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1. INTRODUCTION

A hybrid automaton is widely used as a model of
hybrid systems (Henzinger, 1996). A computer-
controlled system is an example of hybrid sys-
tems since it has both continuous and discrete
variables associated with the physical process (the
plant) and the logical dynamics (the control logic
and external environment), respectively. In the
computer-controlled systems, the measurements
and subsequent discrete control actions are usu-
ally time-driven events and there exist the jitter
variations in their occurrence times. Silva and
Krogh proposed an extension of a hybrid au-
tomaton called a sampled-data hybrid automaton
(SDHA) to model explicitly discrete transitions
that are based on time-driven sampling of the
continuous state and define a transition system
called a sampled-trace transition system (STTS)
as semantics to verify its dynamics (Silva and
Krogh, 2000; Silva and Krogh, 2001). The SDHA
is a pair of a clock structure and a hybrid au-
tomaton with clocked and unclocked events. Un-
clocked events are enabled when its continuous
states satisfy their guards while clocked events
are time-driven, that is, they are enabled only at
specified sampling times in addition to constraints
for their guards. A clock structure, which is given
by variation interval in the initial phase, a period

of clocked times, and a sampling jitter, specifies
sequences of sampling times that can be gener-
ated in the system. The SDHA can be used as
a model of various controlled systems with time-
driven events. For example, in networked control
systems, the samplings and subsequent control ac-
tions through the network can be associated with
clocked events while the changes of external en-
vironments and internal model changes of plants
are associated with unclocked events. Silva and
Krogh (2001) propose a verification method for
the SDHA using approximated quotient transition
systems. But, to the best of our knowledge, a con-
trol problem of the SDHA has not been studied.

In discrete event systems, a state feedback con-
troller is often used as a logical control prob-
lem, where a control specification is given by
a predicate on their states(Ramadge and Won-
ham, 1987). Its control action is determined by
their current states. A discrete event system is
called control-invariant if there exists a state feed-
back controller such that all reachable states in
the closed-loop system controlled by the controller
satisfy the predicate. A necessary and sufficient
condition for the system to be control-invariant
is derived(Ramadge and Wonham, 1987). The
state feedback control for the discrete event sys-
tems is extended to hybrid systems(Chen and
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Hanisch, 1999) and hybrid automata with forcible
events (Ushio and Takai, 2005). Forcible events
are events that can be forced to occur by the
control so that temporal performance can be im-
proved (Brandin and Wonham, 1994). Ushio and
Takai extend transition semantics of uncontrolled
hybrid systems (Henzinger, 1996) to controlled
hybrid systems with forcible events and show nec-
essary and sufficient conditions for a predicate to
be control-invariant. They also show that there
always exists the supremal control-invariant sub-
predicate for any predicate.

In this paper, we consider state feedback con-
trol of the SDHA. Since enablingness of the
clocked events depends on the clock structure, a
state feedback controller is time-varying in general
while it is time-invariant in both hybrid systems
without clocked events and discrete event systems.
On the other hands, in conventional sampled-data
control systems where controllers and sensors acti-
vate periodically, the sampling times are periodic
but data transmission time may be fluctuated so
that a jitter must be taken into consideration. So,
we introduce a slight modification of the clock
structure to represent sequences of periodic sam-
pling times with jitter so that a periodic state
feedback controller is designed.

The rest of this paper is organized as follows:
Section 2 reviews transition systems, several pred-
icate transformations, and a concept of control-
invariance. Section 3 introduces a controlled
SDHA with forcible events, which is given by a
pair of a clock structure and a hybrid automaton
with clocked and unclocked events. Two labeled
transition systems are introduced to define its
semantics and necessary and sufficient conditions
for existence of state feedback controllers based on
the transition systems are shown. Section 3 shows
that there always exists the supremal control-
invariant subpredicate for any predicate.

2. PRELIMINARIES

We use a labeled transition system T=(Q, Act,T ,
Q0) in order to define semantics of controlled hy-
brid systems, where Q is a set of states, Act is a set
of labels, T ⊆Q×Act×Q is a state transition rela-
tion, Q0⊆Q is a set of initial states. Act(T ; q)⊆Act
is defined by Act(T ; q)={a∈Act|∃q′ ∈ Q s.t (q, a,
q′)∈T }. Let P(Q) be the set of all predicates
on Q. A predicate P is true at state q∈Q
if P (q)=1, and false if P (q)=0. Denoted by
∨, ∧, and ¬ are disjunction, conjunction, and
negation of predicates, respectively. The term
“predicate” and “subset”(={q∈Q|P (q)=1}) can
be used interchangeably. A partial order “6” for
P(Q) is defined as follows: for P1, P2∈P(Q),
P16P2⇔P1(q)≤ P2(q) for ∀q∈Q. For each a∈Act,
a predicate Da is defined by

