, 0) = i, x and for all t ∈ R, ΦQ(i, x, t) = i and

d

dt
ΦX(i, x, t) = f(Φ(i, x, t)) (2.1)

Let
Γ((Q, d, X), f) ={

α ∈ ∂D(Q, d, X) | ∃(α′, t) ∈ D(Q, d, X)× R+, α = Φ(α′, t)
}

Denotes the part of the boundary of D that can be reached
from D under f and let

D̄(Q, d, X) = D(Q, d, X) ∪ Γ((Q, d, X), f)

Let D̄ = Q× R∞ and

B(D̄) = σ

⋃
i∈Q

{i} × B(i)


be the smallest σ - algebra on (D̄ containing all sets of the
form i × A with A ∈ B(i) a Borel subset of X(i). It can
be shown that the space (D̄,B(D̄)) is a Borel Space and
B(D̄) is a sub-σ-algebra of its Borel σ-algebra.

We can now introduce the following definition.

Definition 1. (Piecewise Deterministic Markov Process).
A Piecewise Deterministic Markov Process (PDMP) is a
collection H = ((Q, d, X), f, Init, λ, R) where

• Q is a countable set of discrete variables;
• d : Q → N is a map giving the dimensions of the

continuous state spaces;
• X : Q → Rd(.) maps each i ∈ Q into an open subset

X(i) of Rd(i);
• f : D(Q, d, X) → Rd(.) is a vector field;
• Init : B(D̄) → [0, 1] is an initial probability

measure on (D̄,B(D̄)), with Init(Dc) = 0;
• λ : D̄(Q, d, X) → R+ is a transition rate function;
• R : B(D̄) × D̄(Q, d, X) → [0, 1] is a transition

measure, with R(Dc, (i, x)) = 0 for all (i, x) ∈
(D̄(Q, d, x).

To define the PDMP executions we introduce the no-
tion of exit time t∗ : D → R+ ∪ {∞},

t∗(i, x) = inf {t > 0 : Φ(i, x, t) /∈ D}
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and of survival function F : D × R+ → [0, 1],

F (i, x, t) =

 exp
(
−
∫ t

0

λ(Φ(i, x, τ))dτ

)
if t < t∗(i, x)

0 if t ≥ t∗(i, x).

The executions of the PDMP can be thought of as being
generated by the following algorithm.

Algorithm 1. (Generation of PDMP Executions)
set T = 0
select D-valued random variable (̂i, x̂) according to

Init
repeat

select R+-valued random variable T̂ such that
P (T̂ > t) = F (̂i, x̂, t)

set (it, xt) = Φ(̂i, x̂, t− T ) for all t ∈ [T, T + T̂ )
select D-valued random variable (̂i, x̂) according

to R(.,Φ(̂i, x̂, T̂ ))
set T = T + T̂

until true

To ensure the process is well-defined, the following
assumption is introduced in [2].

Assumption 1. The sets X(i) are open. For all i ∈ Q,
f(i, .) is globally Lipschitz continuous. λ : D̄(Q, d, X) →
R+ is measurable. For all i, x ∈ D there exists ε > 0 such
that the function t → λ(Φ(i, x, t)) is integrable for all
t ∈ [0, ε). For all A ∈ B(D̄), R(A, ·) is measurable.

All random extractions in Algorithm 1 are assumed
to be independent. To ensure that (it, xt) is defined on
the entire R+ it is necessary to exclude Zeno executions
[6]. The following assumption is introduced in [2] to
accomplish this.

Assumption 2. Let Nt =
∑

i I(t≥Ti) be the number of
jumps in [0, t]. Then E[Nt] < ∞ for all t.

Under Assumptions 1, 2 it can be shown that the Algo-
rithm 1 defines a strong Markov process [2], continuous
from the right with left limits.

3. MODEL OF SUBTILIN PRODUCTION

In order to display the descriptive power of PDMP,
we develop a model for the system that governs Subtilin
production by B. subtilis bacterium in terms of Piecewise
Deterministic Markov Processes(PDMP). This form of
stochastic hybrid model was selected because it coincides
the inherent characteristics of the model. In the following
sections, we will focus on special characteristics, and we
will provide a consummate PDMP description.

