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Abstract: The verification problem for stochastic hybrid systems is quite difficult.
One method to verify these systems is stochastic reachability analysis. Concepts
of abstractions for stochastic hybrid systems are needed to ease the stochastic
reachability analysis. In this paper, we set up different ways to define abstractions
for stochastic hybrid systems, which preserve the parameters of stochastic reach-
ability. A new concept of stochastic bisimulation is introduced and its connection
with equivalence of stochastic processes is established.Copyright c©2006 IFAC
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1. INTRODUCTION

The investigation of stochastic hybrid systems
(SHS) has recently received significant atten-
tion (Bujorianu, 2004), (Blom, 2003), (Pola et

al., 2003). The need for probabilistic modelling is
motivated mainly by the partial knowledge about
very complex systems, as well as, by the possi-
bility of simplifying deterministic models intro-
ducing probabilistic reasoning. There are several
dimensions of probabilistic reasoning over hybrid
systems: (1) probabilistic quantification of dis-
crete transitions; (2) stochastic reasoning about
continuous evolution; (3) probabilistic aspects of
the interaction between continuous and discrete
dynamics. Because of these multiple dimensions,
there is need to develop approaches towards the
verification of SHS. Until now, concrete steps to
solve the verification problems were made only for
ad-hoc or particular classes of SHS models.

The novelty of the approach presented in this pa-
per is to study the verification problem of SHS as

bisimulation for a stochastic realization problem
and to define abstractions of SHS that ‘preserve’
the probabilities used to define the stochastic
reachability problem. Our abstractions focus on
achieving numerical evaluation of the probability
bounds even with the price of sacrificing the model
expressivity. Ideally, abstractions for stochastic
reachability analysis would provide state spaces in
the real line, making available efficient algorithms
from numerical analysis.

An important problem in the development of SHS
is the preservation of stochastic properties. An
abstraction can affect the probabilities and im-
plicitly, the reachability analysis. Therefore, it is
crucial to develop a theory of ‘bisimulation’ of
SHS that preserves the relevant reach set prob-
abilities of SHS considered. The aim of this paper
is to initiate the development of such bisimula-
tions/abstractions for SHS in a general setting.

The paper is structured as follows. In the next
section, we give the motivation of this work and
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the formulation of the problem. Then, we present
a short background on SHS, their semantics as
stochastic processes and different operator meth-
ods which can be used to characterize stochastic
processes. The main body of the paper is con-
stituted by Sect.4. The main goal of this sec-
tion is to define concepts of stochastic bisimu-
lation and abstractions for SHS, which do not
conduct to the equivalence of the SHS realizations.
The attempt to define bisimulation that preserves
different stochastic parametrizations of the SHS
realizations is a wrong track, since it is noth-
ing else, but another way, to present equivalence
of stochastic processes. This section is divided
in five parts. In the first subsection we define
a space reduction technique based on quadratic
forms associated to stochastic processes. The use
of this technique is motivated by the formulation
of the stochastic reachability for SHS. The goal
of stochastic reachability analysis is to measure
the set of trajectories, which reach a given target
set until a given time horizon. Often, in practice,
the target set is described as a level set for a
‘nice’ real-valued function defined on the whole
state space. This function might be a norm, an
observably function, or a weight function, etc.
Applying this function to the paths of stochastic
process that constitutes the SHS realization gives
rise to a new stochastic process with the state
space in the real line. Even the given process is
Markovian and the above function has some mea-
surability properties the new process might not be
Markovian (Rogers and Pitman, 1981). To ‘hide’
this drawback we use the induced quadratic form,
which intuitively is the composition between the
quadratic form of the initial process and the above
function. Usually, the new quadratic form has
good properties such that there exists a Markov
process associated to it. This new process is the
best candidate to represent an abstraction of the
initial process. We call it functional abstraction. In
this way, the SHS realizations are ‘approximated’
by stochastic processes with a much smaller state
space. The stochastic parameters of the induced
process can be easily derived. Using this method,
we formally define, in the following subsections,
new concepts of stochastic bisimulation and func-
tional abstractions of SHS. We have to under-
lie that the functional abstractions ‘preserve’ the
continuous and jumping parts of an SHS. The
paper ends with some conclusions.