Da(q) =

{

1 if a ∈ Act(T ; q),

0 otherwise.
(1)

We define predicate transformations wpa:P(Q)→
P(Q) and wlpa:P(Q)→P(Q) as follows:

wpa(P )(q) =







1 if Post(q, a)6=∅ and

(for ∀q′∈Post(q, a)) P (q′)=1,

0 otherwise,

wlpa(P ) = wpa(P ) ∨ ¬Da,

where Post(q, a)={q′∈Q|(q, a, q′)∈T }. For a sub-
set A⊆Act, we define wpA(P )=

∨

a∈A wpa(P ). For
a subset A⊆Act, P∈P(Q) is said to be (T ;A)-
invariant iff, for ∀a∈A, P6wlpa(P ). Let <≥0 and
<>0 be the sets of non-negative and positive reals,
respectively. For a piecewise continuous function
h : <≥0 → A, where A is an arbitrary set,
d(h) = d0(h)d1(h)d2(h) . . . is the sequence of
points where h is discontinuous. For t ∈ <≥0,
h(t−) and h(t+) denote the values for the limits
of h at t from the left and right, respectively.

3. SAMPLED-DATA HYBRID AUTOMATON
AND STATE FEEDBACK CONTROL

Silva and Krogh proposed a sampled-data hy-
brid automaton (SDHA) which is modeled by
a pair of a hybrid automaton with clocked and
unclocked events and a clock structure (Silva
and Krogh, 2001). First, we modify the SDHA
to introduce a control mechanism with forcible
events which are forced to occur by exter-
nal control action. We define a controlled hy-
brid automaton with forcible events as follows:
H=(V ,E, Σ,Σcon,Σuncon,Σforc,

Σcl,Σuncl,X, init, F low, jump).
• V , Σ are sets of nodes, events, respectively;
• Σcon and Σuncon are sets of controllable and

uncontrollable events, respectively.
• Σforc is the set of forcible events and, for

simplicity, we assume that Σforc⊆Σcon;
• Σcl and Σuncl are sets of clocked and un-

clocked events, respectively;
• E⊆V ×Σ×V is the set of edges with asso-

ciated events, that is, e(v, σ, v′) is an edge
e ∈ E from v to v′ labeled by event σ and
corresponds to a discrete transition by the
occurrence of σ;

• X ⊆ <n is the set of continuous variables;
• init : V → 2X assigns the initial continuous

states, that is, init(v) is the set of all possible
initial continuous states in node v;

• Flow={fv:X→<n|∀v∈V } is the set of flows
defining the continuous state equation ẋ=
fv(x) for each discrete state v∈V . Then let
x=ζv,x0

(t) be a trajectory which starts from
discrete state v at time t=0 and the initial
continuous state x(0)=x0, on which no event
occurs; and

• jump : E→2X×X is the jump relation, that
is, (x, x′)∈jump(e) means that the continu-
ous state x jumps to x′ when σ occurs.

Note that Σcon ∩ Σuncon = Σcl ∩ Σuncl = ∅ and
Σ=Σcon∪Σuncon=Σcl∪Σuncl. In addition, Σi,j de-
notes Σi ∩ Σj , where i∈{con, uncon, forc} and
j∈{cl, uncl}. The state set QH of hybrid automa-
ton H is given by QH={(v, x)|∀v∈V,∀ x∈X}. Let
guard(e) be an occurrence condition of the dis-
crete transition by edge e ∈ E: guard(e)={x∈X|
∃x′∈X s.t. (x, x′)∈jump(e)}.

418



Assumption 1 We assume: (1) If, for e(v, σ, v′)∈E
and x, x′∈X, (x, x′)∈jump(e), then x′ /∈guard(ẽ)
for any ẽ(v′, σ′, v′′)∈E, (2) for any e(v, σ, v′)∈E
and σ∈Σforc, guard(e) is a closed set, and (3) if
e(v, σ, v′)∈E, then v 6=v′.

