
AN EVALUATION OF TWO RECENT
REACHABILITY ANALYSIS TOOLS FOR

HYBRID SYSTEMS

Ibtissem Ben Makhlouf, Stefan Kowalewski ∗

∗RWTH Aachen University, Chair ”Informatik 11” –
Embedded Software Laboratory,

Ahornstr. 55, 52074 Aachen, Germany

Abstract: The hybrid systems community is still struggling to provide practically
applicable verification tools. Recently, two new tools, PHAVer and Hsolver, were
introduced which promise to be a further step in this direction. We evaluate and
compare both tools with the help of several benchmark examples. The results show
that both have their strengths and weaknesses, and that there still is no all-purpose
reachability analysis tool for hybrid systems. Copyright © 2006 IFAC

Keywords: Hybrid systems, reachability analysis, Hsolver, PHAVer.

1. INTRODUCTION

Automatic verification of hybrid systems is still a
topic of research and far from being established
as a standard tool in industry, like, e.g., simula-
tion. To become so, reachability analysis, the core
procedure of hybrid systems verification, must be
made sufficiently efficient for models of real-world
systems, including large, complex and non-linear
dynamics.

The first publicly available reachability analysis
tool for hybrid systems was HyTech (Henzinger et
al., 1997; Henzinger et al., 2000), developed more
than a decade ago. It was intended to be a demo
implementation of theoretical results and not a
prototype of an engineering tool. Consequently,
numerical issues were largely neglected which lead
to overflow errors even for relatively simple ex-
amples. In the following years, however, HyTech
became the archetype for numerous attempts to
implement reachability tools with better practical
applicability, usually extending the basic HyTech
algorithm by abstraction techniques.

Recently, the research on reachability analysis of
hybrid systems got fresh momentum by the intro-

duction by two different tools, Hsolver (Ratschan
and She, 2005) and PHAVer (Frehse, 2005c). Both
tools build on well tried algorithms while intro-
ducing new methodical approaches at the same
time. And in both cases, the example computa-
tions which were presented in the corresponding
publications promised that a new level of practical
efficiency has finally been reached.

The aim of this paper is to evaluate the two
tools from an independent point of view. For this
purpose, we applied both tools to more than ten
benchmark examples with several modifications,
trying to fathom the boundaries of applicability.
An excerpt of the results is presented in the sequel.
We concentrate on the examples which revealed
qualitative differences rather than quantitative
performance differences. Some detailed data in-
cluding runtime measurements are provided.

The paper is organized as follows. In the next
section, we briefly introduce both tools. Section 3
is presenting the experimental results. Numerical
results are depicted to make it possible to compare
the analysis results to the ”real” behavior. Finally,
a comparison and some conclusions are given.

Preprints of the 2nd IFAC Conf. on Analysis and Design of Hybrid Systems (Alghero, Italy), 7-9 June 2006

377

2. HSOLVER AND PHAVER

Hsolver is a safety verification tool for non-linear
hybrid systems developed by Ratschan and She
(Ratschan and She, 2005). The tool is based on
interval arithmetics to delimit the trajectories in
a piecewise manner to a rectangular grid. The
method avoids explicit computation of continu-
ous reachability sets reducing, therefore, round-
ing errors drastically. To avoid the drawbacks of
this approach, namely vast over-approximations,
an abstraction refinement framework is developed
in which the abstract states are hyper-rectangles
in the continuous part of the state space. The
abstraction is refined using a splitting strategy,
which is optimized by using constraint program-
ming. The splitting method reduces information
from possibly incomplete constraint propagation
steps in order to avoid new splitting. Jump condi-
tions, initial states, and unsafe states are also de-
scribed by constraints. Moreover, a pruning func-
tion makes it possible to eliminate unreachable
sets avoiding inefficient repetitions.

The other tool is PHAVer (Polyhedral Hybrid Au-
tomation Verifyer) developed by Frehse (Frehse,
2005c) (Frehse, 2005b) for verifying safety of linear
hybrid automata 1 (LHA). PHAVer uses Hybrid
I/O-Automata with affine dynamics (Lynch et
al., 2003). Computations use convex polyhedra
as the basic data structure as it was already
done in HyTech (Henzinger et al., 1997; Henzinger
et al., 2000). The implementation is based on
the Parma Polyhedra Library (PPL) (Bagnara et
al., 2002). The PPL supports closed and non-
closed convex polyhedra and infinite precision
arithmetic.

