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Abstract: A reactive system is an entity which takes as inputs signals from a certain
set, and transforms them to produce as outputs signals in some further set, where
a signal is modeled as a function from a time domain to a value space, and time
domains are linearly ordered sets. Building on our previous work which generalizes
Aubin’s Evolutionary Systems model, we develop a general formulation of non-
deterministic input-output reactive systems that is uniform for discrete, continuous
and hybrid time, and which extends Willems’ Behavioural Systems input-output
model by allowing hybrid time, and by allowing different time domains for input
and output signals. However, our approach differs from these existing frameworks
in that instead of taking as primitive signals over infinite-length time domains, we
work with finite-length paths and utilize their algebraic and partial-order structure.
We illustrate our framework with a generic model of event-driven A/D conversion,
transforming a continuous-time input signal into a discrete-time output signal via

an intermediate hybrid-time signal. Copyright © 2006 IFAC

Keywords: hybrid systems, input-output systems, behavioural systems.

1. INTRODUCTION

In previous work (Davoren et al., 2004), we iden-
tify and investigate a class of non-deterministic
dynamical systems we call general flow sys-

tems which include discrete-time transition sys-
tems, continuous-time differential inclusions, and
hybrid-time systems such as hybrid automata and
impulse differential inclusions. Over any value
space X and a (non-negative) time line L, a gen-
eral flow system Φ maps each point x ∈ X to
the set Φ(x) of all signals or paths γ : T → X
of the system with γ(0) = x and time domain

1 This research is supported by the Australian Research
Council, Grant No. DP0208553.

T ⊆ L; in the non-deterministic setting, there
may be none, exactly one, or many possible Φ-
paths starting from x. In (Davoren et al., 2004),
we adapt Aubin’s model of Evolutionary Systems

(Aubin and Dordan, 2002; Aubin et al., 2002)
to provide semantics for a temporal logic that
is uniform for discrete-time, continuous-time and
hybrid-time systems. Over the hybrid time line
L = N × R

+
0 (ordered lexicographically), hybrid

paths γ : T → X have time domains T ⊂ L of the
form T =

⋃

i<N [ (i, 0), (i, ∆i) ], with ∆i ∈ R
+
0

the duration of the i-th interval. Within T , time
(i + 1, 0) is the immediate discrete successor of
time (i, ∆i), but in the underlying line L, there
is a continuum-length “gap” in between. To deal
with hybrid signals, two moves were crucial. The
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first was to work with finite-length paths hav-
ing a start-point and an end-point, instead of
infinite-length paths over the whole time line, as
used for the usual discrete and continuous time
lines in the work of Aubin, and also within the
Behavioural Systems framework (Willems, 1989;
Willems, 1991; Moor and Raisch, 1999). The sec-
ond was to develop a theory of finite-length paths
γ : T → X with time-domains T ⊂ L that
are not simply intervals T = [0, b] but rather
finite disjoint unions of intervals, with “gaps” in
between. We then build up a theory of maximal

extensions of finite paths to compare with signal
models over unbounded time domains. By work-
ing with finite-length paths, we also get to use
monoidal and partial-order structure that is not
accessible within frameworks based on infinite-
length signals. In this respect, our approach is
close to that of (Tabuada et al., 2004).

In the present paper, we develop a general for-
mulation of non-deterministic input-output reac-
tive systems that is uniform for discrete, contin-
uous and hybrid time. In broad terms, a reactive

system Γ takes as input a signal η from a cer-
tain set, and transforms it to produce as output
one or more signals γ ∈ Γ(η) in some further
set. While such input-output systems have been
well-studied within Behavioural Systems theory
(Willems, 1989; Willems, 1991) for the usual dis-
crete or continuous time lines, that framework
does not extend to hybrid time or to systems
where the time-line Lout for output paths may
differ from the time-line Lin for input paths.
Basic examples are A/D converters transforming
continuous-time signals into discrete-time signals
(particularly event-driven rather than fixed peri-
odic sampling), and D/A converters transform-
ing discrete-time signals into continuous-time sig-
nals. Our approach is also commensurate with the
Tagged Signal “Models of Computation” meta-
model (Lee and Sangiovanni-Vincentelli, 1998),
restricted to the timed case of linearly ordered
signal domains, in that it provides a general
framework which includes within it diverse model
classes, and within which various system proper-
ties can be formulated and compared.

In a follow-on paper, we will extend the present
work with a study of compositions of input-
output reactive systems by sequential, parallel
and feedback constructions, with the aim of giv-
ing an explicit set-theoretic semantics for block-
diagram based modeling and description frame-
works, such as Charon (Alur et al., 2000), that
allow non-determinism, hybrid signals and time-
translations. Additionally, we will give a represen-
tation within our framework of Lynch and Van-
draager’s hybrid I/O automata model (Lynch et

al., 1996), as well as of Aubin’s impulse differen-

tial inclusion hybrid model (Aubin et al., 2002),

extended with inputs and outputs, which are not
possible within this short paper.