The enablingness of clocked events does not de-
pend on only the continuous states but also sam-
pling times. To model the sequence of the sam-
pling times, Silva and Krogh defines the clock
structure such that durations between each sam-
pling times are specified by the clock period
interval and the sampling jitter interval (Silva
and Krogh, 2001). In conventional computer con-
trolled systems and networked control systems,
controllers and sensors are activated periodically
with a specified sampling period and computa-
tional delay in processors and/or data transmis-
sion delay in networks may cause a jitter in oc-
currence of clocked events. So, we will modify the
clock structure. Let Tθ be a specified sampling
period and J the maximum jitter. We assume for
simplicity that J<Tθ. Denoted by θn is the n-th
“nominal” sampling times for the sampling pro-
cess. Then, we have θn = θ0 +nTθ. θ0 is the initial
nominal sampling time. Let θ={θn|θn=θ0+nTθ}.
Thus, a possible sequence of the sampling times
c=c0c1 . . . are given by the following modified
clock structure:
C(θ, J)={c0c1 . . . |for ∀i≥0, ci=θi+Ji, Ji∈[0, J ]}.
Thus, the controlled SDHA HC is defined by a
pair (H,C(θ, J)) of the hybrid automaton with
forcible events and the modified clocked structure.

We introduce a state feedback controller f(q, t)
with q∈QH and t∈<≥0 taking control of forcible
and clocked events into consideration, which
is an extension of a state feedback controller
with forcible events (Ushio and Takai, 2005).
Let Γcl={γ|Σcl,uncon⊆γ⊆Σcl} be the set of con-
trol patterns for clocked events. A state feed-
back controller f is described by 4-tuple f =
(fcl,1, fcl,2, funcl,1, funcl,2), where

• fcl,1 : QH×<≥0→Γcl gives a set control-
enabled clocked events;

• fcl,2 : QH×<≥0→2Σcl,forc gives a set of
forcible clocked events which are control-
enabled and forced to occur; and

• funcl,1 and funcl,2 are given in similar ways
to above two definitions, respectively.

Note that a state feedback controller f does not
only depend on state, but also time since the sam-
pling times have an effect on the behavior of the
controlled SDHA and the control action depends
on when clocked events are enabled. In addition,
the nominal sampling times θi are periodic, the
fluctuation of the actual sampling times ci are
in a time interval given by the jitter, the con-
tinuous flows are determined by a time-invariant
system in each node, and a control specification
is given by a predicate on QH independently of
time. So, it is sufficient to consider a periodic state
feedback controller f as follows: for ∀q∈QH and
∀t≥θ0, fi,j(q, t)=fi,j(q, t+Tθ), where i∈{cl, uncl}
and j∈{1, 2}. Denoted by Hf

C is the SDHA con-
trolled by the state feedback controller f .

Henzinger (1996) introduces two transition sys-
tems, called timed and timed-abstract transition
systems, in order to represent semantics of the
hybrid automaton and Ushio and Takai (2005)
extended them to a controlled hybrid automa-
ton with a control specification given by a pred-

icate. Next, we extend them to Hf
C . This is also

an extension of STTS (Silva and Krogh, 2001).
To define semantics of the controlled SDHA by
a transition system, the transition system must
have a state variable which indicates duration
between the current time and sampling times since
both the sampling times and the current state
in QH determine its behavior. In the STTS, the
state is composed of the state variable q∈QH

and two variables ρ and ω which indicate time
and elapsed time from the latest sampling time,
respectively. Since we modify the clock structure,
we introduce a new variable η as a state variable,
which indicates if a clocked event may occur at the
current time. Thus, we can define two semantics

for the controlled SDHA Hf
C given by a controlled

timed/time-abstract transition system.

A controlled timed transition system is defined by

St
C(Hf

C , P ) = (Qt, Actt,T
f

t , Qt0). (2)
Qt⊆QH×{−1, 0, 1}×[0,max(θ0, Tθ)]×{0, 1} is the
state set of the transition system. Each element
of a state (q, ρ, ω, η)∈Qt is defined as follows:
q indicates a state of HC . ρ indicates that the
current time is before the first nominal sampling
time θ0 (ρ=−1), at θ0 (ρ=0), after θ0 (ρ=1).
ω indicates absolute time until the current time
becomes θ0, where the system starts at ω=0.
When the current time is equal to or greater than
θ0, ω is an elapsed time from the latest nominal
sampling time and is reset to zero at each nominal
sampling time. Note that ω is zero if ρ is zero. η
is reset to one at each nominal sampling time and
to zero if ω>J or after a clocked event occurs.
Qt0={(v, x,−1, 0, 0)∈Qt|x∈init(v), ∀v∈V } is the
set of initial states in Qt. Actt=Σ ∪ <>0. To

define the transition relation T f
t of St

C(Hf
C , P ),

we introduce a set of clock sequence STSC(qt, δ)
as follows: for qt = (q, ρ, ω, η) ∈ Qt and δ ∈ <≥0,
STSC(qt, δ) =






