Preprints of the 2nd IFAC Conf. on Analysis and Design of Hybrid Systems (Alghero, Italy), 7-9 June 2006

VERIFICATION-INTEGRATED
FALSIFICATION OF NON-DETERMINISTIC
HYBRID SYSTEMS

Stefan Ratschan * Jan-Georg Smaus **

* Max-Planck-Institut fir Informatik, Saarbricken,
Germany
** Albert- Ludwigs- Universitat Freiburg, Germany

Abstract: This paper provides a method for coupling safety verification algorithms
for non-deterministic (and, in general, non-linear) hybrid systems with the ability
of finding concrete counterexamples, i.e., with falsification. Such a tight integration
of verification with falsification has the advantage that verification attempts guide
the search for concrete counterexamples, and endless attempts to verify unsafe
systems or to find counterexamples in safe systems can often be avoided.

Copyright © 2006 IFAC

Keywords: hybrid systems, verification, falsification, simulation, testing

1. INTRODUCTION

For debugging designs of embedded systems, it is
essential to be able to falsify hybrid systems, i.e.,
to find concrete counterexamples to a given prop-
erty (e.g., safety). This is usually done by checking
the results of simulation runs. However, such an
approach has the disadvantage that one might
continue looking for counterexamples although
there are none, since the system fulfills the sought
property. Also, simulation usually requires con-
siderable user intelligence for avoiding redundant
runs, determining the necessary time horizon, and
canceling obviously useless simulation runs. More-
over, for systems with non-deterministic evolu-
tion, even from a given starting point there are un-
countably many different trajectories that might
be a counterexample. Hence it usually does not
suffice to simulate with a fixed instantiation of
the non-deterministic values in the specification

1 This work was partly supported by the German Re-
search Council (DFG) as part of the Transregional Col-
laborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS). See
www.avacs.org for more information.

371

of the given hybrid system, since these values
might change over time (e.g., due to changes of
the system input or changes in the environment).

In this paper, we consider non-deterministic sys-
tems, and take a step towards avoiding these
problems by an approach that is integrated into
verification, and that solves for counterexamples
instead of blindly searching for them in the space
of all possibilities opened by non-determinism.

The verification we have in mind is based on a
finite abstraction of the infinite state space of a
hybrid system. The safety of the abstract system
implies the safety of the original system, and by
successively refining the abstraction, it is often
(but not always, due to resource and decidability
limitations) possible to find an abstraction that is
safe, provided the original system is safe. Thus,
by integrating the method presented here into
such an abstraction refinement loop, on the one
hand we avoid endless refinement for systems
that have an unsafe trajectory, on the other hand
we avoid endless search for an unsafe trajectory
for safe systems. Moreover, by using information
computed by the verification engine, the approach

FRANCO
Text Box
Copyright © 2006 IFAC

can often avoid trying to find counterexamples in
parts of the state space that do not lead to an
unsafe state. Furthermore, by following the state-
space partition of the verification engine instead
of the usual time partitioning of simulation, the
approach avoids redundant recomputations for
the same part of the state space, and is not
restricted to a certain time horizon.

By non-determinism, we refer to systems where
the flow of the real variables within one control
mode is not uniquely determined, but rather, this
flow has a whole set of evolution possibilities at
any time point. In this case, there is hope that a
flow described by piecewise polynomial functions
fulfills the (in general, non-linear) flow conditions.
This observation is the basis of our method. We
formalize constraints that imply the existence of
a trajectory leading from an initial to an unsafe
state, and solve these constraints, arriving at
connection points between the pieces.

The limitation of our method to non-deterministic
systems can also be interpreted as follows: given
a system that is deterministic (the flows are
uniquely determined), one could relax the flow
constraints to a certain extent to make the system
non-deterministic, and then apply our method. If
an error path is then found, one can argue that
the original system is very close to an unsafe one.
From a practical perspective, similar conclusions
arise in both cases: one could either say, to be on
the safe side, one should assume that systems be-
have non-deterministically within a certain range,
or, to be on the safe side, one should reject systems
that are close to an unsafe one.

