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Abstract: The results generated over the past few years on the formal verification of both 
Discrete Event Systems (DES) and Hybrid Dynamic Systems (HDS) are quite substantial, 
especially as regards the controller's properties of liveness and safety. In this paper, we 
will study the range of possibilities offered using the model-checking techniques in order 
to evaluate DES performances (in terms of quality of service provided by the automated 
system). This task calls for proceeding with a model-based approach that couples a hybrid 
model of the plant with a timed discrete model of the controller. We will also show, using 
a basic example, that by parameterizing the hybrid process model, the model-checker may 
then be employed to evaluate the robustness of the discrete control to perturbations 
encountered by the plant. Copyright © 2006 IFAC 
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1. INTRODUCTION  

 
A physical system is not, in most cases, intrinsically 
either purely discrete or purely continuous; instead, 
it's the abstraction the control engineer undertakes to 
ensure automation specification is being met that 
lends one distinction or the other. In the area of 
manufacturing systems for example, many processes 
have mobility axes that enable products to circulate, 
establish their position, etc.; consequently, some of 
the major physical variables controlled are either 
displacements or speeds. Depending not only on the 
level of quality to be guaranteed for these controlled 
variables, but also on the aggressiveness or 
variability in the external environment (e.g. type and 
importance of perturbations, parameter variation 
interval for the law of movement) and on the relative 
weight of economic constraints, the control engineer 
is required to choose between a servo control or a 
discrete control for each of these axes. Such 
automation-related choices will yield the physical 
variables to be observed and controlled by the 
controller, with either continuous or discrete control 
abstraction. Once the requisite displacement axis 
positioning quality has been achieved and provided 
that the perturbations encountered remain tolerable, 

the control engineer will then select a discrete control 
for obvious cost reduction reasons. This discrete 
displacement control, despite often being able to 
accommodate mobile positioning quality 
requirements, still constitutes an abstraction, and as 
such necessarily a simplification of the associated 
physical variables. The logic control of a linear 
displacement between two extreme positions, 
observed by means of two limit switch sensors, 
clearly does not enable ascertaining the precise 
position of the mobile, nor the time elapsed to 
complete this displacement. 
Satisfying industrial system dependability 
requirements often necessitates conducting offline 
analyses, such as formal verification, before placing 
the automated system into operation (for further 
information on this topic, see the standard IEC 61508 
entitled “ Functional safety of electrical / electronic / 
programmable electronic safety-related systems ”). 
These verifications, which are now frequently 
performed by means of model-checking 
(MacMillan, 1993), may be practiced by electing to 
incorporate or not a plant model. 
In this paper, our efforts have focused on checking 
systems composed of a discrete controller coupled 
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with a continuous (or partially-continuous) physical 
process whose entire set of observed and controlled 
variables constitute discrete abstractions of physical 
variables. To proceed, we will make use of model-
checking techniques by coupling the discrete 
controller model with a hybrid plant model; this set-
up will demonstrate that beyond the liveness and 
safety properties, it is indeed possible to check 
whether automated system performance is 
compatible with that stipulated in the specifications. 
We will also show that by parameterizing the hybrid 
process model, it becomes possible to use the model-
checker to evaluate the robustness of discrete control 
to perturbations encountered by the plant. 
This paper has been organized as follows. After 
having recalled the possibilities and limitations of 
both DES and HDS model-checking, we will 
introduce the expectations derived from a hybrid 
plant model for verifying a discrete controller. In 
order to illustrate our approach, the paper’s second 
part will present the example of a positioning axis, 
which represents a component of a more complex 
assembly system. We will thus be able to show that 
use of a model-checker (such as HYTECH), by 
implementation of a hybrid process model, makes it 
possible to verify the expected performance of this 
DES. Furthermore, a sensitivity study conducted on 
model parameters will allow evaluating the 
robustness of discrete control when confronted with 
perturbations. 
 