{t0t1 . . . tN | ti ∈ [θi − ω, θi − ω + J ],

i = 0, 1, . . . , tN < δ ≤ tN+1}
if ρ = −1,

{t0t1 . . . tN | ti−1 ∈ [iTθ − ω, iTθ − ω + J ],

i = 1, 2, . . . , tN < δ ≤ tN+1}
if ρ 6= −1, η = 0,

{t0t1 . . . tN | ti ∈ [iTθ, iTθ + J ], i = 0, 1, 2, . . . ,

tN < δ ≤ tN+1}
if ρ 6= −1, ω = 0, η = 1,

{t0t1 . . . tN | ti−1 ∈ [iTθ − ω, iTθ − ω + J ],

i = 1, 2, . . . , tN < δ ≤ tN+1} ∪ {t0t1 . . . tN |
ti ∈ [iTθ − ω, iTθ − ω + J ], i = 1, 2, . . . ,

t0 ∈ [0, J − ω], tN < δ ≤ tN+1}
if ρ = 1, ω 6= 0, η = 1.
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T f
t ⊆ Qt×Actt×Qt is defined as follows: Consider

states qt = (q, ρ, ω, η) and q′t = (q′, ρ′, ω′, η′) ∈ Qt.

(A) For each σ ∈ Σ, (qt, σ, q′t) ∈ T f
t

iff the following conditions are satisfied:
(1) ω = ω′, ρ = ρ′, and e(v, σ, v′) ∈ E.
(2) (x, x′) ∈ jump(e).
(3) if ρ = ρ′ = −1, then

(i) σ ∈ funcl,1(q, ω) and (ii) η = η′ = 0.
(4) if ρ = ρ′ = 0, then

• if σ ∈ Σcl, then
(i) σ ∈ fcl,1(q, θ0) and (ii) η = 1, η′ = 0,

• otherwise
(i) σ ∈ funcl,1(q, θ0) and (ii) η = η′ = 1.

(5) if ρ = ρ′ = 1, then
• if σ ∈ Σcl, then (i) ω ∈ [0, J ], (ii)

σ ∈ fcl,1(q, θ0+ω), and (iii) η = 1, η = 0,
• otherwise

(i) σ ∈ funcl,1(q, θ0 + ω) and (ii) η = η′.
(B) For δ ∈ <>0, (qt, δ, q′t) ∈ T f

t
iff the following conditions are satisfied:
(1) v=v′, x′=ζq(δ).
(2) For ∀α, β ∈ (0, δ), P (v, ζq(α))=P (v, ζq(β)).
(3) One of the following conditions is satisfied:

• if ρ=ρ′=−1, then (i) δ=ω′−ω, (ii) η= 0,
η′=0, and (iii) for∀e(v, σ̃, ṽ)∈E,∀ t∈[0, δ),
ζq(t)∈guard(e)⇒σ̃ /∈funcl,2(v, ζq(t), ω+t).

• if ρ=−1,ρ′=0, then(i) δ=θ0−ω, (ii) η=0,
η′=1, and (iii) for∀e(v, σ̃, ṽ)∈E,∀ t∈[0, δ),
ζq(t)∈guard(e)⇒σ̃ /∈funcl,2(v, ζq(t), ω+t).

• if ρ=−1, ρ′=1, then (i) ∃K≥0 s.t. δ=ω′+
θK−ω, (ii) if K=0, ω′ 6=0, (iii) if ω′∈[0, J ],
η′=1, (iv) for ∀e(v, σ̃, ṽ)∈E, ∀t∈[0, δ),
ζq(t)∈guard(e)⇒σ̃ /∈funcl,2(v, ζq(t), ω+t),
and (v) ∃{tk}∈STSC(qJ , δ) s.t. for ∀e(v,
σ̃, ṽ)∈E, ∀t∈{tk}, ζq(t)∈guard(e)⇒σ̃ /∈
fcl,2(v, ζq(t), ω+t).

• if ρ 6=−1, ρ′=1, then (i) ∃n∈Z≥0 s.t. δ=
ω′−ω+nTθ, (ii) for ∀e(v, σ̃, ṽ)∈E, ∀t∈[0,
δ), ζq(t)∈guard(e)⇒σ̃ /∈funcl,2(v, ζq(t),
t+ω+θ0), (iii) ∃{tk}∈STSC(qt, δ) s.t for
∀e(v, σ̃, ṽ)∈E, ∀t∈{tk}, ζq(t)∈guard(e)
⇒σ̃ /∈fcl,2(v, ζq(t),t+ω+θ0), (iv) if η=1,
ω′∈[0, J ]⇒η′=1, and (v) if η=0, for any
n satisfying (i), the following equations
holds. if n≥1 and ω′∈[0, J ], η′=1. if n=0,
η′=0.