2. METHOD

We assume that the hybrid system is given using
a tuple of families of constraints

(Initmens, Flowmenr, Jump,, mrenrs Unsafe,,car),

where M denotes the set of discrete modes, Init,,
specifies the set of initial states in mode m, the
constraint Flow,, the possible continuous flows in
mode m, the constraint Jump,, ,,, the possible
discontinuous jumps from mode m to mode m’
and Unsafe,, the set of unsafe states in mode
m. These constraints may contain elements of a
finite set X of continuous state variables. The
flow constraints may in addition contain dotted
versions of the continuous state variables that
denote their differentiation, and the jump con-
straints may in addition contain primed versions
of these variables that denote their value after the
jump. As examples, consider the flow constraint
sine —1 < Az < sinz + 1, and the jump
constraint &’ = x 4+ 1 which denotes the fact that
the jump increases the variable = by one.

372

The systems we consider are non-deterministic in
the sense that the flow constraints are typically
inequalities, as in the example just given, rather
than equations. We do not need to define precisely
when a system is (non-)deterministic or give some
measure for the degree of non-determinism. It
suffices to note that the more non-deterministic
the system is, the more likely it is that our method
will find an unsafe trajectory.

Concerning the verification, we assume an ab-
straction refinement algorithm (Clarke et al. 2003,
Alur et al. 2003, Ratschan and She 2005) for
verifying safety properties of hybrid systems. Such
methods decompose the state space into pieces,
and based on that, construct a finite system (the
abstraction) whose safety implies the safety of
the original (concrete) system. The abstraction
consists of abstract states, which are pairs con-
sisting of a mode (i.e., an element of M) and
a subset of the continuous state space (i.e., a
subset of RIXI). How these sets are represented
depends on the verification technique, e.g., they
could be polyhedra or hyper-rectangles—however,
the material of this section is independent of the
chosen representation.

Given an abstract counterexample consisting of a
sequence of abstract states (mg, Bo), - . ., (mg, Bg)
such that (mg, Bg) is initial and (myg, By) is un-
safe in the abstraction, we try to find points
(mo, xg), . .., (mg,xk) such that x; € B; for all
i € {0,...,k}, and such that there is a piece-
wise polynomial trajectory of the hybrid system
that follows (mo, xg), . .., (Mmk, k), with (mg, o)
initial, and (my,x) unsafe. By piecewise poly-
nomial, we mean that the trajectory within one
mode is a continuous curve composed of (in gen-
eral) several polynomial pieces.

So we try to find a solution to the constraint

A

x; € Bl-) A Initp, (o) A

i€{l,...,k}
/\ (Jumpmi_l)mi (Ti_1, i)V
ie{l,...k}
(mi—1 = mi A flow,,, (i—1,2:))) A

Unsafe,,, () (1)
which we call the concretization constraint. This
uses the constraints defining the given hybrid sys-
tem (the ones with uppercase first letter), except
the constraint defining the flow, since it contains
the differentiation operator, which we would like
to avoid. Since we assume that our input system
is non-deterministic, the set of trajectories from
x,—1 to x; fulfilling Flow,,, will—in general—
consist of a central trajectory together with a cer-
tain neighborhood around it. Hence, one can find
a polynomial approximation of the central trajec-
tory that also fulfills Flow,,,. If the neighborhood

is sufficiently large or «;_1 and x; sufficiently
close, the polynomial trajectory might even be
linear.

So we assume a polynomial function ¢, that gives
us for a given time point in an interval [0, 7] the
corresponding value of the trajectory. Here, a is a
vector of parameters (real numbers) that specifies
¢q in some way that we deliberately leave open at
this point. We will later be more specific.

Hence we define flow,,(z,y) =

Ja3r > 0[traj(x, Yy, da,T) A constry, (¢a,)] .
(2)

Here traj(x,y, pq,) models the fact that func-
tion ¢, leads to a trajectory of length 7 from
x to y, and constry,(¢q,T) models the fact that
the trajectory ¢4 fulfills the differential constraint
Flow,, valid in mode m in the time interval [0, 7].

So we define traj(x,y, g, T)

¢a(0) =xA ¢a(7—) =Y,

and constr,, (¢a,) =

vt € [0, 7] [Flown(6a(t), da()] . (3)
where Flow,, is the constraint defining the flow of
the given hybrid system in mode m.