2. ACQUIRED KNOWLEGE AND LIMITATIONS 
FROM AUTOMATED SYSTEM VERIFICATION  

 
2.1 DES verification. 
 
Formal verification techniques stem from the field of 
computer science. Only recently have they been 
adapted and applied to DES verification and, more 
specifically, to model-checking (Clarke E. M., et al., 
1986). The general principle behind model-checking 
may be expressed as follows (see Figure 1). 

 

Yes / No (+ diagnosis) 

Model-checker 

 ? 
S ╞═ ϕ 

Formal model of system 
behaviour: S (automaton) 

System to be verified Expected Properties 

Formal model of properties: ϕ  
(temporal formula) 

 
Fig. 1. Model-checking scheme. 
 
Let's start with a system that has been designed to 
verify an entire array of properties (logical 
correctness, dependability, liveness, etc.). The first 
task of model-checking consists of formalizing 
system behavior in the form of a finite state 
automaton: S, plus the properties to be verified 
within a temporal algebra such as CTL (Emerson and 
Halpern, 1986): ϕ. The model-checker then conducts 
a thorough analysis of the state space reachable by S, 
which serves either to prove that S ╞═ ϕ (this 

algebraic statement denotes that "the system model 
satisfies the set of properties ϕ") or, when such is not 
the case, to propose a counterexample that revokes 
those properties not verified by S. 
Moreover, a DES may be represented in a generic 
manner, as shown in Figure 2: a discrete controller 
acting in a closed loop on a plant. As part of a 
dependable controller design approach, the system 
being targeted for verification can thus be (according 
to Frey. and Litz, 2000) either the controller on its 
own, presumed to be operating within an open loop 
on the plant (a non "model-based" verification), or 
the {controller + plant} assembly set interacting 
within a closed loop ("model-based" verification). 
 

 
control 

instructions 

Controller 

Plant 

information

 
 
Fig. 2. A generic closed-loop DES. 
 
The research work focusing on DES verification 
initially favored a non model-based approach 
(Moon I., 1994). The reachable state space of the 
controller model is thus to be built in the most 
permissive manner possible, i.e. such that the 
evolution of its inputs are in no way constrained by 
plant behavior. In this case, the safety properties 
capable of being demonstrated provide the basis for 
strong proof given that they can be demonstrated 
regardless of the evolution in controller inputs. On 
the other hand, a good number of liveness or 
accessibility properties cannot be demonstrated via a 
non model-based model-checking approach given the 
often fast-paced combinatory explosion of the 
reachable state space. 
One means for reducing this combinatory explosion, 
using realistic constraints that depict the interaction 
of plant behavior with controller behavior, is to 
conduct a model-based verification. (Rausch and 
Krogh, 1998), (Machado, et al., 2003). 
Through reliance upon these results, we are now in a 
position to study the possibilities offered by the 
model-checking procedure in evaluating DES 
performance (in terms of quality of service provided 
by the automated system). To accomplish this task, it 
is necessary to undertake a model-based approach by 
selecting a hybrid plant model. The physical 
variables of the plant, and not their discrete 
abstraction by the controller, are what give the actual 
performance measures to be evaluated. The coupling 
of a hybrid plant model with a discrete controller 
model thus leads to a Hybrid Dynamic 
System (HDS) verification problem. We will now 
proceed by recalling the basic knowledge acquired 
and current limitations of HDS verification. 
 
2.2 Hybrid systems verification. 
 
While model design using hybrid automata is not 
exactly straightforward, their semantics is well-
adapted to the analysis of HDS behavior. We will 
then assume that HDS verification is tantamount to 
exploring the reachable state space of a hybrid 
automaton. When framed as such, the fundamental 
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problem of HDS verification becomes one of 
computing the reachable state space of a hybrid 
automaton from an initial region. Not only is this 
computation prone to encountering a rapid 
combinatory explosion, but in the general case the 
problem is not-decidable, i.e. impossible to identify a 
computation algorithm with guaranteed convergence 
(Henzinger, et al., 1995a). The linear hybrid 
automata (Alur, et al. 1995) constitute a category of 
hybrid automata that places verification within the 
domain of a decidable problem and for this reason, 
such automata have been selected for the purposes of 
our work. From an other hand, modular approaches 
are essential for modeling and verifying of industrial 
systems. This is why we felt that the HYTECH tool 
(Henzinger, et al., 1995b) was adapted to our needs, 
by virtue of allowing for the verification of models 
obtained by composition of linear hybrid automata. 
With the context and objectives of our research now 
established and both the category of hybrid automata 
and model-checker selected, we will turn our 
attention next to presenting our approach for 
verifying discrete control performance via the 
assessment of a pertinent example. 
 

