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Abstract: The paper deals with the modelling of switching systems and focuses on the
characterization of the local functioning modes using online clustering approach. The
considered system is represented as a weighted sum of local linear models where each model
could have its own structure. That implies that the parameters and the order of the switching
system could change when the system switches. The presented method consists in two steps.
First, an online estimation method of the Markov parameters matrix of the local linear models
is established. Secondly, the labelling of theses parameters is done using a dynamical decision
space worked out with learning techniques, each local model being represented by a cluster.
The paper ends with an example, in view to illustrate the method performances.

1. INTRODUCTION

An online classification method for switching systems
is proposed in this paper. Switching systems are a
particular class of hybrid systems which can be con-
sidered as the weighted sum of the linear local models
(or local models) with normalized weights. In this
modelling, only one model is active at each time (bi-
nary weights). On the one hand, several methods are
proposed for offline clustering of the hybrid systems
(Breiman, 1993), (Bemporad et al., 2001), (Ferrari-
Trecate et al., 2003), and (Pekpe et al., 2004). A clus-
tering method based on hyperplane determination is
proposed in (Breiman, 1993), but this method consists
of the estimation of two hyperplanes continuously
joined together. The method proposed in (Bemporad
et al., 2001) uses a mixed integer programming which
is NP-hard in the worst case, then this is practically
applicable only when the number of the data is very
small (see (Ferrari-Trecate et al., 2003)). Moreover,
the order of the system cannot change in the two
above methods. In 2004, (Vidal, 2004) proposes an
identification of pwarx hybrid models with unknown
and different orders. Also, a recent offline method is

proposed in (Pekpe et al., 2003) for data classification
and parameter identification of switching state-space
models with variable structure. This method uses a
change detection technique to estimate the switches
and a subspace method to estimate the Markov param-
eters (state representation) of the local models.

On the other hand, online data classification does not
seem to have a great attention in hybrid systems com-
munity. Recently, (Lecœuche et al., 2006) presents
an approach based on the combination of a recursive
identification technique and a classifier set for non
stationary environment. But, this approach is limited
to non-stationnary systems with a fixed structure.

The method proposed in this paper supposes that the
number and the order of the local linear models are
unknown/ Moreover, the order could change for each
local model. In fact, no a priori knowledge, even the
number of models, is required, the knowledge on the
switching model is gained using online estimation and
continuous learning. The approach developped here is
based on a similar way than (Lecœuche et al., 2006)
: one stage for the estimation and one stage for the
classification.
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The paper structure is as follow. After presenting
the overall formulation of the problem in the second
section, the third and fourth sections are respectively
dedicated to the presentation of the online estimation
method and to the online clustering technique. The
last section presents first results based on simulated
switching system.

2. PROBLEM FORMULATION

The output of the switching system is represented as a
weighted sum of the outputs of h local models:

yk =
h

∑
s=1

ps,k.ys,k (1)

where the scalar k represents the time index, the vector
yk ∈ R` the output of the system, the vector ys,k ∈ R`

the output of local model s and the scalar ps,k the
weight associated to ys,k. For each time k, the weights
verify the following condition :

ps,k ∈ {0,1} and
h

∑
s=1

ps,k = 1, ∀k (2)

Each local model is supposed to be linear and de-
scribed by the state space model of order ns :

xs,k+1 = Asxs,k +Bsuk + vs,k
ys,k = Csxs,k +Dsuk +ws,k

(3)

where the process noises vs,k ∈ Rns and the measure-
ment noises ws,k ∈ R` of the sth local model are zero
mean white noises which are uncorrelated with the
inputs uk ∈ Rm. The vector xs,k ∈ Rns represents the
state vector of model s.

The h local models are assumed to be stable and
being active during a minimal time τ (Hespanha and
Morse, 1999), this parameter is called the dwell time.

From available measurements of inputs uk and outputs
yk, our goal is to characterize the current functioning
mode using online classification of the regressors vec-
tors and, in other words, to estimate the weight ps,k.

This task is done in two stages described hereafter :

- Online local model Markov parameters estimation
First, the online estimation of the Markov parameters
matrix of the local models is fulfilled. This black-box
estimation uses the state space representation, which is
particularly adapted to MIMO processes and does not
require any canonical parameterization. Moreover, the
use of the Markov parameters suits for the estimation
of the system parameters with variable structure or
order. The presented method is based on the FIR
modelling of the local models. It is shown that the
regressors of a FIR model lie in the hyperplane which
orthogonal matrix is the Markov parameters matrix.
Markov parameters of each local model are estimated
by least squares method from data derived from a
sliding window.