Let SDSC,f (qt, δ, q
′
t) be the set of sampled state

sequences on a transition relation (qt, δ, q
′
t) ∈ T f

t
defined as follows: SDSC,f (qt, δ, q

′
t)={(v, ζq(t0)),

(v, ζq(t1)) . . . (v, ζq(tN ))|{tk}N
k=0 ∈ STSC(qt, δ),

∃qt,k∈Qt, k=0, 1, . . . , N − 1 s.t. (qt, t0, qt,0)∈T f
t ,

(qt,k, tk+1−tk, qt,k+1), (qt,N , δ−tN , q′t)∈T f
t , qk=

(v, ζq(tk))}, where qt,k = (qk, ρk, ωk, ηk). In the
controlled timed transition system, <>0 ⊆ Actt is
the set of elapsed times from the latest occurrence
of events. So, by aggregating such events into two
events indicating that time elapses, a controlled
time-abstract transition system is defined by

Sa
C(Hf

C , P ) = (Qa, Acta,T f
a , Qa0). (3)

The sets Qa and Qa0 are the same as those of St
C ,

that is, Qa = Qt and Qa0 = Qt0. Acta = Σ ∪
{τcon, τuncon}, where τcon and τuncon /∈ Σ are
events. T f

a ⊆ Qa×Acta×Qa is defined as follows:

Transitions related to events in Σ are the same as
those in T f

t in St
C(Hf

C , P ). Consider two states
qa = (q, ρ, ω, η), q′a = (q′, ρ′, ω′, η′) ∈ Qa, where
q = (v, x), q′ = (v′, x′) ∈ QH . Let ∆(qa, q′a) =

{δ ∈ <>0 | (qa, δ, q′a) ∈ T f
t }.

(A) (qa, τcon, q′a) ∈ T f
a

iff ∆(qa, q′a)6=∅ and for any δ∈∆(qa, q′a),
wpΣcl,forc

(P )(qa)

∨




∧

{qk}∈SDSC,f







∨

q̂∈{qk}

(
wpΣcl,forc

(P )(q̂)
)











∨







∨

ε∈[0,δ)

(
wpΣuncl,forc

(P )(v, ζq(ε))
)






= 1, (4)

where SDSC,f = SDSC,f (qa, δ, q′a),P (qa) = P (q).
(B) (qa, τuncon, q′a) ∈ T f

a
iff ∆(qa, q′a)6=∅ and there exists δ∈∆(qa, q′a) such
that Eq. 4 does not hold.

Let open=(opencl,1, opencl,2, openuncl,1, openuncl,2)
be a state feedback controller defined as follows:
for any q∈QH and any t∈<≥0, opencl,1(q, t)=Σcl,
opencl,2(q, t)=∅, openuncl,1(q, t)=Σuncl, openuncl,2(
q, t)=∅. Two transition systems controlled by the
controller open are denoted as follows:

St
C(P ) = (Qt, Actt,Tt, Qt0) = St

C(Hopen
C , P ),

Sa
C(P ) = (Qa, Acta,Ta, Qa0) = Sa

C(Hopen
C , P ).

Note that St
C(P ) and Sa

C(P ) correspond to seman-
tics of the uncontrolled system. From the above
definitions, the following lemma is easily shown.
Lemma 1 Let f = (fcl,1, fcl,2, funcl,1, funcl,2)
be a state feedback controller for a controlled
SDHA HC(H,C(θ, J)). Then, for two states qa =
(q, ρ, ω, η), q′a ∈ Qa = Qt, and event σ ∈ Σ,

• (qa, σ, q′a) ∈ T f
t ⇒ (qa, σ, q′a) ∈ Tt.

• (qa, σ, q′a) ∈ Tt and






σ ∈ funcl,1(q, ω) if ρ = −1

σ ∈ fcl,1(q, θ0 + ω) if σ ∈ Σcl

σ ∈ funcl,1(q, θ0 + ω) otherwise

⇒ (qa, σ, q′a) ∈ T f
t , where q = (v, x) ∈ QH .