The body of the paper is as follows. Section 2
covers preliminaries on set-valued maps and lin-
ear orders. In Section 3, we develop some basic
theory of paths with “gappy” time domains, and
tersely review the theory of general flows and
their infinitary extensions, enabling a first com-
parison in Section 4 with Aubin’s Evolutionary
Systems and with state behaviours in Willems’
Behavioural Systems Theory. In Section 5, we de-
velop input-output reactive systems and some ba-
sic system properties and their inter-relationships.
The main result concerns the relationship be-
tween Willems’ concept of non-anticipation, which
is a non-deterministic analogue of causality, and
the system property of being extension-preserving

with respect to the natural partial order of ex-
tension of finite paths (that is not available in
frameworks based on signals with infinite time
domains). We also including several illustrative
examples, including event-driven A/D conversion.
In Section 6, we compare our work with other
input-output system models. In particular, we
show that for the usual discrete and continuous
time lines, our finite-path formulations of sys-
tem properties such as non-anticipation, input

freedom, and time-invariance (suffix-closure), all
have an exact correspondence with their infinite
signal formulations in Willems’ input-output Be-
havioural Systems theory.

2. PRELIMINARIES:
RELATIONS/SET-VALUED MAPS,
MONOIDS, AND LINEAR ORDERS

We write R
+

0 := [0,∞) and N for the non-negative
reals and natural numbers, respectively.

We write r : X ; Y to mean r : X → 2Y is a
set-valued map, with r(x) ⊆ Y for every x ∈ X
(possibly r(x) = ∅); equivalently, r ⊆ X × Y is
a relation – we don’t distinguish between a set-
valued map and its graph. Let [X ; Y ] := 2X×Y

denote the set of all maps r : X ; Y from
X to Y ; it is partially ordered by the subset
relation, with least element ǫ (empty map), and
closed under relational converse: for a map r :
X ; Y , the converse r−1 : Y ; X is given
by: x ∈ r−1(y) iff y ∈ r(x). The domain is
dom(r) := {x ∈ X | r(x) 6= ∅}, and the range

is ran(r) := dom(r−1) ⊆ Y . A map r : X ; Y
is total on X if dom(r) = X . Given r1 : X ; Y
and r2 : Y ; Z, their sequential composition is
(r1 ◦ r2) : X ; Z, defined by (r1 ◦ r2)(x) := {z ∈
Z | (∃y ∈ Y ) y ∈ r1(x) ∧ z ∈ r2(y) }.
We distinguish several sub-classes of deterministic

maps. We write r : X → Y to mean r is a
single-valued function that is total on domain X ,
with values in Y , written r(x) = y (rather than
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r(x) = {y}). Let [ X → Y ] denote the set of all
r : X → Y . We also need partial functions, and
write r : X 99K Y to mean that on dom(r) ⊆ X , r
is a single-valued function; let [X 99K Y ] denote
the set of all such maps. For partial functions, we
also write r(x) = y when x ∈ dom(r), and may
write r(x) = undef when x /∈ dom(r). As sets of
maps, [ X → Y ] ⊆ [ X 99K Y ] ⊆ [ X ; Y ].

On any set X , we define a monoidal family over X
to be a structure (X, M, ·, ι) where the functions
· : X → [ (M × M) 99K M ] and ι : X → M ,
are such that, if ·x := ·(x) : (M × M) 99K M
and ιx := ι(x) ∈ M , for each x ∈ X , the following
conditions are satisfied, for all m, m′, m′′ ∈ M :
(a) family associativity: if (m, m′) ∈ dom(·x)
and (m′, m′′) ∈ dom(·y), then (m ·x m′, m′′) ∈
dom(·y) and (m, m′ ·y m′′) ∈ dom(·x) and
(m ·x m′) ·y m′′ = m ·x (m′ ·y m′′);
(b) right identity: if (m, m′) ∈ dom(·x) then
(m, ιx) ∈ dom(·x) and m ·x ιx = m;
(c) left identity: if (m′, m) ∈ dom(·x) then
(ιx, m) ∈ dom(·x) and ιx ·x m = m.

Let (L, <, 0) be a linear order with least element 0
and no largest element, and let 6 be the reflexive
closure of <. We use usual interval notation: for
a, b ∈ L, the bounded intervals in L include
[a, b] := {l ∈ L | a 6 l 6 b} and (a, b) :=
{l ∈ L | a < l < b}. The right unbounded

intervals are: [a,∞) := {l ∈ L | a 6 l} and
(a,∞) := {l ∈ L | a < l}. Given (L1, <1, 01)
and (L2, <2, 02), a map g : L1 99K L2 is:

• [strictly] order-preserving if
(∀l, k ∈ dom(g)), if l 61 k [if l <1 k ]
then g(l) 62 g(k) [then g(l) <2 g(k)];

• an order-isomorphism if g is a total function
and a bijection, and both g and g−1 are
strictly order-preserving.

We take a (future) time line to be any linear order
(L, <, 0) that is shift-invariant in the sense that it
is equipped with a family of maps {σ−a}a∈L such
that σ−0 : L → L is the identity map, and for
each a ∈ L, σ−a : [a,∞) → L (the left a-shift)
is an order-isomorphism, with inverse σ+a :=
(σ−a)−1 : L → [a,∞) (the right a-shift).

The basic examples are the discrete time line N,
and the dense continuum R

+

0 , the non-negative
cones of linearly ordered abelian groups under ad-
dition, Z and R respectively. The group operation
trivially gives shift-invariance: take σ−a(l) = l−a
for l ∈ [a,∞), and inverse σ+a(l) = l + a.

The hybrid time line H := N × R
+

0 is linearly
ordered lexicographically: (i, t) <lex (j, s) iff i < j
or i = j and t < s. The least element is 0 := (0, 0).
This ordering does not admit any natural addition
operation to make it a linearly ordered semi-
group, but it is shift-invariant: for a = (k, r) ∈ H,
define σ−a : [a,∞) → H by σ−a(i, t) := (0, t − r)

if i = k and σ−a(i, t) := (i − k, t) if i > k, for all
l = (i, t) ∈ [a,∞).