- Determination of the current functioning mode
This classification is based on a dynamical decision
space obtained by online learning techniques. The
novelty of the proposed approach consists in exploit-
ing a specific clustering technique making possible the
continuous modelling of the functioning modes.These
ones are modelled by an online neural network tech-
nique (Lecœuche and Lurette, 2003). When a new
observation is presented at this algorithm (new esti-
mation of Markov parameters matrix), the decision
space is updated according to the information brought
by this observation and the current functioning mode
is determined (the closest linear local model). Then,
the characterization of the current functioning mode is
given in term of membership degree of the identified
parameters vector to updated classes representing the
actual local linear modes.

These two stages will be more precisely presented in
the following two sections.

3. LOCAL MODELS PARAMETERS
ESTIMATION

The online estimation of the local models Markov
parameters matrix is discussed in this section. First, it
establishes that the regressors of one local model be-
long to the same hyperplane and an orthogonal matrix
of this hyperplane is the Markov parameters matrix.
Then, the online estimation of the Markov parameters
matrix by least squares method is proposed.

3.1 Local model hyperplane equation

The aim of this paragraph is to perform the online esti-
mation of the Markov parameters of the local models.
To reach this goal, it is established first that all the
regressors built from the data resulting from the same
local model belong to the same hyperplane. This could
be proved from the expression of the local model
output according to the state and the inputs multiplied
by the Markov parameters. This expression being de-
veloped, the state influence is deleted by weighting it
by a high power of the local state matrix (As) which
is supposed to be steady. This implies that the local
model output is equal to the inputs multiplied by the
Markov parameters, similar to the approximation by
the FIR model. This equality can be rewritten as the
orthogonality of the regressors (which contains the
local model output and the inputs) and the Markov
parameters matrix.

In the following, it is supposed that the system stays
in each mode during a minimal time (or dwell time) τ .

The sth local model being active, its output can be
expressed (see relation (3)) as:

ys,k = CsAi−2
s Bsuk−i+1 + ...+CsBsuk−1

+Dsuk +CsAi−2
s vs,k−i+1 + ...+Csvs,k−1 +ws,k
+CsAi−1

s xs,k−i+1

(4)
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As the local model is assumed to be stable, the term
CsAi−1

s xs,k−i could be neglected for high values of “i”.
This term is considered negligible if:

∥

∥CsAi−1
s xs,k−i+1

∥

∥≤
√

variance(ws,k) (5)

Thus, (4) becomes:

ys,k = CsAi−2
s Bsuk−i+1 + ...+CsBsuk−1 +Dsuk +βs,k

(6)
with:

βs,k = CsAi−1
s xs,k−i+1 +Hv

s,iv̄s,k−1 +ws,k (7)

where

Hv
s,i =

(

CsAi−2
s CsAi−3

s ... CsA Cs
)

∈ R`×m(i−1)

v̄s,k−1 =
(

vT
s,k−i+1 ... vT

s,k−2 vT
s,k−1

)T
∈ R`(i−1)×ns

(8)
the vector βs,k is the perturbation due to the noises and
the approximation of the local model by a FIR model.
The previous equation can be written as:

ys,k = Hv
s,i
(

uT
k−i+1 ... uT

k−1 uT
k

)T
+βk (9)

Indeed, equation (9) gives the FIR approximation of
the local model, it can be rewritten as :

Mszs,k = βk (10)

where zs,k is the regressors vector of the local model:

zs,k =
(

uT
k−i+1 ... uT

k−1 uT
k yT

s,k
)T

∈ R(mi+`) (11)

and Ms is a orthogonal matrix of the regressors, this
matrix is called also as the augmented Markov param-
eters matrix:

Ms =
(

Hs,i −I`

)

∈ Rns×(mi+`) (12)

where Hs,i ∈ R`×mi is the Markov parameter matrix
and defined as:

Hs,i =
(

CsAi−2
s Bs CsAi−3

s Bs ... CsBs Ds
)

(13)

The sub-script s denotes the index of the active local
model, this sub-script disappears if the local model
index is not indicated. In the deterministic case, all the
regressors zs,k lie in the hyperplane:

Mszs,k = 0 (14)

But this relation changes in the presence of the noises,
that makes the modelling problem more difficult.