3. A CASE STUDY  
 
3.1 Presentation of  the production system. 
 
The system we are targeting is one of 
assembling / disassembling bearings within gears; it 
comprises four workstations (see Figure 3a). The 
four workstations pertain respectively to the 
following functions: loading at the beginning of the 
line (Station 1); identification of the gear material 
and eventual presence of a bearing (Station 2); 
insertion or removal of a bearing in the gear 
(Station 3); and gear sorting, taking into account the 
material, in anticipation of their unloading 
(Station 4). This entire assembly line is controlled by 
a Programmable Logic Controller (PLC). 
 

     

 
 
Fig. 3. Assembly/disassembly line. 
 
Control of this assembly system is purely discrete; 
since this proves to be the most typical case for such 
systems, seeking more competitive costs leads to 
avoiding servo controls as much as possible in favor 
of logic controls. All continuous physical variables 
of the process being controlled (which for the most 
part consist of positions) are thus observed and 
controlled via their discrete abstractions. In all, 82 

logical inputs and 50 logical outputs are managed by 
the PLC. The control model, written using Sequential 
Function Chart (SFC) syntax according to IEC 
61131-3 standard has been verified with a timed 
model-checking technique (Bel Mokadem, et 
al., 2005). 
The objective of our study herein consists of 
verifying whether the quality of the positions 
obtained using such a discrete control is compatible 
with the precision required by the process. This 
concept of precision only takes on meaning with 
respect to the positioning of objects manipulated by 
either a displacement axis or a group of combined 
axes. It is thereby unnecessary to include the entire 
control model and the plant model in order to verify 
position quality, but rather just the subset that 
pertains to control of the axis (or group of axes) 
involved in the studied displacement. Our 
investigation will focus more heavily on the 
displacement axis of station 2 (Fig. 3b), with the only 
relevant information available for displacement 
control being given in Figure 4. 
 

 

M

Test_pos Load_pos 

Conveyor

Motor

Logical control orders:  
- Go_to_test 
- Go_to_load 

Logical sensors information: 
- Load_pos 
- Test_pos 

0
X

Unload_pos  
 
Fig. 4. Displacement axis of station 2. 
 
The gear is initially located on the conveyor at the 
loading station (Load_pos). A motor rotation order in 
a clockwise direction (Go_to_test) implies the 
conveyor in displacement to the test position 
(Test_pos), a detailed view is provided in Figure 3c. 
For the test to be successfully conducted, stopping 
precision must be ≤ 1.5 mm. The conveyor position 
between these two discrete positions is denoted X. 
When the presence test of a bearing is completed, a 
subsequent motor rotation order in the clockwise 
direction positions the gear, where it gets unloaded 
(Unload_pos). A motor rotation in the 
counterclockwise direction then brings the conveyor 
into the loading position, where a new cycle can be 
launched. We are seeking to quantify the precision of 
gear positioning at the test station, enabled by this 
discrete control along the path Load_pos → 
Test_pos, so as to verify whether this precision is 
compatible with specification. Execution of this task 
will entail application of hybrid model-checking 
using the HYTECH tool (Henzinger, et al., 1995b). 

  3.b  -   Station   2  

3.a  -   Production  line   
3.c  - Test 

station 

 
3.2 Modelling. 
 
The model of the entire {controller + displacement 
axis} set, which allows this positioning quality 
verification, has been laid out in Figure 5. 
The hybrid automaton is composed of two 
synchronized automata. 
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Test_pos 
 
 

Displacement 
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Fig. 5. Hybrid automata of the axis control. 
 