We will also require some additional properties
of time lines. A time line (L, <, 0) will be called
ω-compact if there exists an ω-length sequence
{bn}n<ω such that for all n < ω, bn ∈ L and
0 < bn < bn+1, and L =

⋃

n<ω[0, bn]. A time line
(L, <, 0) is called Dedekind-complete if for every
subset A ⊆ L such that A 6= ∅, if A has an upper
bound b ∈ L such that l 6 b for all l ∈ A, then
sup(A) exists in L, and likewise for lower bounds
and inf’s. The time lines N, R

+

0
and H each have

both these properties.

3. PATHS, GENERAL FLOW SYSTEMS, AND
THEIR EXTENSIONS

Let (L, <, 0) be a time line. We define a bounded

time domain in L to be a subset T ⊂ L such
that T =

⋃

n<N [an, bn] with N ∈ N
+, a0 = 0,

bN−1 = bT the maximum element, and an 6 bn <
an+1 6 bn+1 for all n < N − 1. Let BT(L) ⊂ 2L

denote the set of all bounded time domains in L,
and let BT∅(L) = BT(L) ∪ {∅}. Define BI(L) :=
{T ∈ BT(L) | (∃b ∈ L) dom(γ) = [0, b] } and
BI∅(L) = BI(L) ∪ {∅}.
Over any set X 6= ∅ (an arbitrary value space or
signal space), define the set of L-paths in X , and
the set of interval L-paths in X :

Path(L, X) := {γ : L 99K X | dom(γ) ∈ BT(L)}
IPath(L, X) := {γ : L 99K X | dom(γ) ∈ BI(L)}
For γ ∈ Path(L, X), define bγ := bdom(γ) to be
the maximum of dom(γ), so γ(bγ) ∈ X is the
end-point and γ(0) ∈ X the start-point of γ.
Where ǫ is the empty path, let Pathǫ(L, X) :=
Path(L, X) ∪ {ǫ} and Pǫ := P ∪ {ǫ} for path sets
P ⊆ Path(L, X).

We utilise three operations on Pathǫ(L, X); for
γ, γ′ ∈ Pathǫ(L, X), t ∈ L and x ∈ X , define:
• restriction or prefix ending at t ∈ dom(γ):

γ|t ∈ Pathǫ(L, X) where γ|t := γ ↾[0,t]∩dom(γ).
• translation or suffix starting at t ∈ dom(γ):

t|γ ∈ Pathǫ(L, X) where (t|γ)(l) := γ(σ+t(l))
for all l ∈ dom(t|γ) := σ−t([t, bγ ] ∩ dom(γ)).

• point-concatenation at x ∈ X :

γ ∗x γ′ ∈ Pathǫ(L, X) where, for all l ∈ L:
(γ ∗x γ′)(l) := γ(l) if l ∈ dom(γ) and

γ′(0) = x = γ(bγ);
(γ ∗x γ′)(l) := γ′(σ−bγ (l)) if l ∈ σ+bγ (dom(γ′))

and γ′(0) = x = γ(bγ); and
(γ ∗x γ′)(l) := undef for all other l and x.

For each x ∈ X , the trivial path θx : [0, 0] → X
is given by θx(0) := x. Then the map θ : X →
Path(L, X) given by θ(x) := θx is an embedding
(injective function) of X into Path(L, X).

For any subset of paths P ⊆ Pathǫ(L, X), we say
P is closed under suffixes (closed under prefixes) if
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for all γ ∈ P and all t ∈ dom(γ), the path t|γ ∈ P
(respectively, γ|t ∈ P). Define XP := {x ∈ X |
(∃γ ∈ P) γ(0) = x ∨ γ(bγ) = x}. The structure
(XP ,P , ∗, θ) constitutes a monoidal family over
the set XP if for all γ, γ′ ∈ P and all x ∈ XP , if
(γ, γ′) ∈ dom(∗x), then γ ∗x γ′ ∈ P and θx ∈ P .

For discrete time L = N, the interval path set
IPathǫ(N, X) = X∗ is the set of all finite words or
sequences over X . The usual operation of word-

concatenation from automata and DES theory
equips the set X∗ as a (total) monoid with identity
ǫ. Denoting it by ·, that operation is definable
in terms of point-concatenation as follows: for all
γ, γ′ ∈ IPath(N, X) = X+, we have γ · γ′ = γ ∗x

(νxy)∗yγ′, where dom(νxy) = {0, 1}, νxy(0) = x =
γ(bγ), and νxy(1) = y = γ′(0).

Note that for all non-empty γ ∈ Path(L, X) and
all x, y, z ∈ X such that γ(0) = z and γ(bγ) = y,
we have: ǫ∗xǫ = ǫ, γ∗yǫ = γ, and ǫ∗zγ = γ. Hence
ǫ as well as θx functions as a monoid identity
for the ∗x operation. The following structures are
monoidal families over X : (X, Path(L, X), ∗, θ),
(X, Pathǫ(L, X), ∗, ε), (X, IPath(L, X), ∗, θ) and
(X, IPathǫ(L, X), ∗, ε).
The point-concatenation operation is usefully re-
lated to the notion of extensions of paths which
continue from the end value of a given path.
Define a partial order on Pathǫ(L, X) from the
subset relation and the underlying linear order
on L; (re-using notation) we define: γ < γ′ iff
γ ⊂ γ′ and t < t′ for all t ∈ dom(γ) and for all
t′ ∈ dom(γ′)− dom(γ), in which case we say γ′ is
a proper extension of γ. As usual, γ 6 γ′ iff either
γ < γ′ or γ = γ′.

