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Abstract: In this paper a stochastic hybrid systems framework is established
for the formulation of call admission control (CAC) and routing control (RC)
problems in networks. The hybrid state process of the underlying system is
a piecewise deterministic Markovian process (PDMP) evolving deterministically
between random event instants at which times the state jumps to another state
value. The random events in the system correspond to the arrival of call requests
or the departure of connections. The resulting NETCAD stochastic state space
systems framework permits the formulation and analysis of centralized optimal
stochastic control with respect to specified utility functions [3,8,10,11].
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1. INTRODUCTION

Call admission control (CAC) and routing con-
trol (RC) in telecommunication networks have
been topics of active research for decades (see e.g.
[1,5,6,12]). In the 1960s, Benes pioneered routing
control in telephone networks, providing a general
mathematical formulation and the extensive asso-
ciated analysis for telephone systems presented in
[1].

In this paper, CAC and RC in networks are
modeled as stochastic control problems for the
so-called NETwork Connection Assignment and
Departure (NETCAD) systems. The state process
of the underlying NETCAD systems has some
particular characteristics: (1) the state process has
two parts: the first is a piecewise constant integer-
valued point process [2], while the second is a vari-
able dimension real-valued piecewise deterministic
process; (2) it is a piecewise deterministic Markov

process [4] with respect to a Markovian control
law, where the state value evolves determinis-
tically between the random event instants and
jumps to some other state value at random event
instants subject to controlled transition probabil-
ities. NETCAD systems may be viewed as sto-
chastic hybrid systems generalizing the class of
deterministic hybrid systems which was defined in
[13] and the references therein; as indicated above,
the state process is composed of two components:
a discrete component, denoting the connections
along the set of (origin-destination) routes in the
NETCAD network, and a continuous component
constituting the vector of ages of the call requests
and active connections in the NETCAD system.

The distinction between the work in this paper
and that found in standard telecommunication
texts and papers (see e.g. [1,5,6,12]) is that here a
network system is represented within a formal sto-
chastic systems framework with a specified class of
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input stochastic processes and a stochastic hybrid
state space process with a controlled evolution
equation while such a fine low level analysis is not
formulated in [1,5,6,12]. This permits the formu-
lation of an optimal stochastic control theory for
NETCAD systems in the current work [8].

The paper is organized as follows. In Section 2, we
present the formal definition of the networks upon
which NETCAD systems are based; in Section
3, we formulate the network connection assign-
ment and departure (NETCAD) systems and the
Markov property of the state process is proved.
Section 4 contains the conclusions and outlines
future work.

2. THE NETWORK OF A NETCAD SYSTEM

2.1 NETCAD Networks

A NETCAD network is a capacitated network
Net(V, L, C) as defined below. Based upon this
notion, a NETCAD system is defined in Definition
3.7 at the end of Section 3.

Definition 2.1. A network, or graph, Net(V, L)
consists of a set of vertices V = {v1, · · · , vV },
V ∈ Z1, and a set of lines L = {l1, · · · , lL}, L ∈
Z1, where each line l ∈ L is an ordered pair
(v′, v′′) ∈ V × V of distinct vertices.
A network Net(V, L) with (line) capacities C =
{cs ≡ c(ls) : 1 ≤ s ≤ L, cs ∈ Z1}, shall be denoted
by Net(V, L, C). �

Definition 2.2. A route, r in the network Net(V, L),
connecting a vertex o ∈ V to a vertex d ∈ V, d 6= o,
is a finite sequence of vertices r = (v′

1, · · · , v′
k),

such that
v′
1 = o, v′

k = d,

v′
i 6= v′

j , for i 6= j,

(v′
i, v

′
i+1) ∈ L, for i = 1, · · · , k − 1.

The set of routes in the network Net(V, L) is
denoted by R, and we denote R as the cardinality
of R, i.e. R = |R|. �

Fig.1 is an illustration of 3 distinct routes be-
tween node v1 and v8, which are (v1, v2, v5, v4, v8),
(v1, v4, v8) and (v1, v3, v7, v8) respectively in a net-
work.