The automaton that model electromechanical axis 
contains three discrete locations: two correspond 
with conveyor stopping positions at the extremities 
(Load_pos and Test_pos), and the other location 
corresponds with the movement phase between these 
extreme positions (Go_to_test). The return to loading 
position, which does not enter into the scope of the 
present study, is modeled by means of a timer with 
variable duration D0. The two continuous state 
variables associated with this automaton are 
conveyor position X and timer duration D0. Upon 
initialization, the conveyor is placed into the loading 
position and hence X = 0. Both of the stopping 
situations are associated with the function 
dX/dt = 0 (denoted = 0); the movement location is 
associated with a continuous dynamics of the 
form 

X&

X& = a, with a representing a rational constant 
arbitrarily chosen within an interval: [Vmin, Vmax]. 
This arbitrary assignment of constant a enables 
abstracting the variability in conveyor displacement 
speed due to perturbations undergone by the 
displacement axis (mechanical friction, resistant 
torque on the motor axis, kinematic non-
linearities, etc.). Two synchronization events with 
the automaton used for modeling controller behavior, 
called start and stop respectively, are associated with 
the transitions that correspond to the conveyor 
movement phase. 

     

The automaton that models controller behavior is 
composed of four discrete locations and is initialized 
at location Q0. The start synchronization event with 
the axis automaton shows that the motor starts up 
during a PLC cycle change. The monitor of this PLC 
is of the "periodic" type, indicating that execution of 
the control program is to take place according to a 
constant-duration cycle (see Figure 6), which the 
user is required to setup in PLC. In practice, this 
cycle duration undergoes slight variations (on the 
order of 1%), called "jitters". To translate these 
operations into the hybrid controller automaton, the 
duration of each PLC processing cycle (Tc) is 
assigned an arbitrarily-chosen value within an 
interval: [Tcmin, Tcmax]. Once location Q1 has been 
entered, the automaton remains there until the axis 
has traveled the distance required to position it in 
alignment with the test station (at which point 
X = Xtest). Locations Q1a and Q1b serve to translate 
that this information is taken into account by the 
PLC during the subsequent input reading phase, 
followed by processing and then execution of the 
motor stop order (Figure 6). The stop 

synchronization event thereby triggers controller 
automaton re-initialization at the same time it 
activates the Test_pos situation of the displacement 
axis automaton. 
Figure 6 shows the synchronization of the two 
automata presented in Figure 5 by the stop event as 
well as the evolution in continuous variables Tc 
and X. The axis positioning error at the level of the 
test station thus results from the time lag between the 
moment the axis reaches the Xtest position and the 
moment the PLC is able to react at this event in the 
input reading phase, with the consequence being that 
the axis stop order may be issued either within the 
same PLC cycle or one cycle later. The experimental 
campaign conducted using HYTECH has revealed this 
finding and the following discussion is intended to 
provide greater detail. 
 

Tc

X

Xtest 

stop 

Q1 Q1a Q1b Q0 
Controller 
automaton 

PLC 
cycles I I O I I O T T T T TOI 

stop 

Go_to_test Test_pos 
Axis 

automaton 

position 
error 

O

PLC phases: 

t

t

t

Treatment T Input reading  I O Output writing 
 

Fig. 6. Synchronous evolutions of automata. 
 
3.3 Implementation and the experimental protocol. 
 
All of our experiments have been carried out by 
constraining the variation of duration  the conveyor's 
return to the loading position (D0) over the 
interval [3000ms, 3500ms] (which thus yields 
Domin = 3000ms and Domax = 3500ms). Moreover, 
the abscissa (Xtest) of the conveyor at the test station 
is 80 mm. 
Given that these data remain fixed, the HYTECH code 
obtained from the hybrid automaton shown in 
Figure 5 is a parametric code, with intervals 
[Tcmin, Tcmax] (for the cycle time to be adjusted on 
the PLC) and [Vmin, Vmax] (for the translation speed 
of the conveyor subjected to perturbations) 
constituting the two parameters. For each 
experiment, numerical values are ascribed to these 
two intervals. The model-checker then computes the 
region the automaton is capable of reaching from its 
initial region. We will initially derive the intersection 
of this reachable region with the discrete location 
Test_pos so as to build the accessibility domain of 
the axis position, which is then obtained by 
projection of this sub-region with respect to the 
variable X. The set of positions reached by the 
conveyor thus assumes the form of an interval on X. 
As an example, for Vmin = Vmax = 200mm/s, 
Tcmin = 11ms -0.5% and Tcmax = 11ms +0.5%, the 
conveyor stopping position in front of the test station 
is contained within the interval [83.182mm, 
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84.018mm], which represents a resultant position 
deviation of 0.836mm. 
 