Proposition 3.1. Let L be any time line, and X
any value space. Then for all γ, γ′ ∈ Path(L, X),
the following are equivalent:

(i) γ < γ′ ;

(ii) for all t ∈ dom(γ), γ|t = γ′|t
and for all t′ ∈ dom(γ′) − dom(γ), t < t′;

(iii) γ′ = γ ∗x γ′′ for some γ′′ ∈ Path(L, X)
and x ∈ X with γ′′(0) = x and
γ(bγ) = γ′(bγ) = x and γ′′ 6= θx .

Now consider the hybrid time line H = N × R
+

0
.

Define DS := IPathǫ(N, R+

0
) to be the set of all

(finite) duration sequences. For ∆ ∈ DS, define
HT (∆) to be the hybrid time domain determined
by ∆, and over any X 6= ∅, define HPathǫ(X) ⊂
Pathǫ(H, X) to be the set of all hybrid paths over
X , as follows:

HT (∆) :=
⋃

i<length(∆)

[ (i, 0), (i, ∆i) ]

HT := {HT (∆) ∈ BT(H) | ∆ ∈ DS }
HPath(X) := {ξ ∈ Path(H, X) | dom(ξ) ∈ HT}

General flow systems are dynamical systems over
a state space or signal value space. As expected

from Behavioural Systems theory (Willems, 1989;
Willems, 1991), and as we shall see in examples in
Section 5, we can for certain input-output systems
associate a general flow dynamical system over an
input-state-output product space.

Definition 3.2. Let (L, <, 0) be a time line and let
X 6= ∅ be any space. A general flow system over
X with time line L is a map Φ: X ; Path(L, X)
satisfying, for all x ∈ dom(Φ), for all γ ∈ Φ(x),
and for all t ∈ dom(γ):

(GF0) the initialization property: γ(0) = x;
(GF1) the time-invariance or suffix-closure

property: t|γ ∈ Φ(γ(t));
(GF2) the point-concatenation property:

γ|t∗yγ′ ∈ Φ(x) for all γ′ ∈ Φ(y) with y = γ(t).

• Φ is non-blocking if Φ(x) 6= {θx} for all
x ∈ dom(Φ);
• Φ is prefix-closed if γ|t ∈ Φ(x) for all
x ∈ dom(Φ), γ ∈ Φ(x) and t ∈ dom(γ);
• Φ is deterministic if for every x ∈ dom(Φ), the
path set Φ(x) is linearly-ordered by <.
• Φ is <-unbounded if for all x ∈ dom(Φ) and
γ ∈ Φ(x), there exists γ′ ∈ Φ(x) such that γ < γ′.

Among other results (Davoren et al., 2004), it is
readily established that Φ is non-blocking iff Φ is
<-unbounded. Examples of general flow systems
include state transition systems over L = N,
differential inclusions over L = R

+

0 , and hybrid
automata and impulse differential inclusions over
L = H. Any path set P ⊆ Path(L, X) that is
monoidal and suffix-closed determines a general
flow system.

It is clear that if a flow Φ is non-blocking, then
for each x ∈ dom(Φ) and γ ∈ Φ(x), there exists
an infinite sequence of paths {γn} with γ0 = γ
and γn ∈ Φ(x) and γn < γn+1 for all n. Moti-
vated by this fact, we view “maximal extensions”
or “completions” of paths as infinitary objects,
arising as limits of infinite ordered sequences of
finite bounded paths.

Definition 3.3. Let L be an ω-compact time line.
For any path set P ⊆ Pathǫ(L, X), define the ω-
extension of P , and the maximized ω-extension of
P , as follows:

Extω(P)

:= { β ∈ [L 99K X ] | (∃γ ∈ [ω → Path(L, X)] )

(∀k < ω) γk := γ(k) ∧ γk ∈ P ∧
γk < γk+1 ∧ β =

⋃

k<ω

γk }

Mω(P)

:= { β ∈ Extω(P) | (∀γ ∈ P ) β ≮ γ }
Define EPathω(L, X) := Extω(Pathǫ(L, X) ), and
EIPathω(L, X) := Extω( IPathǫ(L, X) ).

The ω-extension Extω(P) contains all the partial
functions β : L 99K X that arise as the limit of an
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ω-length strictly extending sequence of paths in
P . The maximised ω-extension Mω(P) throws out
from Extω(P) all limit paths β that are properly
extended by some finite-length path γ in P . (The
path extension partial ordering on bounded paths
straightforwardly lifts to limit paths.)

Definition 3.4. Let L be an ω-compact time line.
Given a general flow system Φ: X ; Path(L, X),
define the maximised ω-extension MωΦ: X ;

EPathω(L, X) by (MωΦ)(x) := Mω(Φ(x)) for all
x ∈ dom(Φ). A flow Φ will be called:
• ω-extendible if for all x ∈ dom(Φ) and γ ∈ Φ(x),
there exists α ∈ (MωΦ)(x) such that γ < α.
• ω-full if for all x ∈ dom(Φ) and β ∈ Extω(Φ(x)),
there exists α ∈ (MωΦ)(x) such that β 6 α.

In general, dom(MωΦ) ⊆ dom(Φ), and we have
dom(MωΦ) = dom(Φ) iff Φ is ω-extendible.