1v

2v

8v

7v

6v5v

3v

4v

Fig. 1. Distinct routes in a network

Definition 2.3. The feasible set of origin destina-

tion vertex pairs, denoted by V
△, is defined as

V
△ =

{

〈o, d〉 ∈ V × V; ∃ r ∈ R,

s.t. r = (v′
1, · · · , v′

j), v
′
1 = o, v′

j = d, o 6= d
}

(1)

�

Remark: Call requests from any node to itself are

excluded in this paper.

Definition 2.4. The admissible set of connections,
denoted by N , in R in the network with capacities
Net(V, L, C), is defined as

N =
{

n = (nr) ∈ Z
R
+ :

∑

r∈R; ls∈r

nr ≤ cs, ∀s, 1 ≤ s ≤ L
}

(2)

�

We observe that in the definition of N , for each
fixed ls, the set of r ∈ R appearing in the sum
is the set of routes each of which contains ls as a
line.
Since the routes in R are in one-to-one corre-
spondence with the index of the components of a
vector in Z

R
+ ⊂ R

R, we shall by abuse of notation
let r ∈ R also denote the integer indexing the
corresponding vector component in R

R.

2.2 A Simple Example of a Capacitated Network

1v
2v

3v

Fig. 2. A three node capacitated network

We consider a simple network Net(V, L, C), see
Fig.2, with

V = {v1, v2, v3}
L = {l1 = (v1, v2), l2 = (v1, v3), l3 = (v3, v2)}
C = {cl = 2; l ∈ L}

Hence the set of routes, R, is defined as

R = {r1 = (v1, v3, v2), r2 = (v1, v2),

r3 = (v1, v3), r4 = (v3, v2)},

and the admissible connections set, N , is defined
as

N = {n = (nr1
,nr2

,nr3
,nr4

) ∈ Z
4
+;

∑

ri∈R; l∈ri

nri
≤ 2, ∀l ∈ L}
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3. THE NETWORK CONNECTION
ASSIGNMENT AND DEPARTURE (NETCAD)

SYSTEMS

3.1 The NETCAD System Framework

We consider the following:

(1) The probability space (Ω,F , P ) carries the
family of independent R+ valued random
variables

{τ 〈o,d〉

k , τ c
j ; k, j ∈ Z1, 〈o, d〉 ∈ V

△}, (3)

where τ
〈o,d〉

k denotes the length of the interval
between the (k − 1)th and the kth 〈o, d〉 call
request; τ c

j denotes the lifetime of the jth
allocated connection in the network.

(2) For each 〈o, d〉 ∈ V
△, the random vari-

ables {τ 〈o,d〉

k , k ∈ Z1} are assumed to have a
common arbitrary distribution A〈o,d〉(t) with
density function a〈o,d〉(t), i.e.

P(τ
〈o,d〉

k ≤ t) = A〈o,d〉(t) =

∫ t

−∞

a〈o,d〉(s)ds.

(4)

(3) The random variables {τ cj , j ∈ Z1} are as-
sumed to have a common arbitrary distribu-
tion B(t) with density function b(t), i.e.

P(τ cj ≤ t) = B(t) =

∫ t

−∞

b(s)ds. (5)

Remarks: For each 〈o, d〉 ∈ V
△, we shall de-

note the call (connection) request process of 〈o, d〉
by N+

〈o,d〉
. Then from the above assumption, we

observe that, for each 〈o, d〉 ∈ V
△, the N+

〈o,d〉

process is an autonomous, i.e. control indepen-

dent, point process in R+ with independent inter-

event times {τ 〈o,d〉

k , k ∈ Z1}. In other words, for

each 〈o, d〉 ∈ V
△, the call request process N+

〈o,d〉
is

a point process with independent interarrival times

distributed A〈o,d〉(.).