2. PROBLEM FORMULATION

In this section we briefly present the stochastic
reachability problem for stochastic hybrid systems
and starting from it we derive the main ideas for
defining abstractions for SHS.

Stochastic Reachability. Consider M = (xt, Px)
being a strong Markov process, the realization of
a stochastic hybrid system (see definitions below).
For this strong Markov process we address a
verification problem consisting of the following
stochastic reachability problem. Given a set A ∈
B(X) and a time horizon T > 0, let us to define
(Bujorianu and Lygeros, 2003), (Bujorianu, 2004):

ReachT (A) = {ω ∈ Ω | ∃t ∈ [0, T ] : xt(ω) ∈ A}
Reach∞(A) = {ω ∈ Ω | ∃t ≥ 0 : xt(ω) ∈ A}. (1)

These two sets are the sets of trajectories of M ,
which reach the set A (the flow that enters A) in
the interval of time [0, T ] or [0,∞). The reachabil-
ity problem consists of determining the probabili-
ties of such sets. The reachability problem is well-
defined, i.e. ReachT (A), Reach∞(A) are indeed
measurable sets. Then the probabilities of reach
events are: P (TA < T ) or P (TA < ∞), where
TA = inf{t > 0|xt ∈ A} and P is a probability
on the measurable space (Ω,F) of the elementary
events associated to M . P can be chosen to be
Px (if we want to consider the trajectories, which
start in x) or Pµ (if we want to consider the trajec-
tories, which start in x0 given by the distribution
µ). Recall that Pµ(A) =

∫

Px(A)dµ, A ∈ F .

Usually a target set A is a level set for a given
function F : X → R, i.e. A = {x ∈ X |F (x) > l}.
The probability of the set of trajectories, which
hit A until time horizon T > 0 can be expressed
as P [sup{F (xt) > l | t ∈ [0, T ]}].
Problem Formulation. Define a new stochastic

process M# such that the reach set probabilities

are preserved.

Idealy, the above argument shows that F (xt)
would represent the best candidate for defining
a possible abstraction for M , which preserves the
reach set probabilities. The main difficulty is that
F (xt) is a Markov process only for special choices
of F (Rogers and Pitman, 1981). The problem is
how to choose F well.

3. PRELIMINARIES

In this section we give the necessary background
for stochastic hybrid systems, their semantics,
some stochastic analysis tools and Dirichlet forms.

3.1 Stochastic Hybrid Systems

Many practical systems such as automobiles,
chemical processes, and autonomous vehicles are
best described by dynamics that comprise con-
tinuous state evolution within a mode of opera-
tion and discrete transitions from one mode to
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another, either controlled or autonomous. Such
systems often interact with their environment in
the presence of uncertainty and variability. SHS
can model complex dynamics, uncertainty, mul-
tiple modes of operations and support high-level
control specifications that are required for de-
sign of (semi-)autonomous applications. Several
modelling paradigms for SHS have been already
proposed in literature. A stochastic hybrid scheme
that allows the continuous flows at each discrete
location to be characterized by stochastic differ-
ential equations is described in (Hu et al., 2000).
An extension of this model that satisfies the
strong Markov property is presented in (Blom,
2003). Methods to study the reachability prob-
lem for SHS have been addressed in (Bujorianu
and Lygeros, 2003). Dynamically Coloured Petri
Nets and Communicating Piecewise Determinis-
tic Markov Processes as compositional specifica-
tions for SHS in (Everdij and Blom, 2005) with
emphasis on modelling concurrency. Applications
of SHS to large distributed systems have been
studied for air traffic management systems (Pola
et al., 2003) and for communication networks
(Hespanha, 2004).