Beginning with the initial state, the reachabil-
ity strategy of PHAVer computes reachable sets
by using refinement of locations when affine dy-
namics are over-approximated by LHA-dynamics.
The refinement can be adjusted by parameters.
To do so, the constraints are prioritized accord-
ing to the refinement parameters. The tool of-
fers the possibility to enforce other prioritization
criteria. For more details see (Frehse, 2005a).
Over-approximation using bounding boxes and
convex hull abstractions are also possible. The
user can combine the different types of over-
approximation and control the number of itera-
tions for each type with special parameters given
by the tools. PHAVer supports compositional and
assume-guarantee reasoning (Frehse et al., 2004).

2.1 Reachability analysis strategy of Hsolver

In Hsolver, a hybrid system is described by:

1 In the sense that the continuous dynamics in each
discrete location are linear.

• a set of modes s1, ..., sn each corresponding to
a different continuous behavior of the system,

• variables x1, ..., xk ranging over closed real
intervals I1, ..., Ik and

• constraints defining the flow in each mode,
the jump, the initial and safe conditions.

A hybrid system is then defined as a tuple
(Flow, Jump, Init, UnSafe) with:

• the constraint Flow ⊆ Φ× Rk in which Φ is
the state space {s1, ..., sn}× I1× ...× Ik, and
Rk represents {ẋ1, ..., ẋk},

• the constraint Jump ⊆ Φ × Φ, defined over
the variables x1, ..., xk of the start mode s
and the variables x′1, ..., x

′
k of the target mode

s′, and
• the constraints Init ⊆ Φ und UnSafe ⊆ Φ

describing the set of the initial and unsafe
states.

The original hybrid system described above will
be abstracted by a discrete system defined over a
new variable state space S.
A discrete system over S is defined as a tuple
(Trans, Init, UnSafe) where Trans ⊆ S × S,
Init ⊆ S and UnSafe ⊆ S are new constraints
deduced from original constraints via the defini-
tion of an abstraction relation between the origi-
nal and the abstracted system as follows:

Definition: An abstraction relation between a
hybrid system (Flow1, Jump1, Init1, UnSafe1)
and a discrete system (Trans2, Init2, UnSafe2)
over S is a relation α ⊆ Φ× S such that:

• for all q ∈ Φ, if there is a trajectory from an
element of Init1 to q according to Flow1

and Jump1, then for all qα with α(q, qα)
there is a trajectory from an element of
Init2 to qα according to trans2,

• for all q ∈ Init1, there is a qα ∈ Init2, with
α(q, qα) and

• for all q ∈ UnSafe1, if q is reachable from
Init1, then there is a qα ∈ UnSafe2, with
α(q, qα).

Hence, Hsolver computes for every hybrid system
with a description D an abstraction AbstractD(B)
over sets of abstract states B containing all el-
ements of the state space reachable from the
initial set such that all boxes corresponding to
the same mode are non-overlapping. The result-
ing abstracted system is refined, during the com-
putation, with another reduced abstracted sys-
tem under the condition that an abstraction re-
lation between the two systems exists, which pre-
serve the reachable states during the transforma-
tion. The refinement strategy is repeated until
a fixpoint is attained. Using strategies based on
constraint propagation programming (Mackworth
and Freud, 1985) parts of state space showing
not to be reachable are excluded during the ab-

378

straction process. For this purpose, a constraint
reachableB′(s′, z) is formulated expressing the
conditions under which a point in a box B is
reachable. Before that, the flow within a box B
and a mode s is described with the constraint
flowB(s, y, z). It expresses the fact that a point
y = (y1, ..., yk) ∈ B is reachable from a point
x = (x1, ..., xk) ∈ B via a flow in B and s.

The constraint reachableB′(s′, z) is defined as the
disjunction of three principle constraints:

• Constraints formulating the reachability from
the initial set initflowB(s, z) expressed for a
mode s, a box B and a point z ∈ B reachable
from the initial set via a flow in s and B.

• Constraints jumpflowB,B′(s, s′, z) describ-
ing the reachability from a jump between two
modes s and s′ corresponding to two boxes
B and B′ and a point z ∈ B′.

• Constraints boundaryflowB,B′(s′, z) express-
ing the reachability of a point z ∈ B′ from
a common point of neighboring boxes B and
B′ via a flow in B.