3.1 Subtilin production

Subtilin is an antibiotic released by B. subtilis as a way
to confront difficult environmental conditions. The factors
that govern subtilin production can be divided into internal
(the physiological states of the cell) and external (local
population density,nutrient levels, aeration, environmental
signals in general). Roughly speaking, a high concentra-
tion of nutrients in the environment results in an increase
in B. subtilis population without a remarkable change
in subtilin concentration. Subtilin production starts when
the amount of nutrient falls under a threshold because
of excessive population growth [8]. B. subtilis produces
subtilin and uses it as a weapon to increase its food supply,
by eliminating competing species; in addition to reducing
the demand for nutrients, the decomposition of the organ-
isms killed by subtilin releases additional nutrients in the
environment.

According to the simplified model for the subtilin
production process, developed in [7], subtilin derives
from the peptide SpaS. Responsible for the production of
SpaS is the activated protein SpaRK, which is composed
in turn by the binding of the SigH protein to upstream
genes of SpaS protein. Finally, the composition of SigH is
turned on whenever the nutrient concentration falls below
a certain threshold.

3.2 Model equations

A stochastic hybrid model for this process was pro-
posed in [7]. The equations of the model were developed
based on the qualitative description of Section 3.1. The
model comprises 5 continuous states: the population of B.
subtilis, x1, the concentration of nutrients in the environ-
ment, x2, and the concentrations of the SigH, SpaRK and
SpaS molecules (x3, x4 and x5 respectively).

The model also comprises 23 = 8 discrete states,
generated by three binary switches, which we denote
by S3, S4 and S5. Switch S3 is deterministic: it goes
ON when the concentration of nutrients, x2, falls below
a certain threshold (denoted by η), and OFF when it
rises over this threshold. The other two switches are
stochastic. In [7] this stochastic behavior is approximated
by a discrete time Markov chain, with constant sampling
interval ∆. Given that the switch S4 is OFF at time k∆,
the probability that it will be ON at time (k+1)∆ depends
on the concentration of SpaS at the time k∆, x3(k∆).
More specifically, this probability is

a0(x3) =
cx3

1 + cx3
,

where c is a model constant. Notice that the probability of
switching ON increases to 1 as x3 gets higher. Conversely,
given that the switch S4 is ON at time k∆, the probability
that it will be OFF at time (k + 1)∆ is

a1(x3) =
1

1 + cx3
.
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Notice that this probability increases to 1 as x3 gets
smaller. The dynamics of switch S5 are similar, with the
concentration of SpaRK, x4, replacing x3.

The continuous dynamics for the B. subtilis population
x1 are given by

ẋ1 = rx1(1−
x1

D∞(x2)
).

Under this equation, x1 will tend to converge to D∞, the
steady state population for a given nutrient amount. D∞
depends on x2 and is given by

D∞(x2) = min{ x2

X0
, Dmax}.

X0 and Dmax are constants of the model; the latter
represents constraints on the population because of space
limitations and competition within the population.

The continuous dynamics for x2 are governed by:

ẋ2 = −k1x1 + k2x3

where k1 denotes the rate of nutrient consumption per
unit of population and k2 the rate of nutrient production
due to the action of subtilin. In reality, the second term
is proportional to the average concentration of SpaS, but
for simplicity we follow [7] and assume that the average
concentration is proportional to the concentration of SpaS
for a single cell.

The continuous dynamics for the remaining three states
depend on the discrete state, i.e. the state of the three
switches. In all three cases the equations take the form:

ẋi =

{
−lixi if Si is OFF

ki − lixi if Si is ON.

It is easy to see that the concentration xi decreases ex-
ponentially toward zero whenever the switch Si is OFF
and tends exponentially toward ki/li whenever Si is ON.
Note that the model is Piecewise Affine (PWA) with the
exeption of nonlinear x1 and the stochastic terms used to
describe switch behavior.

3.3 PDMP formalism

We now try to express the model for subtilin produc-
tion using the PDMP formalism. As presented earlier, a
Piecewise Deterministic Markov Process is a collection
H = ((Q, d, X), f, Init, λ, R). We saw that the subtilin
production has 8 discrete states. Therefore, the set Q is a
countable set, the cardinality of which is 8. Let

Q = q0, ...q7,

so that the index (in binary) of each discrete state reflects
the state of the three switches. For example, state q0 cor-
responds to binary 000, i.e. all three swithes being OFF.
Likewise, state q5 corresponds to binary 101, i.e. switches
S3 and S5 being ON and switch S4 being OFF. In the fol-
lowing discussion, the state names q0, ...q7 and the binary
equivalents of their indices will be used interchangeably.