3.4 Position-stopping quality without perturbations. 
 
For this initial study, the hypothesis has been 
adopted that the conveyor is not submitted to any 
perturbation. Its translation speed is thus presumed to 
be constant and yields: Vmin = Vmax = 200 mm/s. 
The changes in conveyor stopping position may then 
be observed as a function of the PLC cycle time 
value when such value varies by more or less than 
0.5% around the period adjusted by the user (the so-
called jitter phenomenon described in Section 3.2). 
Figure 7 reveals that the positioning error evolves in 
accordance with two phenomena that we will now 
differentiate. The first corresponds to a systematic 
error (positive slope line passing through the average 
error interval value), which can be corrected by an 
adapted adjustment of sensor position Test_pos. The 
second phenomenon is homogeneous to a random 
error (the fixed interval deviation on the positions 
reached for a given Tc), whose general amplitude 
shape increases with PLC cycle time. It can 
nonetheless be remarked that for certain Tc values 
(e.g. Tc = 9ms or Tc = 13.1ms), the range of these 
"random" errors is narrower than that for proximate 
Tc values. The existence of these particular zones of 
smaller positioning error, while PLC cycle time is 
increasing, highlights a non-trivial temporal 
correlation phenomenon between the PLC cycle and 
occurrence of the test position arrival event depicted 
in Figure 8. 
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Fig. 7. Conveyor positioning error. 
 
When the temporal detection region of the X=Xtest 
event has been included within a single PLC cycle, 
conveyor stopping will systematically be controlled 
during the subsequent cycle output assignment phase 
(see Figure 8a). In contrast, while the temporal 
detection region of the X=Xtest event straddles two 
PLC cycles, stopping will intervene during the output 
assignment phase of one of the two subsequent 
cycles (Figure 8b). The range of the stopping zone 
will thus increase. 

     

This temporal dispersion in stop order execution is 
heavily correlated with the PLC cycle time jitter 
(Figure 8c). Though the ratio between the distance to 
be traversed and Tc is such that, despite the jitter 
on Tc, the number N of PLC cycles elapsed between 
the conveyor start order and detection of the test 
position (X=Xtest) is the same with each new 
conveyor displacement from X=0 to X=Xtest, the 
conveyor stop order will always be issued at the end 

of the same PLC cycle and the error range will 
always solely depend on the jitter and cycle 
number N (this configuration will be referred to as 
"Scenario 1" in the following discussion). On the 
other hand, should the ratio between the distance 
traveled and Tc be such that a variable number of 
cycles is necessary for conveyor displacement, the 
stop order may then be issued at the end of the 
various PLC cycles (Figure 8c). The error range is 
thus merely a function of Tc (this configuration will 
be called "Scenario 2"). 
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Fig. 8. Correlation between Tc, Xtest event 

occurrences and stop order. 
 
Figure 9 clearly highlights this phenomenon. For 
Scenario 2, the stopping range is proportional to the 
cycle time value. Whereas for Scenario 1 positioning 
error is independent of cycle time (at least up to the 
limit of values selected for our experiment). 
If specifications call for a maximum positioning error 
in Test_pos of 1.5mm, the PLC cycle period has to be 
set at a value of below 7.4ms. If the full PLC load 
(for execution of the overall assembly line program 
with its 82 inputs and 50 outputs) does not enable 
parameterizing such a low cycle time, it would then 
be necessary to target a Scenario 1 parameterization, 
e.g. 9.0ms or 13.1ms. 
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Fig. 9. Conveyor positioning error range. 
 