After the determination of the reachability con-
straint reachableB′(s′, z), the problem of reach-
ability is transformed in a constraint satisfac-
tion problem. It is solved by constraint propa-
gation programming, applying several techniques
for making the analysis more efficient like, e.g.,
pruning.

2.2 Reachability analysis strategy of PHAVer

PHAVer is a verification framework for linear hy-
brid systems and compositional reasoning. The
automata model differentiates between state, in-
put and output variables. The output can be
declared as the inputs for an other automa-
ton. A hybrid I/O-automaton (HIOA) in PHAVer
is a tuple H = (Loc, V arS , V arI , V arO, Lab,→
, Act, Inv, Init) where Loc, Lab, Act, Inv, and
Init are defined as usual, and where:

• V arS , V arI and V arO ⊆ V arS are finite
and disjoint sets of state, input and output
variables.

• →⊆ Loc × Lab × 2V (V ar)×V (V ar) × Loc is
a finite set of discrete transitions, where
V ar = V arS ∪ V arI and V (V ar) denotes
the set of evaluations over V ar. A transition
(l, a, µ, l′) ∈ → means l

a,µ−−→ l′.

PHAVer deals with I/O-automata with affine dy-
namics given for each location loc by a conjunction
of constraints of the form:

aT
i ẋ + âT

i x ./i bi, (1)

ai, âi ∈ Zn, ./i∈ {<,≤,=}, i = 1, ..., m.

Using linear programming, these constraints are
first overapproximated conservatively with linear
constraints of the form αT

i ẋ ./i βi, αi ∈ Zn, βi ∈
Z which are obtained using the result of an infi-
mum computation of (1) inside Inv(loc) denoted
(when it exits) with:

p\q = inf
x∈Inv(loc)

αT
i x, p, q ∈ Z.

The linear constraint on ẋ is then given by αi =
qai and βi = qbi − p.
This overapproximation introduces a loss of accu-
racy depending on the size of the location and
the angular spread of the derivative vectors in
the location. To improve the accuracy, locations
are recursively split along hyperplanes which pa-
rameters are adequately chosen from the user to
minimize the partitions. The splitting of a location
is stopped when a minimum size is attained. Oth-
erwise, the splitting process can include a refine-
ment procedure of a location controlled from the
user. The user provides a list of candidate normal
vectors ah,i of hyperplanes defined by equations
having this form aT

h x = bh and the minimum and
maximum slack 4min,h, 4max,h that the hyper-
planes will have in the refined location. The slack
is here defined by:

4(ah) = max
x∈Inv(loc)

aT
h x− min

x∈Inv(loc)
aT

h x

The candidate hyperplanes are prioritized accord-
ing to a user controlled list of criteria. For each
constraint of type aT x ./ b in a location loc a set of
evaluations included in the reachable states N of
the location are associated according to a chosen
criterium from the following list (Frehse, 2005c):

• Prioritize constraints according to their slack.
• Prioritize constraints that have reachable

states only on once side.
• Prioritize constraints according to the spread

of the derivatives where constraints are dis-
carded if a minimum spread is reached and
the slack is smaller than 4max,h.

• Prioritize constraints according to the deriva-
tive spread after the constraint is applied.

Moreover, the number of constraints during the
computation is reduced in order to save mem-
ory. To select the constraints to be eliminated,
PHAVer uses for instance an angle criterion for
which the negative cosine of the closest angle
between the normal vector of the ith constraint
and all others is measured and then compared.
Only a predefined number of constraints with the
greatest angles are retained. In addition, a proce-
dure for limiting the number of bits necessary to
represent a constraints is executed as soon as a
given threshold z is exceeded. A new constraint
αT

i x ./i βi including the original ith constraint
aT

i x ./i bi of a polyhedron is computed so that
|αi,j |, |βi| ≤ 2z+1 − 1. The procedure makes an

379

estimation of the scaling error f . It recomputes βi

using linear programming. If βi has more than z
bits, f will be decreased and the procedure starts
again.