Definition 3.1. The sub-state space, Zn, with re-
spect to n = (nr1

, · · · ,nrR
) ∈ N , is defined as the

following collection of index and age pairs:

Zn = {z ≡ (n; ζ); ζ ∈ R
m(n)
+ }, where (6)

m(n) , |V△| +
∑

r∈R

nr,

ζ ,

(
{

|V△|
︷ ︸︸ ︷

ζ〈o,d〉1 , ζ〈o,d〉2 , · · · , ζ〈o,d〉
|V△

|

}

od
,

{

nr1
︷ ︸︸ ︷

ζcr1,1 , · · · , ζcr1,nr1

}

r1
, · · · ,

{

nrR
︷ ︸︸ ︷

ζcrR,1 , · · · , ζcrR,nrR

}

rR

)

,

where the following constraints necessarily hold:

ζcri,1 > · · · > ζcri,nri ≥ 0, ∀ i ∈ {1, · · · , R},

and where ζ〈o,d〉i denotes the elapsed time since
an 〈o, d〉i call request and ζcri,j denotes the age of
connection cri,j .

The state space, denoted by Z, is defined as

Z ,

⋃̇

n∈N
Zn. (7)

�

Remarks:

(1) We set, for each 〈o, d〉 ∈ V
△, a unique

index number i, i ∈ {1, 2, · · · , |V△|}, and

denote this 〈o, d〉 pair by 〈o, d〉i, i.e. for each

i, i ∈ {1, 2, · · · , |V△|}, there is a unique

〈o, d〉 ∈ V
△ and 〈o, d〉i ≡ 〈o, d〉.

(2) Since there are nri
connections along route

ri, then each of these connections can be

uniquely denoted by cri,j, j(i) ∈ {1, · · · ,nri
}

and its age is denoted by ζcri,j .
(3) Specifically, the sequence of nri

connections

along route ri can be indexed by their age,

or time since birth time, such that ζcri,1 >
ζcri,2 > · · · > ζcri,nri , corresponding to

the fact that the earlier a connection was

established, the smaller is its index number.

Here we give an example to illustrate the defini-
tion of the state z.

Fig. 3. Network state values with respect to dif-
ferent connection allocations

In Case 1 in Fig.3 there is no connection in the
network, and the corresponding state value z takes
the following form:

z =

([
0
0
0
0

]

,

[
ζ〈v1,v2〉

ζ〈v1,v3〉

ζ〈v2,v3〉

])

In Case 2 in Fig.3 there are respectively one,
two and one connections along the route r1 ≡
(v1, v3, v2), r2 ≡ (v1, v2) and r3 ≡ (v1, v3). The
corresponding state value z takes the following
form:

z =

([
1
2
1
0

]

,

[
ζ〈v1,v2〉

ζ〈v1,v3〉

ζ〈v2,v3〉

]

,

[
ζ

cr1,1

ζ
cr2,1

ζ
cr2,2

ζ
cr3,1

])

Definition 3.2. The (call request and connection

departure) event set, En, with respect to a connec-
tion vector value n ∈ N , s.t. n = (nr1

, · · · ,nrR
),

is defined as:

En = e0
n

⋃̇

E+
n

⋃̇

E−
n

, where (8)
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E+
n

=
⋃̇

〈o,d〉q∈V△

e+
〈o,d〉q

E−
n

=
⋃̇

ri∈R

{
⋃̇

j∈{1,··· ,nri
}
e−cri,j

}

,

where ˙⋃ denotes the disjoint union of the indi-
cated entities and

(1) e0
n
≡ 0 =

[
0
···
0

]

∈ R
M denotes absence of call

request or connection departure event and 0

is the zero vector in R
M , and

M ≡ M(n) = |V△| +
∑

r∈R

nr;

(2) e+
〈o,d〉q

≡ 1m =

[ 0
···
0
1
0
···

]

∈ R
M denotes the call

request (event) from vertex o to vertex d,
with 〈o, d〉 = 〈o, d〉q and 1m is the m-th unit
vector in R

M , where m = q;

(3) e−cri,j
≡ 1m =

[ 0
···
0
1
0
···

]

∈ R
M denotes the

connection cri,j departure (event) and 1m is
the m-th unit vector in R

M , and

m = |V△| +
i−1∑

l=1

nrl
+ j.