3.5 Positioning robustness. 
 
It has already been demonstrated that the PLC cycle 
time may be judiciously chosen in order to guarantee 
the quality of conveyor positioning under a 
hypothesis of no translation speed perturbations. 
Figure 10 presents the results from experiments 
conducted in order to evaluate the influence of such 
perturbations on positioning quality for a given cycle 
time Tc=13.1ms (which remains contaminated with a 
jitter of ± 0.5%). This curve shape is the same for 
Tc = 9ms or Tc = 5.1ms. 
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Fig. 10. Effect of conveyor speed perturbation. 
 
Two distinct zones appear on this curve. Above 2% 
speed perturbation, the positioning error is basically 
constant; this corresponds to Scenario 2, for which 
the error range is directly correlated with Tc without 
any major influence on the speed-related 
perturbation. Below this 2% level, the error increases 
linearly with perturbations since the system here is 
behaving according to Scenario 1, which is sensitive 
to both the jitter on Tc and perturbations on the 
conveyor translation speed. 
For a requirement that limits the positioning error to 
1.5mm, it thus becomes necessary to ensure that 
speed perturbations remain less than 0.8% (in the 
case of a PLC adjustment to Tc=13.1ms). Should 
such not be the case, adopting a servo control in the 
conveyer position would need to be examined. 
 
3.5 Assessment of the use of HYTECH. 
 
The results provided above have necessitated several 
hundreds of model-checking experiments on the 
hybrid automaton shown in Figure 5 using the 
HYTECH tool, with different parameter sets being 
introduced for each experiment. The search for the 
reachable region of a model never took more than 
5 minutes and, in most instances, 30 seconds were 
sufficient. Computation time did not therefore pose 
any problem for this study. The primary difficulty 
encountered had to do with the interruption of 
reachability computations due to exceeding the 
integer limit value (264) during the region 
computation step. Our case study did necessitate 
manipulating numerical values with quite varied 
scales. As an example, the conveyor position 
progressed over a total path length of 80mm, 
whereas the calculated stopping error at times 
amounted to just a few hundredths of a millimeter. 
For all of the distances manipulated, numerical 
values out to 4 significant digits thus had to be used. 
The same difficulty gets magnified when 
manipulating time since the duration of the conveyor 
position return lasts approximately 3s, while a 
± 0.5% jitter on Tc = 1ms equals ± 5µs; seven 
significant digits therefore proved necessary. This 
numerical value coding is very detrimental when 
running HYTECH, which interrupts the computation 
of regions once the integer coding capacity has been 
exeeded, thereby making it impossible to draw any 
conclusion on the current verification. In order to 
avoid this predicament, the units for each model 
parameter set have been adjusted. For example, 
depending on the value of Tc, the time unit has been 
fixed at 1µs, 10µs or 100µs, which makes only 5% 
of the verifications inconclusive. 

4. CONCLUSION AND OUTLOOK  
 
In this paper, we have focused on the verification of 
systems composed of a discrete controller coupled 
with a continuous (or partially-continuous) physical 
process, whose full extent of observed and controlled 
variables are logical abstractions of physical 
variables. For that, we employed a model-checking 
technique that couples the timed discrete model of 
the controller with a hybrid plant model. By relying 
upon a case study, we showed the possibility of 
verifying whether or not system performance is 
compatible with the specifications. By 
parameterizing the hybrid system model, it becomes 
possible for the model-checker to evaluate discrete 
control robustness to plant perturbations. 
According to this approach, HYTECH has proven to 
be an efficient tool. It goes without saying that the 
size of the model being verified must remain 
compatible with the difficulties inherent in the well-
known combinatory explosion phenomenon typical 
of model-checking. For this reason, it is necessary to 
limit performance verification to just the {control + 
plant} subsystem involved in deriving the evaluated 
variables. Determining this subsystem being targeted 
by performance verification along with building the 
hybrid model used as the abstraction are the current 
focus of a complementary research project. 
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