3.2 Online estimation of the local models Markov
parameters

The local model hyperplane equation has been estab-
lished in the previous paragraph, least squares esti-
mation of a orthogonal matrix of the hyperplane is
proposed now. From the hyperplane equation (10), the
orthogonal matrix (Ms) is estimated. This estimation
can be done if there are mi independent regressors zs,k.
These regressors are independent if the inputs are per-
sistently excited of order mi. Consider the regressors
matrices zs,k:

zs,k =
(

zs,k−ρ+1 ... zs,k+1 zs,k
)

(15)

zs,k =

(

Uk
y

s,k

)

(16)

with

ys,k =
(

ys,k−ρ+1 ... ys,k−1 ys,k
)

∈ R
`×ρ (17)

Uk =











uk−ρ−i+2 ... uk−i uk−i+1
uk−ρ−i+3 ... uk−i+1 uk−i+2

... ...
...

...
uk−ρ+1 ... uk−1 uk











∈ Rmi×ρ

(18)
and ρ is an integer equals or greater than the number
of the row (mi) of the matrix Uk. The unique matrix
which is orthogonal (and defined by equation (12))
to this regressors matrix is determined. To estimate
the matrix Ms, it is enough to determine the Markov
parameters matrix Hs,i (12). The following theorem
gives the least squares estimation of this matrix.

Theorem 3.1. Under the following conditions :

- the matrix Uk ∈ Rmi×ρ is full row rank,
- the local model s is stable,

the Markov parameters matrix is given by :

ys,kUT
k (UkUT

k )−1 = Hs,i +Bs,kUT
k (UkUT

k )−1 (19)

where the perturbation matrix Bs,k is defined as:

Bs,k =
(

βs,k−ρ+1 ... βs,k−1 βs,k
)

∈ R
`×ρ (20)

The mathematic expectation of the matrix ys,kUT
k (UkUT

k )−1

is:
E[ys,kUT

k (UkUT
k )−1] = E[Hs,i]+E[Bs,kUT

k (UkUT
k )−1]

= Hs,i +E[Bs,k]UT
k (UkUT

k )−1

whereas (see equation (7)):

E[Bs,k] = CsAi−1
s
(

xs,k−ρ−i+2 .... xs,k−ρ−i+2 xs,k−ρ−i+1
)

which can be neglected if integer i is great enough,
or be considered as a deterministic perturbation if the
term

∥

∥CsAi−1
s xs,k−i+1

∥

∥ is not negligible.

If the consecutive regressors

zk =
(

uT
k−i+1 ... uT

k−1 uT
k yT

k

)T
, k = 1, ...ρ , ρ > mi

(21)
are generated by the same local model "s" (i.e. yk =
ys,k) then the matrices ys,k (resp. zs,k) and yk (resp. zk)
are equal. That suppose the dwell time τ should be
greater than i+ρ (see figure (1)). In this case the local
output matrix (for local model s) ys,k can be replace in
the theorem by the global output matrix ys,k

yk =
(

yk−ρ+1 ... yk−1 yk
)

∈ R
`×ρ (22)

If the matrix yk is built with a data from two local
models then the system is in transient mode. In the
next section, the clustering method used to determine
the class of the estimated matrix is given.
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Fig. 1. Illustration of the dwell time

4. CLUSTERING METHOD

The modes modelling tool treats the data extracted
from the identified Markov parameters matrices as
they arrive. The new information is incorporated con-
tinuously in order to redefine the structure of the func-
tioning modes (also named linear local models) and
thus to model continuously the decision space. The
taking into account of the various situations related
to non stationarity environment requires the setting of
specific adaptation rules through a continuous learning
process. In the area of machine learning, some tech-
niques exist with architectures exploiting incremen-
tal learning (Deng and Kasabov, 2003), (Eltoft and
deFigueiredo, 1998), (Mouchaweh, 2004). Most of
these algorithms present some disadvantages related
to a coarse classes modelling and/or limited adapta-
tion capacities in non stationary environment. In order
to fill these gaps, two neural algorithms for the dy-
namic classification of the evolutionary data have been
previously developed (Lecœuche and Lurette, 2003;
Amadou-Boubacar and Lecœuche, 2005). These al-
gorithms use a multi-prototype approach making pos-
sible to accurately model the structure of complex
classes. In this paper, the AUDyC network based on
a Gaussian modelling is used. Each functioning mode
corresponds to a label of a complex class Ω which
could be defined by an assembly of Gaussian pro-
totypes Φ. The activation function of each hidden
neuron determines the membership degree µ t

j of the
observation Xt to the prototype Φ j. In order to obtain
a fine classes representation, this one is based on the
Mahanalobis distance