3. EXPERIMENTAL RESULTS

3.1 Benchmarks

In order to assess the performance of the tools,
we applied them to benchmark examples from the
the literature, including examples from (Ratschan
and She, 2004). The computations were performed
on a PC with a Pentium IV processor at 3,06
GHz and 1 GB of memory. The obtained results
summarized in table 1 allow a first comparison
between the two tools. A brief description of the
studied examples is given here:
Example 1: The two tanks problem. It is a
nonlinear problem, formulated in (Ratschan and
She, 2005) as follows:

Flow :
(

s = 1 →
(

ḣ1
ḣ2

)
=

(
1−

√
h1√

h1 −
√

h2

)) ∧(
s =

2 →
(

ḣ1
ḣ2

)
=

(
1−

√
h1 − h2 + 1√

h1 − h2 + 1−
√

h2

))

Jump:(s = 1 ∧ 0.99 ≤ h2 ≤ 1) → (s′ = 2∧h′1 =
h1 ∧ h′2 = 1)
Init :s = 1 ∧ (h1 − 5.5)2 + (h2 − 0.25)2 ≤ 0.0625
Unsafe:(s = 1 ∧ (h1 − 4.5)2 + (h2 − 0.25)2 < 0.0625)
State space:(1, [4, 6]× [0, 1]) ∪ (2, [4, 6]× [1, 2])

Example 2: The navigation benchmark problem
is a linear problem from (Fehnker and Ivancic,
2004). An object at a position x = (x1, x2)T moves
within a 3 × 3 map with a velocity v determined
by the differential equation v̇ = A(v − vd), where

A=

(
−1.2 0.1
0.1 −1.2

)
and vd = (sin(i · π/4), cos(i ·

π/4))T is a desired velocity adopting different
values depending on the chosen map (i is equal
to the value in each cell of the map). We take two
different maps:

map1 =

[B 2 4
2 3 4
2 2 A

]
and map2 =

[B 2 4
2 2 4
1 1 A

]
.

A and B correspond to the reachable and forbid-
den cells. For map1, we choose x0 ∈ [0, 1]× [0, 1],
v0 ∈ [−0.1, 0.5] × [−0.05, 0.25] as initialization.
However, for map2 the computation begins with
x0 ∈ [0, 1] × [0, 1], v0 ∈ [−0.1, 0.5] × [−0.05, 0.25]
as initial sets.
Example 3: The 1-flow problem used in (Preußig
et al., 1998) is a simple example without jumps
described as follows:
Flow : ẋ1 = ẋ2 = ẋ3 = 1
Init : 0 ≤ x1 ≤ 2 ∧ 1 < x2 ≤ 2 ∧ 0 < x3 < 1
Unsafe: 0 ≤ x1 ≤ 2 ∧ 1 < x2 ≤ 2 ∧ 0 < x3 < 1
State space: [0, 2]× [0, 2]× [0, 4]

Example 4: The collision example from a part of
the car convoi control problem proposed in (Puri
and Varaiya, 1995). It has been transformed in
(Ratschan and She, 2004). The problem has no
jumps and can be described as follows:
Flow : ẋ1 = x3 − x2, ẋ2 = x4, −2 ≤ ẋ3 ≤ −0.5,
ẋ4 = −3 · x4 − 3 · (x2 − x3) + (x1 − x2 − 10)
Init : x1 = 1, x2 = 2, x3 = 2, x4 = −0.5
Unsafe: x1 ≤ 0
State space: [0, 4]× [0, 2]× [0, 2]× [−2,−0.5]
Another version of this problem denoted by con-
voi1 is also taken from (Ratschan and She, 2004).
The main difference is the dynamics of ẋ3 =
−4x1 + 3x2 − 3x3 + x4.
Example 5: A heating example of 3 rooms with
2 heaters from (Fehnker and Ivancic, 2004):

ẋ =

(−0.9 0.5 0
0.5 −1.3 0.5
0 0.5 −0.9

)
x +

(
0.4
0.3
0.4

)
u + diag(6, 7, 8)h

where x is the vector of temperatures, h is indi-
cating whether a heater is on or off and u = 4.
We performed computations with the minimal
temperature threshold equal to 14 and a space
state given by [14, 22]× [14, 22]× [14, 22].

3.2 Hsolver

Hsolver permits the verifications of nonlinear sys-
tem from the outset. Difficulties appear, how-
ever,when arithmetic operations different than
∗, +,, sin, cos, exp appear, as in the two tank ex-
ample which involves a sqrt operation. In this
case, we must transform the equations in order
to avoid this operation. The computation results
for the different examples are given in table 1.
We also present some graphical results of the two
tanks and the navigation benchmark examples,
in order to understand better the function of the
tools. For the two tanks example, in Fig. 1 we see
the pruned region in light grey boxes, the 10 boxes
corresponding to mode 1 are dark grey and the 12
boxes of mode 2 are medium grey. The trajectory
is obtained from a Matlab simulation. The figure
shows that the unsafe region (circle left) is in the
pruned region. This means, that this region was
already excluded from the reachable set at the
beginning of the computation which accelerates
the termination of the verification process, as we
expected. For the navigation benchmark, the com-
putation time for the two instances was very long
and the tool could not conclude about the safety in
both cases (resulting output ”safety unknown”).
The problem behind that is illustrated by Fig. 2.
It represent the different box decompositions in
the three modes of the systems together with one
trajectory from Matlab simulations. The issue is
that the whole state space needed to be examined
during the analysis without ever being able to