Now observe that we have to solve the constraint
flow,,(x,y) many times for a given input sys-
tem, since it occurs k times in (1), and since
(1) has to be solved over and over again in the
verification/falsification loop sketched in the in-
troduction. Hence we would like to arrive at a
formulation of flow,,(x,y) for which it is as easy
as possible to check whether it has a solution.

Observe that flow,, (x,y) contains several quanti-
fiers. Assume that we have a given, fixed input sys-
tem containing only polynomial constraints with
a certain constraint Flow,, defining the possible
flow in mode m, and a class of functions ¢, con-
taining only polynomials, in which we search for
concrete trajectories. Then, due to the classical
result (Tarski 1951) that the first-order theory
of the real numbers with addition and multipli-
cation admits quantifier elimination, it is always
effectively possible to find an equivalent formula
without quantifiers.

In spite of the fact that quantifier-free constraints
are easier to check than constraints with quan-
tifiers, we do not opt for automatic quantifier
elimination since it can be very costly and lead to
a big increase in formula size. Instead, we will try
to identify problem classes corresponding to spe-
cial cases for these constraints for which manual
quantifier elimination will yield simple and useful
results.

373

An especially important class is the class where
¢q is linear, ie., ¢q,.a,(t) = a1t + ag, where
a; € R‘X‘, ap € RIXT,

So we have: traj(z, Y, a1 ,a0,T) =

Pas,a0(0)

Qao

TN Paya0(T) =Yy =
x N a1T+ag =Y,

(4)

and constrm (ba;,a0,T) =

vt € [0, 7] [Flowm (a1t + ag, a1)] (5)
Now we can solve (4) for ag and a1, and substitute
the resulting terms in (5) which thus becomes

=l

vt € [0, 7] [Flowm(ut +ax,
T

and (2) becomes

Ir > 0Vt € [0, 7] [Flowm(y A x,
T

=l

We call Flow convez if for every vector ¢ € R2XI,
and vector d € R2XI if Flow(c) and Flow(d)
hold, then for every A € [0, 1], also Flow(Ae+ (1—
A)d) holds.

In general, flow constraints of the form Flow(z, &) =
Az +b <& < Az +b, where A, A are a | X| x | X|-
matrices, and b, b are vectors in RIXI, are convex.
This follows from the trivial arithmetic facts that
e < ¢’ implies Ae < A¢/, for every A > 0, and that
e1 < e} Ney < e} implies e; + ey < €] + €.

Now if ¢4 is a linear function and Flow,, is
convex, then (3) is equivalent to

Flowm((ba(o)v ¢a<0)) A Flowm((yba(T)v q;a(T)),

i.e., the universal quantification can be replaced
by a conjunction referring to the endpoints of the
quantified interval. Note that just convexity of
Flow,, or linearity of ¢4, alone are not sufficient.

Thus (6) can be simplified to

—

Ir > 0 | Flow,, (x, Y) A Flow, (y, Y

(7)

Now we assume, in addition to the linearity of ¢,

that Flow,, is of the form F(z) < & < F(z). So

(7), i.e. (2), becomes

F(z) < 2=% < F(a) A F(y)
T

<

that is
TF(x) <y—x < 7F(x)ATF(y) <y—x < 7F(y)

If we again take the case F(z) = Az + b, I'(z)
Ax + b, we get

TArx+b < y—x < TZas—i—E/\TAy—i—Q <y—x < TZy—i—E

that is

:B—i—TA:B—i—QSyS(L'—‘rTZ(L'—‘rE/\
y-tAy+b<z<y-rtAy+b

and equivalently

(I+7A)z+b<y<(I+71A)x+DbA
(I-7A)y+b<az<(I-7A)y+b

One might want to derive special methods for
this specific constraint, however this is beyond
the scope of the current paper. Considering the
concretization constraint (1) and its special forms
shown above, we know: For a given abstract coun-
terexample, if there is a solution to the corre-
sponding concretization constraint, then there is a
trajectory from an initial to an unsafe state follow-
ing this abstract counterexample, i.e., a concrete
counterexample. We will show how to solve the
concretization constraint in the next section.

3. CONSTRAINT SOLVING

We only consider cases where the universal quanti-
fier of (3) has been eliminated (due to convexity),
and where ¢, is linear (although Flow,,, while
convex, might still be non-linear). Then we are left
with (7) whose quantifiers are only existential. For
finding solutions, it suffices to drop the existential
quantifiers, and finding a solution in all variables,
including the ones that were existentially quanti-
fied before.