A wildcard, *, will be used when in a statement the po-
sition of some switch is immaterial; e.g. 1** denotes that
something holds when S3 is ON, whatever the values of
S4 and S5 may be.

The discussion in the previous section suggests that
there are 5 continuous states and all of them are active
in all discrete states. Therefore, the dimension of the
continuous state space is constant d(q) = 5, for all
q ∈ Q. The definition of the survival function suggests
that the open sets X(q) ⊆ R5 are used to force discrete
transitions to take place at certain values of state. In the
subtilin production model outlined above the only forced
transitions are those induced by the deterministic switch
S3; S3 has to go ON whenever x2 falls under the threshold
η and has to go OFF whenever it rises over this threshold.
These transitions can be forced by defining

X(0 ∗ ∗) = R× (η,∞)× R3

and
X(1 ∗ ∗) = R× (−∞, η)× R3

The above elements completely determine the hybrid state
space,D(Q, d, X), of the PDMP. As far as the vector field
is examined, we have to specify the direction f(a) that is
assigned to each state a = (q, x). The vector field is not
dependent on the value of X but depends on the discrete
states. Therefore, we have:

f(q0, x) =


rx1(1−

x1

D∞
)

−k1x1 + k2x3

−l3x3

−l4x4

−l5x5

 f(q1, x) =


rx1(1−

x1

D∞
)

−k1x1 + k2x3

−l3x3

−l4x4

k5 − l5x5



f(q2, x) =


rx1(1−

x1

D∞
)

−k1x1 + k2x3

−l3x3

k4 − l4x4

−l5x5

 f(q3, x) =


rx1(1−

x1

D∞
)

−k1x1 + k2x3

−l3x3

k4 − l4x4

k5 − l5x5



f(q4, x) =


rx1(1−

x1

D∞
)

−k1x1 + k2x3

k3 − l3x3

−l4x4

−l5x5

 f(q5, x) =


rx1(1−

x1

D∞
)

−k1x1 + k2x3

k3 − l3x3

−l4x4

k5 − l5x5



f(q6, x) =


rx1(1−

x1

D∞
)

−k1x1 + k2x3

k3 − l3x3

k4 − l4x4

−l5x5

 f(q7, x) =


rx1(1−

x1

D∞
)

−k1x1 + k2x3

k3 − l3x3

k4 − l4x4

k5 − l5xi


(3.1)

Regarding the initial state of the model, for simplicity
reasons, as well as for biological common sense, we
assume that executions start always from the q0 discrete
state. Also, we require that the probability distribution Init
satisfies
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Fig. 1. discrete state space

Init(0 ∗ ∗ × x ∈ R5|x2 ≤ η) = 0,
Init(1 ∗ ∗ × x ∈ R5|x2 ≥ η) = 0.

The initial state should reflect any other constraints
imposed by biological intuition. For example, since x1 re-
flects the B.Subtilis population, it is reasonable to assume
that they x1 ≥ 0. Another reasonable constraint is that
initially x1 ≤ D∞(x2). Finally, since continuous states
x2, ..., x5 reflect concentrations, it is reasonable to assume
that they also start with non-negative values. These con-
straints can be imposed if we require that for all q ∈ Q

Init({q} × {x ∈ R5|
x1 ∈ (0, D∞(x2)) and min(x2, x3, x4, x5) > 0}) = 1

(3.2)
All probability distributions that respect the above con-
straints are considered acceptable for our model.

The main problem we confront when trying to express
the subtilin production model as a PDMP is the need to de-
fine the λ function. Intuitively, this function indicates the
”tendency” of the system to jump and switch its discrete
state. The rate function λ will govern the spontaneous
transitions of the switches S4 and S5 (switch S3 is gov-
erned by a forced transition). To present the design of an
appropriate λ function we focus on discrete state q6. Fig-
ure 2 summarizes the discrete transitions out of state q6.
Simultaneous switching of more than one of the switches
S3, S4, S5 is not allowed. This is a reasonable assumption,
since simultaneous switching of two or more switches is
a null event in the unerlying probability space. q6 corre-
sponds to binary 110, i.e. switches S3 and S4 being ON
and S5 being OFF. Of the three transitions out of q6, the
one to q2 (S3 → OFF) is forced and does not feature in
the construction of the rate function. For the remaining
two transitions, we define two separate rate functions,
λS4→OFF (x) and λS5→ON (x). These functions need to
be linked somehow to the transition probabilities of the
discrete time Markov chain with sampling period ∆ used
to model the probabilistic switching in [7]. The survival
function of states that the probability that the switch S4