380

Hsolver PHAVer
Example refinement steps box recomputation # calling prune safety time(s) memory(KB) safety time memory

2-tanks 11 13 397 safe 0.33 1548 safe 0.11 1688
map1 362 511 509306 unsafe 2647.75 48048 safe 139.02 126608
map2 342 107 889110 unsafe 4457.7 46892 safe 22.14 54168
flow 1 0 2 safe 0.12 1136 safe 0 868

convoi 367 443 68675 safe 9462 7200 safe 0.10 148
convoi1 0 1 3 safe 0.31 6204 safe 0.11 1652
heating 142 191 469416 unsafe 638.76 37744 safe 0.41 5720

Table 1. Implementation results of the benchmark examples.

Fig. 1. Hsolver: two tanks problem, initial region: (x1 −
5.5)2 + (x2 − 0.25)2 < 0.065, unsafe region (x1 −
4.5)2 + (x2 − 0.25)2 < 0.065

Fig. 2. Hsolver:Navigation benchmark, map =
[B24, 234, 22A], x0 ∈ [2, 3] × [1, 2], v0 ∈ [−0.3, 0.3] ×
[−0.3, 0]

exclude safely the unsafe region. Such a behavior
can not be predicted by a standard user.

3.3 PHAVer

Nonlinear problems must be linearized to be ana-
lyzable by PHAVer. For the two tanks example, we
use the Jacobi method to linearize the system for
each box using the center of the boxes as reference
point. Of course, this is not an abstraction, and
any reachability results for the linearized system
will be inconclusive with respect to safety. How-
ever, it allows us to gather data for the compar-
ison. We chose two different unsafe sets for the
verification. From Matlab simulations we know
that the system is safe for the first case and unsafe
for the second case. The results of our verification
with PHAVer confirm these findings. Fig.3 shows
the results for the unsafe case.

The compositional feature of PHAVer is illus-
trated with the navigation benchmark examples.
Here, the automaton is decomposed in two au-
tomata, one for the position and another for the

Fig. 3. PHAVer: Two tanks problem, initial region
[5.25, 5.75]×[0, 0.5], unsafe region [4.25, 4.75]×[0.5, 1]

Fig. 4. PHAVer: Navigation benchmark, map =
[B24, 224, 11A], x0 ∈ [0, 1] × [0, 1], v0 ∈ [−0.1, 0.5] ×
[−0.05, 0.25]

velocity. Both automata are synchronized with
global labels. The refinement is controlled with
the factor d1min = d2min = 0.25 and d1max =
d2max = ∞. For map1 with the default polyhedra
abstraction, the computation time of the verifica-
tion lies in acceptable range. Using this method
for the second map, we get a very long computa-
tion time. For such cases PHAVer offers a further
feature which permits the combination of different
types of abstractions. In our example, we chose
a convex hull abstraction during 20 iterations
followed by the default abstraction with bound-
ing box iterations until the 39th iteration. We
took two different maps: map1 = [B24, 234, 22A]
and map2 = [B24, 224, 11A]. For the second map
the termination is accelerated by the convex hull
abstractions for the 20 first iterations, then the
processing is switched to normal reachability with
bounding box iterations until the 39th iteration.
The results for the second map are shown in Fig.
4. The examples are proved to be safe. The figures
show the polyhedra decomposition of a restricted
region of the position state space. The other exam-
ples have been implemented as simple automata
because the decomposition is not necessary in

381

this case. The corresponding results are shown in
Table 1.