One could solve the concretization constraint us-
ing numerical local optimization techniques. How-
ever, these need good starting points to be able to
find a solution. For this we use interval constraint
propagation techniques (Davis 1987, Cleary 1987).
These can, given an interval for each variable
in a constraint, prune these intervals to smaller
ones without losing any solution of the constraint.
After constraint propagation we can use the mid-
points of the resulting intervals as starting points
for local optimization.

The most basic interval constraint propagation
method decomposes all atomic constraints (i.e.,
constraints of the form ¢ > 0 or t = 0, where ¢
is a term) into conjunctions of so-called primitive
constraints (i.e., constraints such as z + y = z,
xy = z, z € [a,a], or z > 0, where z, y, z
are variables) by introducing additional auxiliary
variables (e.g., decomposing z + siny > 0 to
siny = v; Az +v; = vg Avg > 0). Then it applies
interval arithmetic based algorithms (Hickey et
al. 1998) for pruning the intervals correspond-
ing to the variables occurring in the primitive
constraints to smaller ones that still contain the
solution set of these primitive constraints. This is
done until a fixpoint is reached.

Usually constraint propagation can only compute
an overapproximation of the exact bounds on the
solution set of constraints (this is also known as
the dependency problem of interval arithmetic).

374

For example, in the case x +y =0Ax —y =0
and a starting interval [—1,1] for both x and
y, these intervals cannot be pruned, although
there is only one solution—the origin. Still, for
certain cases (e.g., for constraints in which no
variable occurs more than once), the result of
constraint propagation will be tight. Hence, in this
case, if constraint propagation yields non-empty
intervals, the constraint has a solution, and we do
not need numerical local optimization at all.

However, also in our application interval con-
straint propagation is not necessarily tight: As-
sume a 2-dimensional system with just one mode
m, whose flow constraint Flow,, is given by —x1 —
1 <2 <—21+1A2Z; =1, and assume interval
vectors = ([0,0],[0,0]) and y = ([-5, 5], [5, 5])-
Then propagation of (7) wrt. the second con-
junct of Flow,, will result in the interval 7 €
[5,5]. Further propagation will yield the interval
[—1.25,1.25] for the first component of y. How-
ever, computation of the explicit solution of the
borderline cases of Flow,, shows that this is an
overestimation of approximately 25%. For exam-
ple, for y = (1.25,5), the trajectory would have
the slope (0.25,1), and these values do not satisfy
Flow,,. The problem comes from the fact that
the slope (0.25,1) satisfies Flow,, in combination
with another point within the computed bounds,
namely the point y = (—1.25,5). However, due to
the enclosure of variables in intervals, the precise
depency of specific values for y and a specific slope
of the trajectory is lost.

4. IMPLEMENTATION AND EXAMPLES

We integrated a prototype implementation of the
method into the verification engine HSOLVER
(Ratschan and She 2005, Ratschan and She 2004),
which does abstraction refinement by incremen-
tally refining a decomposition of the state space
into hyper-rectangles, i.e., by bisecting hyper-
rectangles. After each refinement step we apply
our method to the current abstraction.

However, this abstraction might have a huge num-
ber of abstract counterexamples to check. For
avoiding this, we observe that many of them share
the same sub-sequence (a fragment); if there is no
trajectory through a given fragment, then there
is also no trajectory through any of the abstract
counterexamples containing the fragment. Hence
we also check fragments, using a version of the
concretization constraint that does not contain
the first line (specifying an initial state) or last line
(specifying an unsafe state), if the corresponding
sequence of abstract states does not start with an
initial state, or end in an unsafe state, respectively.

In the current version, we produce fragments by
recursively transversing the abstraction from ini-

tial to unsafe states and checking the correspond-
ing fragments. If the given fragment cannot be
concretized we backtrack, refine the abstraction,
and avoid checking the abstract counterexamples
containing this fragment.