remains ON throughout the interval [(k − 1)∆, k∆] is
equal to

Fig. 2. possible transitions

exp

(∫ k∆

(k−1)∆

λS4→OFF (x(τ))dτ

)
This propability should be equal to 1−a0(x3((k−1)∆)).
Assuming that ∆ is small enough, we have that
1− a0(x3((k − 1)∆)) ≈ exp (−∆λS4→OFF (x(k∆))).
Selecting λS4→OFF (x) = ln(1+cx3)

∆ achieves the desired
effect. Likewise, we define λS5→ON (x) = ln(1+cx4)−ln(cx4)

∆
and set the transition rate for discrete state q6 to
λ(q6, x) = λS4→OFF (x) + λS5→ON (x)

The functions λS4→OFF (x) and λS5→ON (x) take
non-negative values and are therefore good candidates for
rate functions. In a similar way, we define rate functions
λS5→OFF (x) (replacing x3 by x4) and λS4→ON (x) (re-
placing x4 by x3) and use them to define the transition
rates for the remaining discrete states. In order to com-
plete the PDMP model we need to define the probability
distribution for the state after a discrete transition. The
only difficulty here is removing any ambiguities that may
be caused by simultaneous switches. We do this by intro-
ducing the a priority scheme: when the forced transition
has to take place, it does, else either of the spontaneous
transitions can take place. For state q6 this leads to

R(q6, x) = δ(q2,x)(q, x) if (q6, x) ∈ D else

R(q6, x) =
λS4→OFF (x)

λ(q6, x)
δ(q4,x)(q, x) +

λS5→ON (x)
λ(q6, x)

δ(q7,x)(q, x)

(3.3)

Here δ(q̂,x̂)(q, x) denotes the Dirac measure concen-
trated at (q̂, x̂). If desired, the two components of the
measure R can be written together using the indicator
function, ID(q, x), of the set D. It is easy to see that this
probability measure satisfies Assumpion 1.

The above discussion shows that the PDMP model also
satisfies most of the conditions of Assumption 1. The only
problem may be the non-Zeno condition.

4. PARAMETER IDENTIFICATION

4.1 Problem formulation

In this section we will concentrate on formulating
mathematically the problem, in order to make it solvable
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Fig. 3. Execution for randomly selected values

by the use of Genetic Algorithms. First of all, we must
clarify that our intention is to estimate only the parameters
involved in the differential equations governing the func-
tion f(x) of the PDMP formalism. We have to emphasize
at this point, that only the first two curves of the Fig 3
(showing the evolution of x1 and x2) are to be used,
because they comprise the only observable data of the
system. The other three curves indicate the evolution of in-
tracellular concentrations, and are not readily available for
measurement. Therefore, the problem can be expressed as:
Is it possible to exploit the curves expressing the food and
the population evolution in order to reveal the values of the
parameters of the underlying model? In what follows, we
present our effort to estimate the values by measuring the
distance of a generated curve (based on random selection
of parameters) from its target-curve (the original one).
That is, we treat these curves as bearing all the information
hidden in the system in the form of parameter values.

Figure 3 shows the execution of the five continuous
states of the aforementioned system in case of random
selection of the target values, so as to become evident that
the a priori knowledge of the structure of the system is not
sufficient to guarantee reasonable results.

The exact set of parameters we want to identify are the
five values of synthesis rates k1 to k5, three degradation
rates l3 to l5, the constant r, the time interval δ and the
threshold η.

4.2 Proposed solution based on GA

The genetic algorithm is a method for solving opti-
mization problems. They are based on natural selection,
and are inspired by the Darwinian optimization process
that governs evolution in real life. The genetic algorithm
first creates and then modifies a set of individual solu-
tions. At each step, the genetic algorithm must select a
subset of individuals from the given population for mating
reasons. The selected individuals produce the population
of the next generation. Over successive generations, we
expect the population to evolve toward a better solution,
according to a fitness function. Researchers have proposed
numerous slight modifications (concerning a GA’s evolu-
tion). However, the three main types of rules of a GA are
the Selection rules, the Crossover rules and the Mutation

rules. The next paragraph describes implementation topics
of our genetic algorithm application.