3.2 Semantics of Stochastic Hybrid Systems

The executions of a stochastic hybrid system H
form a stochastic process. Let us consider M =
(Ω,F ,Ft, xt, Px), the realization (or semantics) of
H . Under mild assumptions on the parameters
of H , M can be viewed as a family of Markov
processes with the state space (X,B), where X
is the union of modes and B is its Borel σ-
algebra. Let Bb(X) be the lattice of bounded
positive measurable functions on X . The meaning
of the elements of M can be found in any source
treating continuous-parameter Markov processes
(Davis, 1993). Suppose we have given a σ-finite
measure µ on (X,B).

In the following, some operator characterizations
(used, in this paper, to define abstractions for
SHS) of stochastic processes are given.

Operator Semigroup / Resolvent. Let pt(x,A) =
Px(xt ∈ A), A ∈ B be the transition probability
function. The meaning of this is the probability
that, if x0 = x, xt will lie in the set A. The
operator semigroup P is defined by Ptf(x) =
∫

f(y)pt(x, dy) = Exf(xt), ∀x ∈ X , where Ex
is the expectation w.r.t. Px. The operator semi-
group (Pt)t>0 is, in fact, the collection of all first
order moments, which can be associated with
the family of random variables {xt|t > 0}. The
operator resolvent V = (Vα)α≥0 associated with
P is Vαf(x) =

∫ ∞

0 e−αtPtf(x)dt, x ∈ X. Let
denote by V the initial operator V0 of V , which
is known as the kernel operator of the Markov

process M . The operator resolvent (Vα)α≥0 is the
Laplace transform of the semigroup. The strong
generator L is the derivative of Pt at t = 0.
Let D(L) ⊂ Bb(X) be the set of functions f for
which the following limit exists (denoted by Lf):
limtց0

1
t
(Ptf − f). A quadratic form E can be

associated to the generator of a Markov process
in a natural way. Let L2(X,µ) be the space of
square integrable µ-measurable extended real val-
ued functions on X , w.r.t. the natural inner prod-
uct < f, g >µ=

∫

f(x)g(x)dµ(x). A quadratic
form E is defined as a closed form: E(f, g) = − <
Lf, g >µ, f ∈ D(L), g ∈ L2(X,µ). This leads to
another way of parameterizing Markov processes.
Instead of writing down a generator one starts
with a quadratic form. As in the case of a genera-
tor it is typically not easy to fully characterize the
domain of the quadratic form. For this reason one
starts by defining a quadratic form on a smaller
space and showing that it can be extended to a
closed form in subset of L2(µ). When the Markov
process can be initialized to be stationary, the
measure µ is typically this stationary distribution
(see (Davis, 1993), p.111). More generally, µ does
not have to be a finite measure. If M is a right
Markov process then E is a regular Dirichlet form
(Ma and Rockner, 1990), (Fukushima, 1980).

Dirichlet Forms. A coercive closed form (Albeverio
et al., 1993) is a quadratic form (E , D(E)) with
D(E) dense in L2(X,µ), which satisfies the: (i)
closeness axiom, i.e. its symmetric part is positive
definite and closed in L2(X,µ), (ii) continuity
axiom (Sector condition). E is called Dirichlet

form if, in addition, it satisfies the third axiom:
(iii) contraction condition (Dirichlet property), i.e.
∀u ∈ D(E), u∗ = u+ ∧ 1 ∈ D(E) and E(u ±
u∗, u ∓ u∗) ≥ 0. See (Ma and Rockner, 1990),
(Fukushima, 1980), (Albeverio et al., 1993).

Let (L, D(L)) be the generator of a coercive form
(E , D(E)) on L2(X,µ), i.e. the unique closed linear
operator on L2(X,µ) such that 1 − L is onto,
D(L) ⊂ D(E) and E(u, v) =< −Lu, v > for all u ∈
D(L) and v ∈ D(E). Let (Tt)t>0 be the strongly
continuous contraction semigroup on L2(X,µ)
generated by L and (Gα)α>0 the correspond-
ing strongly continuous contraction semigroup. A
right process M with the state space X is associ-

ated with a Dirichlet form (E , D(E)) on L2(X,µ) if
the semigroup (Pt) of the process M is a µ-version
of the form semigroup (Tt). Only those Dirich-
let forms (called quasi-regular Dirichlet forms),
which satisfy some regularity conditions can be
associated with some right Markov processes and
viceversa (Th.1.9 (Albeverio et al., 1993)). Prop.
4.2 from (Albeverio et al., 1993) states that two
right Markov processes M and M ′ with state
space X associated with a common quasi-regular
Dirichlet form (E , D(E)) are stochastically equiva-
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lent (Ma and Rockner, 1990), (Fukushima, 1980).
That means a quasi-regular Dirichlet form char-
acterizes a class of stochastically equivalent right
Markov processes.