The current prototype does not yet consider
jumps, and instead of doing numerical local op-
timization (which would be difficult to inte-
grate due to the constraint representation used
by HSOLVER) to find a solution to the con-
cretization constraint, it simply iterates taking
the midpoint of some interval enclosing the so-
lution set and doing interval constraint propaga-
tion using the solver RSOLVER (http://rsolver.
sourceforge.net). In lucky cases this already
results in a solution. Since constraint propagation
does not enclose the solution set closely, also the
unlucky case that this midpoint is not a solution
happens quite often. This would make numerical
optimization necessary. However, the fact that al-
ready such a prototype can solve several examples
shows the strength of the method.

We tried the following examples:

Example 1: A very simple example where trajec-
tories follow circles around the origin:

o —1<7; <x2+1
—r1—1<a < -z +1

The set of initial states is given by z1 < 0, x5 > 2,
the set of unsafe states by x1 > 2,25 < —2.5, and
the state space [—4,4] x [—4,4]. The fact that a
counterexample has to flow around a half-circle
makes this example non-trivial.

After 10 bisections of the state space, in negli-
gible time, the method finds the counterexample
(0,3),(2,2),(2,2),(2.959,0), (2.322, —2), (2, —2.57).
The repeated point stems from two different,
neighboring abstract states.

Example 2: A non-deterministic version of an
example from (Kapinski et al. 2003):

T14+3rs—1< 21 <x1+4+322+1
T1—r2—1< a2 <z —22+1

The set of initial states is given by x; < —3, the
set of unsafe states by 1 > 1,25 > 0, and the
state space [—4,4] x [—4,4]. After 75 bisections,
in a few seconds, the method finds the counterex-
ample (—3.5,3.5), (—2.75,2.75), (—2.25,2.288),
(—1.75,1.686), (—1.25,1.355), (—0.5,1), (—0.5,1),
(=0.5,1), (0.25,0.464), (1,0.440).

375

e

Example 3: A non-deterministic version of an-
other example from (Kapinski et al. 2003):

To—15<21 <224+ 1.5
—8r1 —1.5< 2y < —-8x1+1.5
—4.%3 —1.5 S T4 § —4(E3 + 1.5

The set of initial states is given by #2 + 23 + 22 +
22 < 4 the set of unsafe states by z? + 22 +
23 + 23 > 9, and the state space by [—4,4] x
[—4,4] x [—4,4] x [—4,4]. After 16 bisections,
but a few minutes of computation, the method
finds the counterexample (2,0,0,0), (2,0,0,0),
(1.792, —2.64, —0.155, —0.155).

5. RELATED WORK

Apart from manual simulation using accord-
ing tools (Lee and Zheng 2005, and references
therein), the main approach for falsifying safety
of dynamical systems is bounded model check-
ing (BMC). This approach is well developed for
discrete systems (Biere et al. 1999), but only
lately receives attention in the hybrid systems
cases (Frénzle and Herde 2004, Abrahdm et al.
2005). However, the current approaches are lim-
ited to dynamics formulated by linear inequalities
(i.e., the solution of constant differential inclu-
sions), and there is no systematic way of using
bounded model checking for obtaining concrete
counterexamples for hybrid systems whose dy-
namics is given by more interesting (e.g., lin-
ear) differential (in)equations. Moreover, BMC
might redundantly compute similar information
for the same part of the start space, and explores
branches that might never lead to an unsafe state.
We avoid this by taking advantage of the informa-
tion generated in the verification algorithm.

For linear discrete-time systems with input, an-
other approach (Kapinski et al. 2003) exhaustively
simulates the system using a time and state dis-
cretization of the input, and tries to avoid re-
dundant computation by merging nearby trajec-
tories. Our approach avoids time discretization
by searching for a trajectory between two given
points in the state space that may be of un-
bounded length in time.

Bhatia and Frazzoli (2004) adapt techniques from
robotic motion planning to compute an under-

approximation of the set of trajectories of a given
hybrid system. Prajna and Rantzer (2005) show
that—in analogy to Lyanpunov functions—the
existence of certain functions implies the reach-
ability of given sets in (non-linear) ODEs. Such
functions can be computed using sum-of-squares
(SOS) tools (S. Prajna 2002).

Tools for counterexample guided abstraction re-
finement based on flow pipe computation (Clarke
et al. 2003) may terminate with a concrete coun-
terexample. They can deal with non-determinism
only in the form of parametric systems, where
different values for these parameters are tried to
search for trajectories that happen to be coun-
terexamples. This fixes the parameter to a certain
value between switches. In contrast to that, our
approach the trajectory can take any solution
of the differential constraint, also solutions that
might correspond to inputs or disturbances that
change between switches.