Proposition 3.5. Given a general flow system
Φ: X ; Path(L, X) over any time line L,

Φ is ω-extendible

iff Φ is <-unbounded and ω-full.

For L = N, all limit paths β ∈ EIPathω(N, X) have
infinite time domain, so (MωΦ)(x) = Extω(Φ(x))
for any non-blocking Φ. For L = H and ω-
extendible Φ, limit paths α ∈ ran(MωΦ) include
those with time domains dom(α) =

⋃

n<ω{n} ×
[0, ∆n], as well as those with dom(α) = T0 ∪
( {i} × [0, d) ) for some T0 ∈ BT(H) and (i, 0) >lex

bT0
and d ∈ R

+

0 ∪ {∞}.

4. COMPARISON WITH EVOLUTIONARY
AND BEHAVIOURAL SYSTEM MODELS

Aubin’s evolutionary system’s (Aubin and Dor-
dan, 2002) are over the usual time lines L = R

+

0

or L = N, and consist of a map Ψ : X ; [L → X ],
with extended whole line paths β : L → X ,
where Ψ is closed under the operations of transla-
tion/suffix and point-concatenation, analogous to
clauses (GF1) and (GF2) of Definition 3.2.

In Willems’ Behavioural Systems theory (Willems,
1989; Willems, 1991), a dynamical system is a
structure Σ = (L, X, B) where L ⊆ R is the time
line, X is the signal space, and B ⊆ [L → X ]
is the behaviour. A behaviour B is called time

invariant if for all β : L → X and all t ∈ L, if
β ∈ B then the t-translation/suffix t|β ∈ B; and
is called a state behaviour if for all t ∈ L and for
all β, β′ ∈ B, if x = β(t) = β′(t) then the point-
concatenation (β|t) ∗x (t|β′) ∈ B. A behaviour
B is called complete if for all β : L → X , if
[
(∀a, b ∈ L)β ↾[a,b]∈ B↾[a,b]

]
then β ∈ B ( – and

note that the reverse implication is trivially true).

Theorem 4.1. Let the time line be either L = N

or L = R
+

0
, and X 6= ∅. Let Ψ: X ; [L → X ]

and let B ⊆ [L → X ]. Then:

Ψ is an Aubin evolutionary system;
iff B is a time-invariant and complete

state behaviour in the sense of Willems;
iff there exists an ω-extendible interval path

general flow system Φ: X ; IPath(L, X)
such that Ψ = MωΦ and B = ran(MωΦ).

5. INPUT-OUTPUT REACTIVE SYSTEMS

To allow that the time-line Lout for output paths
may differ from the time-line Lin for input paths,
we need to use at least order-preserving partial
functions τ : Lout 99K Lin which do a time

translation by looking in reverse, starting from a
“now” instant t ∈ dom(γ) ⊂ Lout in an output
path γ, and asking at what time τ(t) ∈ dom(η) ⊂
Lin is the corresponding “now” time point in the
input path η which generates γ among its output.

Definition 5.1. Let Lin and Lout be time-lines,
and let U, Y be any non-empty sets. Define

TT(Lout, Lin)

:= { τ ∈ Path(Lout, Lin) | τ is order-

preserving ∧ τ(0out) = 0in ∧
ran(τ) ∈ BT(Lin) }

A reactive system is any map Γ of type

Γ: Pathǫ(Lin, U) ;

(Pathǫ(Lout, Y ) × TTǫ(Lout, Lin))

such that for all inputs η ∈ dom(Γ), and for all
outputs (γ, τ) ∈ Γ(η), we have ran(τ) ⊆ dom(η)
and dom(τ) = dom(γ). A reactive system Γ will
be called:
• time-homogeneous if: Lout = Lin = L, and
(∀η ∈ dom(Γ))(∀(γ, τ) ∈ Γ(η)),
dom(γ) = dom(η) and τ is the identity function
restricted to dom(γ), in which case we treat Γ as
a map of type Γ : Path(L, U) ; Path(L, Y );

• [strictly] extension-preserving if:
(∀η ∈ dom(Γ))(∀η′ ∈ dom(Γ)),
if η 6 η′ [if η < η′ ]
then (∀(γ, τ) ∈ Γ(η)(∃(γ′, τ ′) ∈ Γ(η′)) such that

τ 6 τ ′ and γ 6 γ′ [τ < τ ′ and γ < γ′ ];
• time-invariant/suffix-closed if: the path set
dom(Γ) is suffix-closed, and
(∀η ∈ dom(Γ))(∀(γ, τ) ∈ Γ(η))(∀t ∈ dom(γ)),
(∃τ ′ ∈ TT(Lout, Lin)), such that

τ ′ = (t|τ ) ◦ σ−t and (t|γ, τ ′) ∈ Γ
(

τ(t)|η
)
;

• prefix-closed if: the path set dom(Γ) is prefix-
closed, and (∀η ∈ dom(Γ))(∀(γ, τ) ∈ Γ(η))
(∀t ∈ dom(γ)), (γ|t, τ |t) ∈ Γ

(
η|τ(t)

)
;

• non-anticipating (the output has a
non-anticipatory dependence on the input) if:
(∀η, η′ ∈ dom(Γ))(∀s ∈ dom(η) ∩ dom(η′))
if η|s = η′|s
then (∀(γ, τ) ∈ Γ(η))(∃(γ′, τ ′) ∈ Γ(η′))