4. ABSTRACTIONS OF STOCHASTIC
HYBRID SYSTEMS

The idea is to apply a “state space reduction”
technique based on the general ‘induced Dirichlet
forms’ method to achieve abstractions for SHS.
With this technique, the realizations of SHS are
‘approximated’ by a one-dimensional stochastic
process with a much smaller state space.

4.1 Induced Dirichlet Forms

First, we define the concept of induced Dirichlet

form (introduced in (Iscoe and McDonald, 1990)
only for symmetric Dirichlet forms) and prove
some properties (relations between generators,
operator semigroups, kernel operators) of this
concept, which will be used further in defining a
new concept of stochastic bisimulation between
Markov processes.

Let M = (Ω,F ,Ft, xt, Px) be a right Markov
process with the state space X . Now assume that
X is a Lusin space (i.e. it is homeomorphic to
a Borel subset of a compact metric space) and
B(X) or B is its Borel σ-algebra. Note that for the
majority of the stochastic hybrid system models
the state space is a Lusin space (Pola et al., 2003).
Assume also that µ is a σ-finite measure on (X,B)
and µ is a stationary measure of the process M .
Let X# another Lusin space (with B# its Borel
σ-algebra) and F : X → X# be a measurable
function. Let σ(F ) be the sub-σ-algebra of B
generated by F . If µ is a probability measure
then the projection operator between L2(X,B, µ)
and L2(X,σ(F ), µ) is the conditional expectation
Eµ[·|F ]. Recall that Eµ is the expectation defined
w.r.t. Pµ. We denote by µ# the image of µ under
F , i.e. µ#(A#) = µ(F−1(A#)), for all A# ∈ B#.
In general, anything associated withX# will carry
an #-superscript in this section.

Let E be the Dirichlet form on L2(X,µ) associated
to M . F induces a form E# on L2(X#, µ#) by

E#(u#, v#) = E(u# ◦ F, v# ◦ F );

for u#, v# ∈ D[E#], where

D[E#] = {u# ∈ L2(X#, µ#)|u# ◦ F ∈ D[E ]}.
It can be shown (Prop.1.4 (Iscoe and McDon-
ald, 1990)), under a mild condition on the con-
ditional expectation operator Eµ[·|F ] that E# is a
Dirichlet form. If, in addition, E# is quasi-regular

then we can associate with it a right Markov pro-
cess M# = (Ω,F ,Ft, x#

t , P
#
x ) be a right Markov

process with the state spaceX#. The processM#

is called the induced Markov process w.r.t. to the
proper map F . If the image ofM under F is a right
Markov process then x#

t = F (xt). The process
M# might have some different interpretations like
a refinement of discrete transitions structure, or
an approximation of continuous dynamics or an
abstraction of the entire process. It is difficult
to find a practical condition to impose on F ,
which would guarantee that E# is also quasi-
regular. To circumvent this problem, it is possible
to restrict the original domain D[E#] and impose
some regularity conditions on F (Iscoe and Mc-
Donald, 1990).

Assumption 1. Suppose that E# is a quasi-regular
Dirichlet form.

Let (L, D(L)) and (L#, D(L#)) be the generators
of E and E#, respectively.

Proposition 1. Under assumption 1, the genera-
tors L and L# are related as follows

L(u# ◦ F ) = L#u# ◦ F, ∀u# ∈ D(L#).

Theorem 2. Under assumption 1, for all A# ∈
B#(X#) and for all t > 0 we have p#

t (Fx,A#) =

pt(x, F
−1(A#)), where (p#

t ) and (pt) are the tran-
sition functions of M# and M , respectively.