µ t
j = exp

(

1
2
(

Xt −X j
)T

∗Σ−1
j ∗

(

Xt −X j
)

)

(23)

where X j and Σ j are respectively the center and the
covariance matrix of the prototype. The use of the
membership function allows the implementation of
the learning rules. With the first acquisition X1, the
network is initialized: creation of the first prototype
Φ1 constituting the first class Ω1 (first functioning
mode). The prototype is parameterized by its center
X1 = X1 and an initial covariance matrix Σini be-
forehand selected. Then, according to new acquisi-
tions, various situations can arise by comparison of the
membership degree with two fixed thresholds µmin and
µmax (resp. limit of prototype and class membership).
Each case leads to a specific procedure (see Table 1).

Then, the AUDyC learning process is established in
three principal phases:

Table 1. Classifier Adaptation rules.

If Then

1 µ t
j < µmin∀ j ∈ {1..J} Creation

Φnew ∈ Ωnew

2 ∃Φ j ∈ Ωi,µmin < µ t
j < µmax

Creation
Φnew ∈ Ωi

3 ∃Φ j,µmax < µ t
j

Adaptation
Φ̂ j = Φ j(Xt)

4
∃Φl ∈ Ωp ∪

∃Φm ∈ Ωq,µmin < µT
l,m < µmax

Ambiguity Xt ∈

χamb

4.1 First phase: classification

The classification stage corresponds to the creation
and adaptation of prototypes and classes. In cases 1
and 2 of table 1, the observation Xt is not close to
any existing prototype. These cases are similar to a
distance rejection which could be used to detect the
novelty in the multiclass environment. If the observa-
tion is not sufficiently close to any class (case 1), it
leads to the creation of a new prototype and a new
class corresponding to a new system mode. In the
case 2, a new prototype is created and affected to the
nearest class in order to contribute to a better definition
of the mode model. In situation 3, the observation is
rather close to a prototype to take part in its definition.
The functioning mode adaptation is then carried out
by using the following recursive equations

X t
j = Xold

j +
1

Np
(Xt −Xt−Np+1) (24)

Σt
j = Σold

j +∆X

( 1
Np

1
Np(Np−1)

1
Np(Np−1)

−(Np+1)
Np(Np−1)

)

∆XT (25)

with ∆X =
[

Xt −Xold
j Xi−N+1 −Xold

j

]

, Np : pro-
totype size.

4.2 Second phase: fusion

The case 4 of table 1 depicts the case of the rejection
in ambiguity when an observation is sufficiently close
to two or several prototypes (e.g. l,m) to contribute to
their structure. The fusion procedure consists in evalu-
ating the similarity of two densities by using an accep-
tance criterion based on the Kullback-Leibler distance
(Zhou and Chellappa, 2004). When this criterion is
higher than a threshold, the different classes (e.g. p,q)
merge onto a unique new functioning mode.

4.3 Third phase: evaluation

The evaluation phase is significant to eliminate the
parasite prototypes and classes possibly created by the
noise influence. To detect not-representative modes,
this phase is based on the cardinality of the models.

For more details on the AUDyC network, the reader
can consult (Lecœuche and Lurette, 2003), (Lurette,
2003) and (Amadou-Boubacar et al., 2005) which give
theoretical and practical analysis of the AUDyC.
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5. ILLUSTRATION EXAMPLE

Consider a switching system which is the sum of three
models. The state-space model is used and each matrix
(As,Bs,Cs and Ds) is specific to each local model. The
matrices of the local models are defined below :

A1 =





0,4 0,1 0
0,8 0,4 0
0 0 0,8



 ,B1 =





1,5 0,9
1 -1

-1,5 2,3





C1 =





0,8 1,1 2
-1,3 0,7 1,7
1,5 0,7 -0,9



 ,D1 =





0,4 0,8
-0,6 1,4
1,3 -0,75





A2 =

(

0,4 0,6
0,5 0,1

)

,B2 =

(

1,5 0,9
1 -1

)

C2 =





0,8 1,1
-1,3 0,7
1,5 0,7



 ,D2 =





0,4 0,8
-0,6 1,4
1,3 -0,75





A3 =





0,3 0,2 0
0,8 0,2 0
0 0 -0,75



 ,B3 = B1

C3 = C1,D3 = D1

The changes of the system dynamics are summarized
as follows: s = 1 over the intervals [1,099], [300,399]
and [600,699], s = 2 over the intervals [100,199],
[400,499] and [700,800] and s = 3 over the intervals
[200,299] and [500,599]. The figure 2 gives the index
of the active local model according to the time.