(∀t ∈ dom(γ) ∩ dom(γ′)) if τ(t) 6 s
then τ |t = τ ′|t and γ|t = γ′|t;

• strictly non-anticipating if:
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(∀η, η′ ∈ dom(Γ))(∀s ∈ dom(η) ∩ dom(η′))
if Ds = [0, s) ∩ dom(η) = [0, s) ∩ dom(η′)

and η ↾Ds
= η′ ↾Ds

then (∀(γ, τ) ∈ Γ(η))(∃(γ′, τ ′) ∈ Γ(η′))
(∀t ∈ dom(γ) ∩ dom(γ′)) if τ(t) 6 s
then τ |t = τ ′|t and γ|t = γ′|t;

• input-time-unbounded if: for every input path
η ∈ dom(Γ), there exists an α ∈ Mω(dom(Γ))
such that η < α and the time domain dom(α)
is an unbounded set in Lin;
• totally free in input if: dom(Γ) = Pathǫ(Lin, U);
i.e. Γ is total as a map;
• monoidal if: (a) (UD,D, ∗, θ) and (YR,R, ∗, θ)
are both monoidal families, where D := dom(Γ)
and R := πY (ran(Γ)); and (b) (∀η, η′ ∈ dom(Γ))
(∀u ∈ UD) if η(bη) = u = η′(0) then (∀(γ, τ) ∈
Γ(η)), (∀(γ′, τ ′) ∈ Γ(η′)), if γ(bγ) = γ′(0), then
(γ′′, τ ′′) ∈ Γ(η∗uη′), where γ′′ = γ∗yγ′, y = γ(bγ),
τ ′′ = τ ∗t (τ ′ ◦ σ+t) and t = bγ .

Given any non-empty set X , a map Ψ will be
called a parameterized reactive system if it is of
type Ψ : (X×Pathǫ(Lin, U)) ; (Pathǫ(Lout, Y )×
TTǫ(Lout, Lin)), and for all (x, η) ∈ dom(Ψ),
and for all (γ, τ) ∈ Ψ(x, η), ran(τ) ⊆ dom(η)
and dom(τ) = dom(γ). Most of these properties
of reactive systems can be simply extended to
parameterized reactive systems by substituting
quantification over η ∈ dom(Γ) with (x, η) ∈
dom(Ψ), and substituting (γ, τ) ∈ Γ(η) with
(γ, τ) ∈ Ψ(x, η).

In (Willems, 1989; Willems, 1991), over the dis-
crete and the continuous time lines, the non-

anticipating property for input-output behaviours
is proposed as the non-deterministic analogue of
the causality property in deterministic systems.
Our first major result is that, under the assump-
tion of prefix-closure, the properties of being non-

anticipating and of being extension-preserving are
equivalent.

Theorem 5.2. Let Γ : Pathǫ(Lin, U) ;

(Pathǫ(Lout, Y ) × TTǫ(Lout, Lin)) be a reactive
system, where the time lines Lin and Lout are ω-
compact and Dedekind-complete.
(1.) If Γ is strictly non-anticipating, then Γ is
non-anticipating.
(2.) If Γ is strictly extension-preserving, then Γ
is extension-preserving
(3.) If Γ is extension-preserving and prefix-closed,
then Γ is non-anticipating.
(4.) If Γ is non-anticipating, then Γ is extension-
preserving.
From (3.) and (4.), if Γ is prefix-closed, then
Γ is extension-preserving iff Γ is non-anticipating.
(5.) If Γ is monoidal and suffix-closed, then Γ is
strictly extension-preserving.
(6.) If Γ is totally free in input, then Γ is input-
time-unbounded.

Before discussing some examples of reactive sys-
tems, we first apply ω-extension constructions to
the input-output setting.

Definition 5.3. Given a reactive system Γ with
time lines Lin and Lout both ω-compact, define
the ω-extension of Γ to be the map
ExtωΓ: EPathω(Lin, U) ; EPathω(Lout, Y × Lin)
such that:

(ExtωΓ)(α)

:= { (β, υ) ∈ Extω(ran(Γ)) |
(∃η ∈ [ω → Path(Lin, U)] )
(∃ (γ, τ ) ∈ [ω → Path(Lout, Y × Lin)] )
(∀k < ω) ηk := η(k) ∧ γk := γ(k) ∧
τk := τ (k) ∧ ηk ∈ dom(Γ) ∧ (γk, τk) ∈ Γ(ηk)
∧ ηk < ηk+1 ∧ (γk, τk) < (γk+1, τk+1) ∧
α =

⋃

k<ω

ηk ∧ β =
⋃

k<ω

γk ∧ υ =
⋃

k<ω

τk }

for all α ∈ dom(ExtωΓ) := Extω(dom(Γ)).

In defining the maximized ω-extension MωΓ of a
reactive system Γ, we want to restrict to limit
input paths α ∈ dom(ExtωΓ) ⊆ EPathω(Lin, U)
that are not only maximized ω-extensions of finite
input paths, so α ∈ Mω(dom(Γ)), but that are
also unbounded in the length of their time domain.
This rules out limit input paths with finite escape
time. When a system Γ is input-time-unbounded,
then there are no limit input paths with bounded
time duration, hence for such systems, there will
be no loss in the move from Γ to the maximized
ω-extension MωΓ.

Note, however, that on the output side, we will not

be assuming that all resulting limit output paths
must be time-unbounded; rather, we will identify
that condition into a system property of output-

time-unboundedness.