Corollary 3. Under assumption 1, the semigroups
(P#
t ) and (Pt) of M# and M are related by

P#
t u

# ◦ F = Pt(u
# ◦ F ), ∀u# ∈ Bb(X#).

Remark 1. In the terminology of (Bujorianu et

al., 2005), we can say that M# simulates M .

4.2 Stochastic Bisimulation

In this subsection we define a new concept of
stochastic bisimulation for SHA. This concept
is defined as measurable relation (Strubbe and
Schaft, 2005), which induces equivalent Dirich-
let forms on the quotient spaces. In compari-
son with (Strubbe and Schaft, 2005), in defin-
ing stochastic bisimulation, we do not impose
the equivalence of the quotient processes, which
might not have Markovian properties (Rogers and
Pitman, 1981), but we impose the equivalence
of the induced Markov processes (that can differ
from the quotient processes) associated with the
induced Dirichlet forms.

Let (X,B(X)) and (Y,B(Y )) be Lusin spaces and
let R ⊂ X × Y be a relation such that Π1(R) =
X and Π2(R) = Y . We define the equivalence
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relation on X that is induced by the relation
R ⊂ X×Y , as the transitive closure of {(x, x′)|∃y
s.t. (x, y) ∈ R and (x′, y) ∈ R}. Analogously, the
induced (by R) equivalence relation on Y can be
defined. We write X/R and Y/R for the sets of
equivalence classes of X and Y induced by R.
We denote the equivalence class of x ∈ X by
[x]. Let B#(X) = B(X) ∩ {A ⊂ X | if x ∈ A

and [x] = [x′] then x′ ∈ A} be the collection
of all Borel sets, in which any equivalence class
of X is either totally contained or totally not
contained. It can be checked that B#(X) is a σ-
algebra. Let πX : X → X/R be the mapping that
maps each x ∈ X to its equivalence class and let
B(X/R) = {A ⊂ X/R|π−1

X (A) ∈ B#(X)}. Then
(X/R,B(X/R)), which is a measurable space, is
called the quotient space of X w.r.t. R. The
quotient space of Y w.r.t. R is defined in a similar
way. We define a bijective mapping ψ : X/R →
Y/R as ψ([x]) = [y] if (x, y) ∈ R for some x ∈ [x]
and some y ∈ [y]. We say that the relation R
is measurable if X and Y if for all A ∈ B(X/R)
we have ψ(A) ∈ B(Y/R) and vice versa, i.e. ψ
is a homeomorphism (Strubbe and Schaft, 2005).
Then the real measurable functions defined on
X/R can be identified with those defined on Y/R
through the homeomorphism ψ. We can write

Bb(X/R)
ψ∼= Bb(Y/R). These functions can be

thought of as real functions defined on X or Y
measurable w.r.t. B#(X) or B#(Y ).

Assumption 2. Suppose that X/R and Y/R with
the topologies induced by projection mappings are
Lusin spaces.

Let M and W be two right Markov processes
with the state spaces X and Y . Assume that µ
(resp. ν) is a stationary measure of the process
M (resp. W ). Let µ/R (resp. ν/R) the image of
µ (resp. ν) under πX (resp. πY ). Let E (resp.
F) the quasi-regular Dirichlet form corresponding
to M (resp. W ). The equivalence of the induced
processes can be used to define a new bisimulation
between Markov processes, as follows.

Under assumptions 1 and 2, a measurable rela-
tion R ⊂ X × Y is a bisimulation between M
and W if the mappings πX and πY define the
same induced Dirichlet form on L2(X/R, µ/R)
and L2(Y/R, ν/R), respectively. This bisimulation

definition states that M and W are bisimilar if
E/R = F/R. Here, E/R (resp. F/R) is the induced
Dirichlet form of E (resp. F) under the mapping
πX (resp. πY ). Clearly, this can be possible iff
µ/R = ν/R.

Assumption 3. Suppose that E/R and F/R are
quasi-regular Dirichlet form.