The (total) event set, E, is defined as

E ,

⋃̇

n∈N
En. (9)

�

Definition 3.3. The (extended) sub-state space,
Xn, with respect to a connection vector, n =
(nr1

, · · · ,nrR
) ∈ N , is defined as the following:

Xn , Zn × En.

The (total extended) state space, X, is defined as:

X ,
˙⋃
n∈NXn. �

Definition 3.4. The feasible control (value) set,
U(x), with respect to an extended state value
x = (z, e) ≡ (n, ζ, e) ∈ X, s.t. n = (nr1

, · · · ,nrR
)

and an event e ∈ E+
n

, is defined as:

U(x) = 0
〈o,d〉(x)

⋃̇

1
〈o,d〉
r (x)

⋃̇

− 1c(x), (10)

where

0
〈o,d〉(x) =

⋃̇

〈o,d〉q∈V△

0〈o,d〉q (x),

with 0〈o,d〉q (x) ≡ 0〈o,d〉q(x)(x),

1
〈o,d〉
r (x) =

⋃̇

〈o,d〉q∈V△

{
⋃̇

r∈R〈o,d〉q

n+1r∈N

1〈o,d〉q
r (x)

}

,

with 1〈o,d〉q
r (x) ≡ 1〈o,d〉q(x)

r (x),

− 1c(x) =
⋃̇

ri∈R

{
⋃̇

j∈{1,··· ,nri
}
− 1cri,j

(x)

}

,

with − 1cri,j
(x) ≡ −1cri,j(x)(x),

where

(1) 0〈o,d〉q (x) ≡ 0 ∈ R
R denotes the fact that the

call request e+
〈o,d〉q

is rejected and 0 is the

zero vector in R
R;

(2) 1
〈o,d〉q
r (x) ≡ 1i =

[ ···
0
1
0
···

]

∈ R
R denotes that

the call request e+
〈o,d〉q

is accepted and is

allocated on the route ri = r, s.t. r =
{vq1

, · · · , vqm
} ∈ R, 〈vq1

, vqm
〉 = 〈o, d〉q and

n + 1r ∈ N ;

(3) −1cri,j
(x) ≡ −1i = −

[ ···
0
1
0
···

]

∈ R
R denotes

that a connection in ri departs.

The control (value) set U is defined as

U =
⋃̇

x∈X
U(x). (11)

Here we give an example to display a feasible
control with respect to an index n ∈ N . See Fig.4.

( ) ( )1 2

1

, 1,0,0,0v v
ru x =

( )1 1 3 2, ,r v v v≡

Fig. 4. A feasible control with respect to a state
value

(
(0, 1, 0, 0), ζ

)

Suppose that x =
(
(0, 1, 0, 0), ζ

)
∈ X and e =

(1, 0, 0, 0, 0), i.e. a call request 〈v1, v2〉 occurs, a

feasible control can be u
〈v1,v2〉
r1

(x) = (1, 0, 0, 0), i.e.
the call from v1 to v2 is allocated to the route
r1 ≡ (v1, v3, v2).

Definition 3.5. When z and e depend in a pro-
gressively measurable way on (Ω,F , P), we refer
to z = {z(t, ω); t ∈ [0, T ], ω ∈ Ω} and e =
{e(t, ω); t ∈ [0, T ], ω ∈ Ω} as state and event

processes; and x as the (extended) state process

x =
{

x(t, ω) ,

(
z(t−, ω), e(t, ω)

)
, t ∈ [0, T ],

ω ∈ Ω
}

, with z(t−, ω) ≡ lim
s↑t

z(s, ω). (12)

We define Ft ,

∨

r∈[0,t] σ(xr) ∈ F , i.e. F. is the
natural filtration extended by the process x, where
σ(xr) denotes the σ-field generated by the random
variable xr. �

Definition 3.6. The set of state dependent, or
Markovian (measurable), control laws is denoted
by U [0, T ], 0 ≤ T < ∞, and is given by,

U [0, T ] =
{
u : [0, T ] × Ω → U ;

s.t. ut is σ(xt) measurable, t ∈ [0, T ]
}

(13)

U [0,∞) = ∪T≥0 U [0, T ] (14)

�
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Definition 3.7. A family of state processes {xt ,

(zt− , et)} taking values in X in a capacitated
network Net(V, L, C), together with a family of
feasible controls u, is called a network connection

assignment and departure (stochastic) system, or
a NETCAD system, for short. �

Definition 3.8. We term a sequence of event in-

stants {tj(ω)} in R+

0 ≤ t1(ω) < · · · < tj(ω) < tj+1(ω) < · · · ,

(Ω,F , P), ω ∈ Ω, (15)

at which random call request or connection de-
parture event occurs as a sequence of (random)

event instants t. : Z+ × Ω → R+. The sequence
τ. : Z1 × Ω → R+, with τk+1 , tk+1(ω) − tk(ω),
where t0(ω) ≡ 0 is defined as the sequence of event

intervals (associated to t.(ω)). �

Definition 3.9. State response or transition equa-

tion, with a measurable Markov control law u ∈
U [0,∞), i.e. ut is σ(xu

t ) measurable, for the evo-
lution of the state process

xu : [0,∞) × Ω → X, (16)

with initial state value xu
t0

≡ (zu
0 , eu

0 ) =
(
(n, ζ),0

)
,

is given by

xu
t = (zu

t , eu
t ), ti−1 ≤ t < ti, i ∈ Z1 (17)

zu
t = zu

ti−1
+

∫ t

ti−1

(0n, Iζ)dr

=
(
nti−1

, ζti−1
+ [t − ti−1] Iζ

)
, (18)

where ti−1 ≤ t < ti, i ∈ Z1.

eu
t =

{

e ∈ En, t = ti, i ∈ Z1, n ≡ n(xu
ti−1

)

0, otherwise

(19)

xu

t
+

i

≡ lim
s↓ti

xs = lim
s↓ti

(
zu

s− , eu
s

)
=
(
lim
s↓ti

zu
s− , lim

s↓ti

eu
s

)

=
(
lim
s↓ti

lim
r↑s

zu
r ,0

)
=
(
zu

t
+

i

,0
)

=
(
zu

ti
,0
)
, (20)

where 0 denotes the zero vector with some proper
dimension, Iζ denotes (1, · · · , 1) with a dimension
depending on the value of ζ.

The state transition equation at the event instant
ti is the following:

zu
ti

=
(

n
t
−

i
+ uti

(xu
ti

), A[IM×M − eti
eT

ti
] ζ

t
−

i

)

,

(21)

where M is the dimension of the vector ζ
t
−

i
and

A ≡ A(xu
ti

, uti
(xu

ti
))

=







A
+
(M+1)×M

, if uti
(xu

ti
) > 0

A
−
(M−1)×M

, if uti
(xu

ti
) < 0

IM×M , otherwise

A
+
(M+1)×M

=

[
Im×m 0(m+1)×(M−m)

0(M−m+1)×m I(M−m)×(M−m)

]

,

where m = |V△| +
l∑

j=1

nrj
(t−i ), uti

(xu
ti

) = 1rl

〈o,d〉q

A
−
(M−1)×M

=

[
Im×m 0m×(M−m)

0(M−m−1)×(m+1) I(M−m−1)×(M−m−1)

]

,

where m = |V△| +
l−1∑

j=1

nrj
(t−i ) + [k − 1]

and uti
(xu

ti
) = −1crl,k

Remarks: Ij×j, j ∈ Z1, denotes the j-dimension

identity matrix. �

3.2 An Example of a NETCAD System

Considering the capacitated network defined in
Section 2.2, we specify a realization of the con-
trolled state process zu during [0, t2) to help the
audiences to understand the state transition pro-
cedure.