3.4 Comparison of the results of both tools

Comparing the time and the memory require-
ments in table 1, we can conclude that for all our
examples PHAVer is faster than Hsolver. From the
memory consumption point of view, we note that,
against our expectation, the amount of memory
used by Hsolver in examples 3, 2, 4 and 5 is
greater than that used by PHAVer. When the
safety is unknown, the verification analysis by
Hsolver lasts a long time. In the case of non linear
systems, we are not able to conclude about the
safety of this type of systems because we have no
estimation of the linearization error. In summary,
Hsolver is an efficient and fast tool, as long as
its results are conclusive. In these cases, it is well
applicable to non-linear hybrid systems. However,
the navigation and heating benchmarks show that
the tool still has some limitation. On the other
hand, Phaver is an efficient tool for verifying linear
hybrid systems. It offers possibilities to control
and choose refinement and over-approximation
strategies used during computation with a number
of functions, commands and parameters. Com-
plicated hybrid systems could be decomposed or
simplified and treated by Compositional Reason-
ing provided by the tool. This could be used to
verify non-linear systems, if it would be possible
to abstract the original problem by linear hybrid
automata. Otherwise, we have to linearize the sys-
tem and take the linearization error into account.
Finally, we could not confirm the conjecture that
the use of polyhedra and refinement steps will
increase strongly the necessary amount of memory
space.

4. CONCLUSIONS

Not quite surprisingly, the application results
show that both tools have their strengths and
weaknesses. Hsolver is extremely fast for examples
where safety can be proven or disproved, but it
shows excessive computation times when the re-
sults are inconclusive. Since it is able to treat non-
linear dynamics directly, it has a clear advantage
over PHAVer in this respect since the latter is
restricted to affine hybrid systems. PHAVer, on
the other side, provided more exact results in the
sense that it was able to prove safety correctly for
examples for which Hsolver gave the result ’safety
unknown’.

Both tools represent a good step in the direc-
tion of making reachability analysis applicable
for practioneers. However, considering that the
benchmarks still were more academic than real

world examples and that, nevertheless, there were
examples for which computation times exceeded
hours or the result was unnecessarily inconclusive,
it seems fair to say that the goal has not been
reached yet.

REFERENCES

Bagnara, R., E. Ricci, E. Zaffanella and P.M.
Hill (2002). Possibly not closed convex poly-
hedra and the parma polyhedra library. In:
Static Analysis: Proc. Int. Symp., LNCS
2477. Springer. pp. 213–229.

Fehnker, A. and F. Ivancic (2004). Benchmarks
for hybrid systems verification. In: HSCC’04,
LNCS 2993. Springer. pp. 326–341.

Frehse, G. (2005a). Compositional Verification of
Hybrid Systems using Simulation Relations.
PhD thesis. Cornell University.

Frehse, G. (2005b). Phaver. http://www.andrew.
cmu.edu/˜gfrehse. Software package.

Frehse, G. (2005c). PHAVer: Algorithmic verifi-
cation of hybrid systems past HyTech. In:
HSCC, LNCS 3414. Springer. pp. 258–273.

Frehse, G., Z. Han and B.H. Krogh (2004).
Assume-guarantee reasoning for hybrid I/O-
automata by over-approximation of continu-
ous interaction. In: Proc. CDC’04. Bahamas.

Henzinger, T.A., B. Horowitz, R. Majumdar and
H. Wong-Toi (2000). Beyond HyTech: Hy-
brid systems analysis using interval numer-
ical methods. In: HSCC’00, LNCS 1790.
Springer. pp. 130–144.

Henzinger, T.A., P.S. Ho and H. Wong-Toi (1997).
Hytech: A model checker for hybrid systems.
Soft. Tools Techn. Transf. 1(1,2), 110–122.

Lynch, N., R. Segala and F. Vaandrager
(2003). Hybrid i/o automata. Inf. Comput.
185(1), 105–157.

Mackworth, A. K. and E.C. Freud (1985). The
complexity of some polynomial network con-
sistency algorithms for constraint satisfaction
problems. Artificial Intelligence 25, 65–74.

Preußig, J., S. Kowalewski, H. Wong-Toi and
T.A. Henzinger (1998). An algorithm for
the approximative analysis of rectangular au-
tomata. In: Proc. FTRTFT’98, LNCS 1486.
Springer. pp. 228–240.

Puri, A. and P. Varaiya (1995). Driving safely in
smart cars. In: Proc. of the 1995 American
Control Conference. pp. 3597–3599.

Ratschan, S. and Z. She (2004). Hsolver. http://
www.mpi-sb.mpg.de/ratschan/hsolver. Soft-
ware package.

Ratschan, S. and Z. She (2005). Safety verifica-
tion of hybrid systems by constraint propaga-
tion based abstraction refinement. In: HSCC
2005, LNCS 3414. Springer. pp. 573–589.

382