Denote the Markov process associated to E/R
(resp. F/R) by M/R (resp. W/R).

Proposition 4. Under assumptions 1,2, 3, M and
W are stochastic bisimilar w.r.t. R iff the pro-
cesses M/R and W/R are µ/R-equivalent.

Let H and H ′ be two stochastic hybrid systems,
with the realizations M and W , strong Markov
processes defined on the state spaces (X,B(X))
and (Y,B(Y )), respectively. H and H ′ are bisim-

ilar if there exists a bisimulation relation under
which their realizations M and W are bisimilar.

4.3 Weak Stochastic Bisimulation

The way to define the concept of stochastic bisim-
ulation, in the previous subsection, presents two
main difficulties: assumptions 2 and 3. It seems
difficult to find a practical condition to impose
on R, which would guarantee that these two as-
sumptions are fulfilled. There exist conditions that
ensure that the quotient space of an analytic space
is again analytic, but it might be difficult to find
out necessary conditions on R, which ensure that
the quotient space of a Lusin space is again Lusin.
When we pass from the quasi-regular Dirichlet
forms of the initial processes it might be hard to
deal with conditions on the projection mappings
πX and πY , which assure the regularity of the
induced Dirichlet forms.

With these arguments in mind, in this subsection
we will introduce a weaker version of stochastic
bisimulation and the concept of functional ab-

straction of a stochastic hybrid system.

Let M and W be two right Markov processes with
the state spaces X and Y , as in the previous
subsections. Suppose we have given two weight
(measurable) functions F : X → R and G :
Y → R (F or G can be the function used to
define the target sets in context of the stochastic
reachability problem. Let E# (resp. F#) be the
induced Dirichlet form of E (resp. F) through the
mapping F (resp. G).

Assumption 4. Suppose that E# and F# are
quasi-regular Dirichlet forms.

M and W are (weak) stochastic bisimilar if the
induced Dirichlet forms are equal, i.e. E# = F#.

The advantage of this new definition is that we do
not need anymore the property to be Lusin of the
quotient spaces. On the other hand the induced
processes are one-dimensional stochastic processes
whose state spaces are much smaller ones.
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4.4 Functional Abstractions

The stochastic reachability definition gives the
idea to introduce the following concept of func-
tional abstraction for SHS.

Given a right Markov process M defined on the
Lusin state space (X,B), and F : X → R a
measurable weight function, suppose that Ass.1
is fulfilled. The process M# associated to the
induced Dirichlet form E# under function F is
called a functional abstraction of M .

Let H a stochastic hybrid system and M its
realization. Suppose that M is a right Markov
process defined on the Lusin state space (X,B).

Any stochastic hybrid system H# whose realiza-
tion is a functional abstraction of M is called a
functional abstraction of H.

Let M be a right Markov process, thought as the
realization of an SHA, H .

Proposition 5. If M is a diffusion (resp. jump
process) then any functional abstraction M# of
M is a diffusion (resp. jump process).

Since the realization of an SHA is a stochastic
process, which can be viewed an interleaving be-
tween some diffusion processes and a jump process
(Bujorianu and Lygeros, 2004) we can write the
following corollary of Prop.5.

Proposition 6. Any functional abstraction of an
SHA is again an SHA.

5. CONCLUSIONS

In this paper, motivated by problem of stochastic
reachability for SHS we have introduced

• a new concept of stochastic bisimulation for SHS
from a functional viewpoint, i.e. this bisimulation
is defined using the parameters, which appear
in the reachability problem formulation and pre-
serves the bounds of reach set probabilities;

• functional abstractions for SHS, defined again
from a functional perspective.

The main tool used in defining of these new
concepts is constituted by the quadratic forms
associated to the realizations of the SHS. The
quadratic form technique makes possible to ob-
tain abstractions of SHS realizations, which are
one-dimensional stochastic processes with a much
smaller state space. The meaning of the induced
stochastic process might be different depending
on the context: refinement of discrete transitions
structure, or approximation of continuous dynam-
ics or, finally, abstraction of the entire process.
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