Let r be a run for Hf
C , and r is defined as follows:

r = (v, x, c), (5)
where v(t) ∈ V is a trajectory for the discrete
variable, x(t) ∈ X is a trajectory for the contin-
uous variable, and c ∈ C is the sampling times

synchronizing with Hf
C . It is said that r is a run

for Hf
C if the following conditions hold:

(1) v(0) ∈ V, x(0) ∈ init(v(0)).
(2) if t ∈ d(v), then there exists σ ∈ Σ such

that the following three conditions hold: (i)
e(v(t−), σ, v(t+)) ∈ E, (ii) if σ ∈ Σcl, σ ∈
fcl,1((v(t−), x(t−)), t) and t ∈ c, (iii) if σ ∈
Σuncl, σ ∈ funcl,1((v(t−), x(t−)), t).

(3) if t /∈ d(v), then (i) ẋ(t)=fv(t)(x(t)), (ii) for
∀e(v, σ̃, ṽ)∈E, if x(t)∈guard(e), σ̃ /∈funcl,2(v(t),
x(t), t), and (iii) (if t∈c) for ∀e(v, σ̃, ṽ)∈E,
x(t)∈guard(e)⇒σ̃ /∈fcl,2(v(t), x(t)), t).

The following propositions indicate that the tran-
sition systems are the semantics of the controlled

SDAH Hf
C .
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Proposition 1 Consider a controlled SDHA

Hf
C and its associated timed transition system

St
C(Hf

C , P ). If r is a run for Hf
C , then there exists

a corresponding sequence of states qr
t =qr

t,0q
r
t,1 . . .

that is a state trajectory for St
C(Hf

C , P ).
Proposition 2 Consider a controlled SDHA

Hf
C and its associated timed transition system

St
C(Hf

C , P ). If qt=qt,0qt,1qt,2 . . . is a state trajec-

tory for St
C(Hf

C , P ), there exists a corresponding

run rt for Hf
C .

The above propositions are also true for the time-

abstract transition system Sa
C(Hf

C , P ).

We extend a predicate P on QH to Qt = Qa

as follows: for each state qt = (q, ρ, ω, η) ∈ Qt,
P : Qt → {0, 1} is defined by P (qt) = P (q).

4. CONTROL-INVARIANCE

A concept of control-invariance plays an impor-
tant role in state feedback control of discrete event
systems (Ramadge and Wonham, 1987). A pred-
icate P ∈ P(Qa) is said to be control-invariant
if there exists a state feedback controller f such

that P is (St
C(Hf

C , P );Actt)-invariant. Such a
controller f is called a permissive feedback con-
troller. We show necessary and sufficient condi-
tions for P to be control-invariant in the controlled
SDHA. We define predicates for trajectories of
the continuous variables as follows: for a predi-
cate P ∈ P(Qa), states qa = (q, ρ, ω, η) ∈ Qa,
q′a = (v′, ζq(δ), ρ

′, ω′, η′) ∈ Qa, and time δ ∈ <>0,

pcC,δ(P )(qa) =

{

1 if P (v, ζq(ε)) = 1,∀ ε ∈ (0, δ),

0 if P (v, ζq(ε)) = 0,∀ ε ∈ (0, δ),

pwpΣforc,δ(P )(qa) =






∨

ε∈[0, δ)

(
wpΣuncl,forc

(P )(v, ζq(ε))
)







∨




∧

{qk}∈SDSC







∨

q̂∈{qk}

(
wpΣcl,forc

(P )(q̂)
)









 ,

twpC,δ(P )(qa) = P (q′) ∨ pwpΣforc,δ(P )(qa),

where SDSC = SDSC,open(qa, δ, q′a). If a pred-
icate P is a closed set, twp can be rewritten
as follows: twpC,δ(P )(qa) = pwpΣforc,δ(P )(qa).
A predicate P is said to be (St

C(P );Σuncon,<>0,
Σforc)-invariant if the following conditions hold:
(1) P is (St

C(P ); Σuncon)-invariant, and
(2) in St

C(P ), for any δ ∈ <>0,

P 6 ¬Dδ ∨ wpΣforc
(P )

∨ (twpC,δ(P ) ∧ pcC,δ(P )) . (6)
We show necessary and sufficient conditions for
the control-invariance.
Theorem 1 Consider the controlled SDHA HC

and a predicate P ∈ P(Qa). Then, the following
three statements are equivalent:

(i) P is control-invariant.
(ii) P is (St

C(P ) ; Σuncon,<>0,Σforc)-invariant.
(iii) P is (Sa

C(P ) ; Σuncon ∪ {τuncon})-invariant.