Definition 5.4. Let L be an ω-compact time line,
and let X 6= ∅ be any value space. For any
path set P ⊆ Pathǫ(L, X), define the time-

unbounded maximized ω-extension of P to be the
limit path set TMω(P), with TMω(P) ⊆ Mω(P) ⊆
Extω(P) ⊆ EPathω(L, X), defined by:

TMω(P) := {α ∈ Mω(P) | (∀t ∈ L)
(∃s ∈ dom(α)) s > t }

So the limit path set TMω(P) is that subset of
Mω(P) obtained by throwing away all limit paths
α where the time domain dom(α) is a bounded
subset of L. We shall require time-unbounded
maximized extensions on the input side.

Definition 5.5. Given a reactive system Γ with
ω-compact time lines Lin and Lout, define the
maximized ω-extension of Γ to be the map MωΓ
of type:

MωΓ: EPathω(Lin, U) ; EPathω(Lout, Y × Lin)

such that dom(MωΓ) := TMω(dom(Γ)), and
(MωΓ)(α) := (ExtωΓ)(α) for all α ∈ dom(MωΓ).
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A reactive system Γ will be called:
• ω-responsive if it is input-time-unbounded and
(∀η ∈ dom(Γ))(∀α ∈ dom(MωΓ)), if η < α
then (∀(γ, τ) ∈ Γ(η))(∃(β, υ) ∈ (MωΓ)(α)) such
that (γ, τ) < (β, υ)
• output-time-unbounded if every limit output
path has an unbounded time domain, which
means ran(MωΓ) = TMω(ran(Γ)).

The following theorem gives a first characterisa-
tion of the ω-responsiveness property.

Theorem 5.6. For any reactive system Γ,
(7.) Γ is ω-responsive iff Γ is strictly extension-
preserving and input-time-unbounded.
(8.) If Γ is monoidal, suffix-closed and input-time-
unbounded, then Γ is ω-responsive.

Example 5.7. A state machine is a structure S =
(X, U, Y,UpDt) with state set X , input set U ,
output set Y , and UpDt : (X × U) ; (X × Y )
the state/output update map; equivalently, S is a
non-deterministic Mealy machine. Associate with
S three maps on interval paths over L = N.

The first map is the full input-state-output map

ΦS : (U ×X ×Y ) ; IPath(N, U ×X×Y ) with:
ΦS(u, x, y)

:= { (η, ξ, γ) ∈ IPath(N, U × X × Y ) |
u = η(0) ∧ x = ξ(0) ∧ y = γ(0) ∧
(∀i < bη) (ξ(i + 1), γ(i)) ∈ UpDt(ξ(i), η(i)) ∧
(∃x′ ∈ X) (x′, γ(bη)) ∈ UpDt(ξ(bη), η(bη)) }

It is readily seen that ΦS is a prefix-closed general
flow system and that ΦS is non-blocking (and ω-
extendible) iff the map UpDt is total.

We can then define two reactive systems from the
flow ΦS via projections. First, the input-state sys-
tem: an parameterized time-homogeneous reactive
system

ΨS : (X × IPath(N, U)) ; IPath(N, X)
and second, the (external behaviour) input-output

system: a time-homogeneous reactive system
ΓS : IPath(N, U) ; IPath(N, Y )

transforming input-paths into output-paths. These
two maps are defined as follows:
ΨS(x, η) := {ξ ∈ IPath(N, X) | (∃γ ∈ IPath(N, Y ))

(η, ξ, γ) ∈ ΦS(η(0), x, γ(0)) }
ΓS(η) := {γ ∈ IPath(N, Y ) | (∃ξ ∈ IPath(N, X))

(η, ξ, γ) ∈ ΦS(η(0), ξ(0), γ(0)) }
In particular, (x, η) ∈ dom(ΨS) iff (x, η(0)) ∈
dom(UpDt), and dom(ΓS) = πU (dom(ΨS)). Ob-
serve also that ΨS and ΓS are both suffix-closed
and prefix-closed, and if the map UpDt is total,
then both ΨS and ΓS are monoidal, extension-
preserving, non-anticipating, totally free in input,
ω-responsive and output-time-unbounded.

Example 5.8. Over continuous time, an input-
state-output system of differential inclusions is
a structure DI = (X, U, Y,U , F, G) where X =

R
n, U = R

m, Y = R
p, U ⊆ IPath(R+

0 , U) is
a set of input paths, and the maps F : (X ×
U) ; R

n and G : (X × U) ; Y are sub-
ject to regularity assumptions to guarantee ex-
istence of solutions without finite escape time
(Aubin et al., 2002). The resulting solution map
SolDI : (X × U) ; IPath(R+

0
, X) is an ini-

tialized time-homogeneous reactive system which
is suffix-closed, prefix-closed and strictly non-
anticipating. The time-homogeneous external I/O
map ΓDI : IPath(R+

0
, U) ; IPath(R+

0
, Y ) also in-

corporates the G output constraint, and is suffix-
closed, prefix-closed, and non-anticipating. These
two maps can be combined to define the input-
state-output general flow ΦDI : (U × X × Y ) ;

IPath(R+

0
, U × X × Y ).

As our basic example of differing time lines, con-
sider analog-to-digital conversion based on event-

driven sampling rather than fixed periodic sam-
pling.