6. CONCLUSION

We provided a first version of a method for cou-
pling hybrid systems verification algorithms with
the ability to find concrete counterexamples for
non-deterministic hybrid systems, i.e., with falsifi-
cation. The advantage of the method is that it uses
information from system abstractions computed
by the verification algorithm to guide the search
for a counterexample.

In future work we will provide an efficient imple-
mentation of the method based on local optimiza-
tion, we will try to come up with special, efficient
constraint solving algorithms for the special cases
of the concretization constraint that we have iden-
tified in this paper, we will avoid a full re-check
of all the counterexamples after each refinement
step by re-using information from earlier checks,
and we will provide efficient strategies for the
order in which the abstract counterexamples (and
their fragments) should be checked. Moreover, we
will work on similar methods for hybrid systems
without non-determinism.

REFERENCES

Abrahém, E., B. Becker, F. Klaedtke and M. Stef-
fen (2005). Optimizing bounded model check-
ing for linear hybrid systems. In: VMCAI
(R. Cousot, Ed.). Vol. 396-412 of LNCS.
Springer. pp. 396-412.

Alur, R., T. Dang and F. Ivanci¢ (2003).
Counter-example guided predicate abstrac-
tion of hybrid systems. In: TACAS (H. Gar-
avel and J. Hatcliff, Eds.). Vol. 2619 of LNCS.
Springer. pp. 208-223.

376

Bhatia, A. and E. Frazzoli (2004). Incremental
search methods for reachability analysis of
continuous and hybrid systems. In: HSCC’04
(Rajeev Alur and George J. Pappas, Eds.).
number 2993 In: LNCS. Springer.

Biere, A., A. Cimatti, E. M. Clarke and Y. Zhu
(1999). Symbolic model checking without
BDDs. In: TACAS ’99. Springer. pp. 193-207.

Clarke, E., A. Fehnker, Z. Han, B. Krogh,
J. Ouaknine, O. Stursberg and M. Theobald
(2003). Abstraction and counterexample-
guided refinement in model checking of hy-
brid systems. Int. Journal of Foundations of
Comp. Science 14(4), 583-604.

Cleary, J. G. (1987). Logical arithmetic. Future
Computing Systems 2(2), 125-149.

Davis, E. (1987). Constraint propagation with
interval labels. Artif. Intell. 32(3), 281-331.

Frianzle, M. and C. Herde (2004). Efficient proof
engines for bounded model checking of hy-
brid systems. In: FMICS 04, Electr. Notes in
Theor. Comp. Sc. (ENTCS). Elsevier.

Hickey, T. J., M. H. van Emden and H. Wu (1998).
A unified framework for interval constraint
and interval arithmetic. In: CP’98 (M. Ma-
her and J.F. Puget, Eds.). number 1520 In:
LNCS. Springer. pp. 250-264.

Kapinski, J., B. H. Krogh, O. Maler and O. Sturs-
berg (2003). On systematic simulation of
open continuous systems. In: HSCC’03 (Oded
Maler and Amir Pnueli, Eds.). Vol. 2623 of
LNCS. Springer.

Lee, E. A. and H. Zheng (2005). Operational
semantics of hybrid systems. In: Morari and
Thiele (2005).

Morari, M. and Thiele, L., Eds. (2005). Hybrid
Systems: Computation and Control. Vol. 3414
of LNCS. Springer.

Prajna, S. and A. Rantzer (2005). Primal-dual
tests for safety and reachability. In: Morari
and Thiele (2005).

Ratschan, Stefan and Zhikun She (2004).
HSOLVER. http://hsolver.sourceforge.
net. Software package.

Ratschan, Stefan and Zhikun She (2005). Safety
verification of hybrid systems by constraint
propagation based abstraction refinement. In:
Morari and Thiele (2005).

S. Prajna, A. Papachristodoulou, P. A. Parrilo.
(2002). Introducing SOSTOOLS: A general
purpose sum of squares programming solver..
In: CDC"02.

Tarski, A. (1951). A Decision Method for Elemen-
tary Algebra and Geometry. Univ. of Califor-
nia Press. Berkeley.