Proof:(i)⇒(ii). Suppose that P is control-invar-
iant. Let f be a permissive feedback controller.
Suppose that P is not (St

C(P ); Σuncont,<>0,Σforc)-
invariant. Then, we have the following cases:

• Consider the case that there exist qt, q
′
t∈Qt,

and σ∈Σuncon such that (qt, σ, q′t)∈Tt, P (qt)
=1, and P (q′t)=0. Since Σuncon,cl⊆fcl,1 and

Σuncon,uncl⊆funcl,1, we have (qt, σ, q′t)∈T f
t

by Lemma 1. Since f is a permissive feed-
back controller, we have P (qt)=0, which is a
contradiction.

• Consider the case that there exist δ ∈ <>0

and qt = (q, ρ, ω, η) ∈ Qt which do not satisfy
Eq. (6). Then, P (qt) = 1, there exists q′t =
(q′, ρ′, ω′, η′) ∈ Qt such that (qt, δ, q

′
t) ∈ Tt,

one of the following conditions is satisfied:
(A) P (v, ζq(ε)) = 0 for any ε∈(0, δ) and

wpΣforc
(P )(qt)=0. Since wpΣforc

(P )(qt)=0,
there exist 0 <ε̃<δ and q̃a=(v, ζq(ε̃), ρ̃, ω̃, η̃)

∈ Qt such that (qt, ε, q̃a) ∈T f
t . Then we

have P (q̃a)=0, which is a contradiction
since f is a permissive feedback controller.

(B) P (v, ζq(ε))=1 for any ε∈(0, δ), P (q′t)=0,
and pwpΣforc,δ (P )(qt)=0. Then, we have

(qt, δ, q
′
t)∈T f

t , which is also a contradic-
tion.

From the above contradictions, P is shown to be
(Sa

C(P ); Σuncon,<>0,Σforc)-invariant.
(ii)⇒(iii) For qa, q′a∈Qa=Qt, and σ∈Σuncon, the
following implication is easily shown: (qa, σ, q′a)∈Tt

⇒ (qa, σ, q′a) ∈ Ta. Thus, we have P is (Sa
C(P ) ;

Σuncon)-invariant if P is (St
C(P ); Σuncon)-invariant.

Suppose that P is not (Sa
C(P ); τuncon)-invariant.

Then, there exist qa and q′a such that (qa, τuncon,
q′a)∈Ta, P (qa)=1, and P (q′a)=0. From the defi-
nition of τuncon, there exits δ ∈ <>0 such that
(qa, δ, q′a) ∈ Tt, which is a contradiction since P
is (St

C(P ); Σuncon,<>0,Σforc)-invariant. Thus, P
is (Sa

C(P ); Σuncon ∪ {τuncon})-invariant.
(iii)⇒(i) Suppose that P is (Sa

C(P ); Σuncon ∪
{τuncon})-invariant. Then, we consider the follow-
ing state feedback controller f=(fcl,1, fcl,2, funcl,1,
funcl,2): for each q ∈ QH , t ∈ <≥0, fcl,1(q, t) =
Σcl,uncon∪ {σ∈Σcl,con | wpσ(P )(q, ρ, ω, 1)=1 in
St

C(P )}, funcl,1(q, t)=Σuncl,uncon ∪{σ∈Σuncl,con |
wpσ(P )(q, ρ, ω, 0)=1 in St

C(P )}, where ρ and ω
satisfy (a) if t<θ0, then ρ=−1, and ω=t. (b) if
t=θ0, then ρ=0, and ω=0. (c) if t>θ0, then ρ=1,
and ω=t−θ0−b(t−θ0)/TθcTθ. fcl,2(q, t)=Σcl,forc∩
fcl,1. funcl,2(q, t) = Σuncl,forc ∩ funcl,1. Thus, it

is easy to prove that P is (St
C(Hf

C , P ); Actt)-
invariant. ¥

5. SUPREMAL CONTROL-INVARIANT
SUBPREDICATE

In general, a given predicate P ∈ P(Qa) is not
necessarily control-invariant. In this section, we
propose a procedure for computation of the supre-
mal control-invariant subpredicate. We introduce
some definitions for the predicate P as follows:

• C I(P ) is the set of all control-invariant sub-
predicates of P∈P(Qa).
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• 0∈P(Qa) is the predicate such that for any
qa∈Qa, 0(qa)=0. Since 0∈C I(P ), C I(P )6=∅.

• A predicate P ↑ ∈ C I(P ) called the supremal
control-invariant subpredicate of P is defined
as follows: for any P ′ ∈ C I(Qa), P ′ 6 P ↑.

Ushio and Takai (2005) showed that there always
exists P ↑ for the hybrid systems with forcible
event. In this section, we show the same property
also holds for the controlled SDHA.