Suppose that zu
0 =

(
n

u
0 , ζu

0

)
=

([
0
0
0
0

]

,
[

a
b
c

])

,

a, b, c ∈ R+, then for 0 < t ≤ t1,

zu
t− =

([
0
0
0
0

]

,
[

t+a
t+b
t+c

])

, zu

t
−

1

=

([
0
0
0
0

]

,
[

t1+a
t1+b
t1+c

])

,

Remarks: during [0, t1), the dimension of the vec-

tor ζt is 3, since there is no connection in the

network during this interval.

Suppose at t1, et1 =
[

1
0
0

]

and ut1(x
u
t1

) =

[
0
1
0
0

]

, i.e.

an 〈o, d〉1 ≡ 〈v1, v2〉 call request occurs at t1 and
this call request is allocated to the route r2, then

zu
t1

=
(

n
t
−

1

+ ut1(x
u
t1

), A[I3×3 − et1e
T
t1

]ζ
t
−

1

)

=
([ 0

0
0
0

]

+

[
0
1
0
0

]

,AB

[
t1+a
t1+b
t1+c

])

, where

A = A
+
4×3 =

[
1 0 0
0 1 0
0 0 1
0 0 0

]

B =
[

1 0 0
0 1 0
0 0 1

]

−
[

1
0
0

][
1 0 0

]

=

([
0
1
0
0

]

,

[ 0
t1+b
t1+c
−−−

0

])

.

Then we obtain that, for any t1 < t ≤ t2,

zu
t− = zu

t1
+

∫ t−t1

0

(0n,1ζ)dr =
([ 0

1
0
0

]

,

[ t−t1
t+b
t+c
−−−
t−t1

]
)

,

and zu

t
−

2

=
([ 0

1
0
0

]

,

[ t2−t1
t2+b
t2+c
−−−
t2−t1

]
)

.

Remarks: A connection was established in the

network at t1. So Dim(ζt1) = Dim(ζ
t
−

1

)+1 = 3+

1 = 4, i.e during [t1, t2) the dimension of the

vector ζt is 4. �
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3.3 Hybrid Nature of the NETCAD System

The state process zu of the NETCAD system is
composed of the two parts, such that

zu
t =

(
nt

ζt

)

, at any instant t, t ∈ [0, T ], (22)

where n, a discrete process, keeps unchanged be-
tween the random event instants and is trans-
ferred to a state value n

′ ∈ N ⊂ Z
R
+, with some

controlled transition probability; while ζ, a con-
tinuous process, evolves deterministically between
the random event instants and is transferred to a
state value ζ ′ ∈ R

M(n′), where the dimension of
ζ ′ is dependent on the value of n

′.

3.4 Markov Property of the State Process

Lemma 3.1. [9] For each event instant, tj , j ∈ Z+

and t ∈ R+, {tj ≤ t} ∈ Ft, i.e. tj is a stopping
time of the filtration F.. �

Theorem 3.1. [9] For all t, s ≥ 0 and any Γ ∈
σ(X), where σ(X) denotes the σ-field generated
by X,

P

(
xu

t+s ∈ Γ |Ft

)
= P

(
xu

t+s ∈ Γ |σ(xu
t )
)
, (23)

i.e. with extended state feedback the overall closed
loop NETCAD system generates a Markov state
process xu. �

4. CONCLUSION

The stochastic state space dynamical systems
framework for call request and routing in what are
termed NETCAD networks has been introduced
in this paper. A feature of the resulting stochas-
tic NETCAD systems is that they are hybrid
stochastic systems with variable dimension state
processes; for these processes certain properties,
such as the Markovian property and piecewise
continuity, have been established.

The NETCAD framework permits the formula-
tion and analysis of centralized optimal stochastic
control with respect to specified utility functions;
in particular, this entails the derivation of the
Hamilton-Jacobi-Bellman equation for optimally
controlled NETCAD systems [3,8,10,11]. In addi-
tion this framework provides the foundation for
the current work [7] on decentralized suboptimal
control based upon state aggregation and estima-
tion.
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