Fig. 2. The index of the active local model

The inputs uk are Pseudo-Random Binary Sequences
(PRBS) with variable amplitudes. The signal to noise
ratio of the outputs with respect to the measurement
noises is 25db. The process noises vk are a Gaus-
sian white noises and have a covariance var(vk) '
7 × 10−4I3 ; the covariance matrix of the inputs is
var(uk) ' 7 × 10−2I2. During the simulation, 900
input-output data have been processed on the system.

From, these IO data, the estimation of the Markov
parameters matrix on slidding window is achieved
by theorem 3.1. The size of the sliding window ρ is
chosen equal 35 and the integer i is fixed equal 13.

These identified parameters are sent to the clustering
tool. The values of the identified matrix Ĥs,i constitute
the Xt observation vector. In fact, this vector consists
of all the monitored parameters. According to the
complexity of the application, its dimension could be
reduced (Markov parameters selection or reduction)

or increased by adding, for example, complementary
physical information. In this paper, in order to present
tight and comprehensible results, we have applied a
space reduction in order to obtain a 3D representation.

From the Xt information, the dynamical classifier up-
dates the decision space (functioning modes models)
and determines the current functioning mode. For the
whole of this study, the AUDyC parameters are fixed
as follows: Σini = 2.5,µmin = 0.1,µmax = 0.3,NPmin =
40,NP = 500 and Namb = 5. For more information
about the choice of the parameters, the reader can
refer to (Amadou-Boubacar et al., 2005). Figure 3.a
illustrates the final representation space of the Xt raw
data (the circle are non-classified data) and the figure
3.b gives the final classes locations.

Fig. 3. Classified data and Final decision space

In fact, the data are online classified and the decision
space is built and updated in a recursive way. Any a
priori knowledge is required. From the first similar
data, the classifier creates the first class correspond-
ing to the first local model. When a switch occurs,
according to the choice of the membership threshold,
the data generated after the switch are not recognized
as a known class. After a delay corresponding to a
stabilization of these data (when the number of stable
observations exceeds the NPmin threshold) in a particu-
lar area of the decision, a new class that characterizes
the second functioning mode is created. All the new
classes are created in this way (cf. Table 1).

At each time, the current functioning mode is deter-
mined by using the membership degree of the obser-
vation (membership ratio rule according to a threshold
θ ). On figure 4 where θ equals 0.25, it can be noticed
that the observations located between modes are non
classified and the class creation (3 first situations) is
effective after an extra delay corresponding to NPmin.
When the mode is already known, the decision is
done quicker (e.q way through mode 3 to mode 1).
In this case, the delay of recognition is mainly due to
the convergence of the Markov parameters matrices
estimation and to the noise influence.
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Fig. 4. Classification of the Markov Parameters Matri-
ces; Membership threshold = 0.25

The figure 5 illustrates the behaviour of this method
for a small value of θ . In this case, the membership is
forced to known classes.

Fig. 5. Classification of the Markov Parameters Matri-
ces; Membership threshold = ε

One can notice, even if this is not presented on the
figures, that the classes parameters are continuously
adapted. This allows a better accurate definition of the
decision space and make possible the modelling of
non-stationary local linear models (Lecœuche et al.,
2006). Of course, from this point, expert knowledge
should be introduced in order to define if this evolution
is “normal” (running in periods, chemical transition...)
or if a progressive failure appears to the process.

6. CONCLUSION

In this paper, a new approach has been presented for
the online determination of the functioning mode of a
switching system. This approach is based on a recur-
sive estimation tool coupled with a dynamic classifica-
tion algorithm. The method is dedicated to switching
systems where each linear local model could have its
own structure (parameters and order). The interest of
this approach is also to take into account commuta-
tions and evolutions of modes without a priori knowl-
edge thanks to the use of a dynamical classifier.
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