Since P ′ 6 P ⇒ for∀σ ∈ Σ, wpσ(P ′) 6 wpσ(P ),
the following lemma is easily shown.
Lemma 2 Let P and P ′ ∈ P(Qa) be predicates
such that P ′ 6 P and P ′ is (Sa

C(P ′); Σuncon ∪
{τuncon})-invariant. For any qa ∈ {qa = (q, ρ, ω, η)
∈ Qa|P ′(qa) = 1}, if there exists q′a ∈ Qa

such that (qa, τuncon, q′a) ∈ Ta in Sa
C(P ), then

(qa, τuncon, q′a) ∈ Ta also holds in Sa
C(P ′)

Using Lemma 2, we prove the following theorem.
Theorem 2 Let I be any index set. if Pi ∈ P(Qa)
is (Sa

C(Pi) | Σuncon ∪{τuncon}) -invariant for each
i ∈ I, then, PI =

∨

i∈I Pi is (Sa
C(PI) ; Σuncon ∪

{τuncon}) -invariant.

By Theorem 2, there exists its supremal control-
invariant subpredicate P ↑ for any predicate P ∈
P(Qa).

The following theorem gives an iterative scheme
for computing the supremal control-invariant sub-
predicate.
Theorem 3 For any P ∈ P(Qa), consider the
following iterative computation: Pj+1 = Pj ∧
Ψ(Pj) (∀j ≥ 0), where P0 := P .

Then the following implication holds:
∃k ≥ 0 s.t. Pk+1 = Pk ⇒ P ↑ = Pk, (7)

where Ψ : P(qa)→P(qa) is defined as follows:
Ψ(P )(qa) =






1 if
∧

σ∈Σuncon∪{τuncon}
wlpσ(P )(qa) = 1 in Sa

C(P )

0 otherwise.

Proof: Assume that there exists k such that
Pk+1 = Pk. For the above iterative scheme, we
have Pk=Pk+1=Pk ∧ Ψ(Pk)6wlpa(Pk) for any
a∈Σuncon ∪{τuncon} and Pj+1=Pj∧Ψ(Pj)6P0=P
for any j≥0. So Pk is a control-invariant subpred-
icate of P i.e. Pk ∈ C I(P ), which implies Pk6P ↑.

Next, we prove that P ↑ 6 Pl for l = 0, 1, . . . , k by
induction. (1) l = 0. Since P ↑ is a subpredicate of
P , we have P ↑ 6 P0. (2) Suppose that P ↑ 6 Pl

holds. Then, we show by a contradiction that
P ↑ 6 Pl+1 holds. If P ↑ 6 Pl+1 does not holds,
then there exists qa ∈ Qa such that P ↑(qa) = 1
and Ψ(Pl)(qa) = 0 since P ↑(qa) = 1 ⇒ Pl(qa) = 1
for any qa ∈ Qa. If Ψ(Pl)(qa) = 0 holds, One of
the following cases always holds: (a) In Sa

C(Pl),
there exists σ ∈ Σuncon such that wlpσ(Pl)(qa) =
0. Since Dσ in Sa

C(P ↑) is equivalent to that in
Sa

C(Pl), there exists q′a ∈ Qa such that (qa, σ, q′a) ∈
Ta in Sa

C(P ↑) and Pl(q
′
a) = 0, which implies that

P ↑(q′a) = 0. This contradicts the assumption that
P ↑ is control-invariant. (b) wlpτuncon(Pl)(qa) = 0
holds in Sa

C(Pl). Then there exists q′a ∈ Qa such

that (qa, τuncon, q′a) ∈ Ta in Sa
C(Pl) and Pl(q

′
a) =

0. By Lemma 2, we have (qa, τuncon, q′a) ∈ Ta in
Sa

C(P ↑). Since P ↑(q′a) = 0, this contradicts the
assumption that P ↑ is control-invariant.
For the above cases, we have P ↑ 6 Pl+1 and
P ↑ 6 Pk. Therefore, we have Pk = P ↑. ¥

Note that P ↑ computed by the above scheme
depends on time in general while the control
specification P ∈ P(QH) is independent of time.

6. CONCLUSION

This paper considered state feedback control of
a sampled-data hybrid automaton as a model of
computer-controlled systems where control speci-
fications are given by predicates.

We introduced two transition systems as seman-
tics for the controlled sampled-data hybrid au-
tomata and proved necessary and sufficient condi-
tions for the control-invariance, and showed that
there always exists the supremal control-invariant
subpredicate for any predicate.

In general, the procedure for computation of the
supremal control-invariant subpredicate is not de-
cidable. So it is future work to obtain an approx-
imation method for the computation.
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