The simulation was held on the MATLAB environ-
ment for ease of use [9]. We exploited the conveniences
provided by the version 1.0.1 of the Genetic Algorithm
toolbox to obtain our results. In order to run the algo-
rithm, we must firstly designate all the parameters of the
algorithm informing properly all the fields of the structure
gaoptimset.
CreationFcn: our selection is the function gacreationuni-
form for we want to initialize a uniform population
CrossoverFraction: denotes the fraction of the popula-
tion to be created from one generation to the next by the
crossover. It is set to the default value 0.8.
CrossoverFcn: informs the GA in what way to create
crossover children. We selected crossoverscattered
PopInitRange: Vector needed to inform of the boundary
values. In our case it coincides with the default value [0;1]
because the majority of the parameters must operate inside
this area.
PopulationType: The data type of the population could
be ’bitstring’,’doubleVector’, or customized. The first two
do not serve our purposes, consequently we had to use
the ’custom’ option because our values must be positive
double values. Besides that, we had to render the selected
creation and mutation functions operational with our data
type, including changes in the source code of the respec-
tive functions
MutationFcn: Governs the way that mutations are gener-
ated. Gaussian mutation was selected in order to produce
generally small perturbations.
PopulationSize: This number shows the number of the
population. The greater the number, the more precise our
search of the state space (but also the more slow the search
becomes).
SelectionFcn: The function that selects individuals for
mating purposes is set to the commonly used selection-
roulette. This is a selection operator in which the chance of
an individual getting selected is proportional to its fitness.
This is where the concept of survival of the fittest comes
into play.
The fitness function is perhaps the most important pa-
rameter that we can define. It was noted earlier that the
trajectories of the food as well as the population evolution
have to be considered as evaluation means. If we simply
calculate the mean square distance between the original
trajectories and those generated by a different set of pa-
rameters, we do not take into consideration the stochastic
nature of the model. The results include different sets
of parameters that reproduce satisfactorily the observed
trajectories.
The following formula describes our fitness function. That
is, for every set of parameters we calculate the evolution of
x1 and x2. Then these curves are sampled with sampling
interval δ. Small letters are used to denote the generated
curves, while capital letters denote the target curves.
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Fig. 4. Results generated by simple fitness function∑
k[(x1(kδ)−X1(kδ))2 + (x2(kδ)−X2(kδ))2]

Consequently, the previous formula measures the square
distance,at specific time points of the evolution, between
the target curves (which have to be observed experimen-
tally) and the original ones. Results are shown in Figure 4.

4.3 Results for B.Subtilis model

The PDMP model for Subtilin production comprises
randomness that clearly leads each execution to differ
from every other (same set of parameters and initial con-
ditions). Thus, we believe that a sole execution is not
adequate to fully characterize a given set of values.
Our intention is then to run multiple experiments in or-
der to calculate multiple measurements of mean square
distances between the original and the under-examination
trajectories. The mean arithmetic value serves then as a
fitness indicator.

2∑
i=1

∑
k[(xi

1(kδ)−X1(kδ))2 + (xi
2(kδ)−X2(kδ))2]

2

We now extend the fitness function shown before, in order
to capture more than one experiments. More specifically,
we simulate the evolution that is forced by a set of param-
eters and then calculate the simple square distance. Then
we re-simulate the evolution of the system, and calculate
its distance once more. Due to stochastic nature of the
system, its evolution (and therefore its distance from the
target curves) will differ from execution to execution. In
our example i = 2, showing that two executions of the
system are taken into consideration. Generated results are
shown in Figure 5

4.4 Conclusion

PDMPs are a class of models that capture inherent
randomness. Their stochastic nature makes it difficult to
apply parameter identification techniques to find the pa-
rameter values of the f(x) function. However, genetic
algorithms were able, only by measuring the mean square
distance of the population and food trajectories, to esti-
mate a fair set of parameters, that produce executions,
matching the original curves.

Fig. 5. Results generated by ”multiple” fitness function

The fact that an increasing number of researchers try to
describe biological processes in terms of stochastic hybrid
models, along with the friendly nature of the PDMP
formalism, makes us believe that the latter will be further
used in the near future in the field of systems biology. We
expect genetic algorithms to continue to serve as a means
of parameter identification technique for such cases.
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