Example 5.9. Let Y ⊆ R
n be a continuous mea-

surement space, and the input signals will be
continuous-time interval paths η ∈ IPath(R+

0 , Y ).
Let Z 6= ∅ be a finite set of event symbols, and let
A : Z ; Y be any total map from Z to Y which
associates with each event symbol z ∈ Z a non-
empty subset A(z) ⊆ Y of measurement values
y which trigger the event symbol z. We require
A(z)∩A(z′) 6= ∅ for some z 6= z′, as it is in these
overlap regions (e.g. common boundaries) that the
discrete event output signal γ ∈ IPath(N, Z) can
switch from value z to value z′ (or vice-versa).

We define reactive systems AnInA and DigOut
A

:
AnInA : IPath(R+

0
, Y ) ;

(HPath(Z × Y ) × TT(H, R+

0
))

DigOut
A

: HPath(Z × Y ) ;

(IPath(N, Z) × TT(N, H))
with

AnInA(η)

:= { (ξ, τ̄ ) ∈ HPath(Z × Y ) × TT(H, R+

0
) |

ran(τ̄ ) ⊆ dom(η) ∧ dom(τ̄ ) = dom(ξ) ∧
(∀(i, t) ∈ dom(ξ))

(
τ̄ (i, t) = t + Σj<i∆j

where ∆ = ds(ξ) ∧ πY ξ(i, t) = η(τ̄ (i, t)) )
∧ (∀i < dl(ξ))(∃zi ∈ Z)(∀t ∈ [0, ∆i] )
πZ ξ(i, t) = zi ∧ η(τ̄ (i, t)) ∈ A(zi) }

DigOut
A

(ξ)

:= { (γ, τ̂) ∈ IPath(N, Z) × TT(N, H) |
ran(τ̂ ) ⊆ dom(ξ) ∧ dom(τ̂ ) = dom(γ) ∧
length(γ) = dl(ξ) ∧ (∀k ∈ dom(γ))
τ̂ (k) = (k, 0) ∧ γ(k) = πZ ξ(τ̂ (k)) }

Applied to a real-time input path η with values in
Y , the map AnInA will produce as output hybrid
paths ξ over the product space X = Z × Y ,
where the Y -projection πY ξ reproduces the input
η on the hybrid output time line, in the sense
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that πY ξ = τ̄ ◦ η, and the time translation τ̄ :
dom(ξ) → dom(η) maps a hybrid time point (i, t)
back to τ̄ (i, t), the (real-valued) total duration
of the hybrid path ξ to this point. The further
constraint on ξ is that the Z-projection πZ ξ is
constant with some value zi for all positions (i, t)
between (i, 0) and (i, ∆i), and (τ̄ ◦η)(i, t) ∈ A(zi).
This means for each i < dl(ξ), the input path η
remains continuously within the region A(zi) ⊆ Y
for all times s ∈ dom(η) such that τ(i, 0) 6 s 6

τ(i, ∆i), and η(s) ∈ A(zi)∩A(zi+1) at a switching
time s = τ(i, ∆i) = τ(i + 1, 0). The second map
DigOut

A
takes as input hybrid paths ξ with values

in X = Z × Y and returns as output a discrete-
time path γ with values in Z obtained from ξ by
simply projecting on to discrete time and discrete
values in Z.

The overall analog-to-digital conversion system is
a map AnDig

A
: IPath(R+

0
, Y ) ; (IPath(N, Z) ×

TT(N, R+

0 )), induced by the map A, and obtained
from the two components AnInA and DigOut

A

by a compound sequential composition operation.
The systems AnInA and DigOut

A
and AnDig

A

are each extension-preserving, non-anticipating,
prefix-closed, suffix-closed and monoidal.

6. COMPARISON WITH OTHER
INPUT-OUTPUT SYSTEM MODELS

Consider an input-output behaviour B ⊆ [L →
(U ×Y )]; we write (α, β) ∈ B where α ∈ [L → U ]
and β ∈ [L → Y ]. An input-output behaviour
B has free input if πU (B) = [L → U ]. The
output of B is non-anticipating of the input, if
for all (α′, β′), (α′′, β′′) ∈ B, and for all t ∈ L, if
α′|t = α′′|t, then there exists β ∈ [L → Y ] such
that β|t = β′|t and (α′′, β) ∈ B. The following
result establishes a basic correspondence, for in-
terval paths with time lines L = N and L = R

+

0
,

between these behavioural properties and the cor-
responding properties of reactive systems.

Theorem 6.1. Let the time line be either L = N

or L = R
+

0 and let Γ: IPathǫ(L, U) ; IPathǫ(L, Y )
be a time-homogeneous, ω-extendible, output-
time-unbounded, interval-path reactive system,
in which case, dom(MωΓ) ⊆ [L → U ] and
ran(MωΓ) ⊆ [L → Y ]. Further suppose that
B = MωΓ = {(α, β) | β ∈ (MωΓ)(α)}. Then:

(1.) B is a non-anticipating behaviour with free
input iff Γ non-anticipating with totally free input;

(2.) B is a time-invariant behaviour iff Γ is suffix-
closed/time-invariant.

7. CONCLUSION

We have developed a general formulation of
non-deterministic input-output reactive systems,
based on finite length paths, that is uniform for

discrete, continuous and hybrid time, and that
allows for the time line of output paths to differ
from that of input paths. The work is intended
as a first installment of a larger project on the
study of compositions of input-output reactive
systems by sequential, parallel and feedback con-
structions, with the aim of providing explicit set-
theoretic semantics for non-deterministic dynam-
ics and for time-translations within block-diagram
based modeling and description frameworks such
as Charon (Alur et al., 2000), among others.
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