

PERFORMANCE VERIFICATION OF DISCRETE EVENT SYSTEMS
USING HYBRID MODEL-CHECKING

Bruno Denis (1), Jean-Jaques Lesage (1), Zulema Juárez-Orozco (1), (2)

(1) LURPA-ENS de Cachan, France, {denis, lesage, juarez}@lurpa.ens-cachan.fr
(2) CIATEQ - Querétaro, Mexico, PhD grant financed by CONACYT (Mexico)

Abstract: The results generated over the past few years on the formal verification of both
Discrete Event Systems (DES) and Hybrid Dynamic Systems (HDS) are quite substantial,
especially as regards the controller's properties of liveness and safety. In this paper, we
will study the range of possibilities offered using the model-checking techniques in order
to evaluate DES performances (in terms of quality of service provided by the automated
system). This task calls for proceeding with a model-based approach that couples a hybrid
model of the plant with a timed discrete model of the controller. We will also show, using
a basic example, that by parameterizing the hybrid process model, the model-checker may
then be employed to evaluate the robustness of the discrete control to perturbations
encountered by the plant. Copyright © 2006 IFAC

Keywords: DES controller, hybrid plant model, model-based verification, model-
checking, linear hybrid automaton, HYTECH.

1. INTRODUCTION

A physical system is not, in most cases, intrinsically
either purely discrete or purely continuous; instead,
it's the abstraction the control engineer undertakes to
ensure automation specification is being met that
lends one distinction or the other. In the area of
manufacturing systems for example, many processes
have mobility axes that enable products to circulate,
establish their position, etc.; consequently, some of
the major physical variables controlled are either
displacements or speeds. Depending not only on the
level of quality to be guaranteed for these controlled
variables, but also on the aggressiveness or
variability in the external environment (e.g. type and
importance of perturbations, parameter variation
interval for the law of movement) and on the relative
weight of economic constraints, the control engineer
is required to choose between a servo control or a
discrete control for each of these axes. Such
automation-related choices will yield the physical
variables to be observed and controlled by the
controller, with either continuous or discrete control
abstraction. Once the requisite displacement axis
positioning quality has been achieved and provided
that the perturbations encountered remain tolerable,

the control engineer will then select a discrete control
for obvious cost reduction reasons. This discrete
displacement control, despite often being able to
accommodate mobile positioning quality
requirements, still constitutes an abstraction, and as
such necessarily a simplification of the associated
physical variables. The logic control of a linear
displacement between two extreme positions,
observed by means of two limit switch sensors,
clearly does not enable ascertaining the precise
position of the mobile, nor the time elapsed to
complete this displacement.
Satisfying industrial system dependability
requirements often necessitates conducting offline
analyses, such as formal verification, before placing
the automated system into operation (for further
information on this topic, see the standard IEC 61508
entitled “ Functional safety of electrical / electronic /
programmable electronic safety-related systems ”).
These verifications, which are now frequently
performed by means of model-checking
(MacMillan, 1993), may be practiced by electing to
incorporate or not a plant model.
In this paper, our efforts have focused on checking
systems composed of a discrete controller coupled

Preprints of the 2nd IFAC Conf. on Analysis and Design of Hybrid Systems (Alghero, Italy), 7-9 June 2006

365

with a continuous (or partially-continuous) physical
process whose entire set of observed and controlled
variables constitute discrete abstractions of physical
variables. To proceed, we will make use of model-
checking techniques by coupling the discrete
controller model with a hybrid plant model; this set-
up will demonstrate that beyond the liveness and
safety properties, it is indeed possible to check
whether automated system performance is
compatible with that stipulated in the specifications.
We will also show that by parameterizing the hybrid
process model, it becomes possible to use the model-
checker to evaluate the robustness of discrete control
to perturbations encountered by the plant.
This paper has been organized as follows. After
having recalled the possibilities and limitations of
both DES and HDS model-checking, we will
introduce the expectations derived from a hybrid
plant model for verifying a discrete controller. In
order to illustrate our approach, the paper’s second
part will present the example of a positioning axis,
which represents a component of a more complex
assembly system. We will thus be able to show that
use of a model-checker (such as HYTECH), by
implementation of a hybrid process model, makes it
possible to verify the expected performance of this
DES. Furthermore, a sensitivity study conducted on
model parameters will allow evaluating the
robustness of discrete control when confronted with
perturbations.

2. ACQUIRED KNOWLEGE AND LIMITATIONS
FROM AUTOMATED SYSTEM VERIFICATION

2.1 DES verification.

Formal verification techniques stem from the field of
computer science. Only recently have they been
adapted and applied to DES verification and, more
specifically, to model-checking (Clarke E. M., et al.,
1986). The general principle behind model-checking
may be expressed as follows (see Figure 1).

Yes / No (+ diagnosis)

Model-checker

 ?
S ╞═ ϕ

Formal model of system
behaviour: S (automaton)

System to be verified Expected Properties

Formal model of properties: ϕ
(temporal formula)

Fig. 1. Model-checking scheme.

Let's start with a system that has been designed to
verify an entire array of properties (logical
correctness, dependability, liveness, etc.). The first
task of model-checking consists of formalizing
system behavior in the form of a finite state
automaton: S, plus the properties to be verified
within a temporal algebra such as CTL (Emerson and
Halpern, 1986): ϕ. The model-checker then conducts
a thorough analysis of the state space reachable by S,
which serves either to prove that S ╞═ ϕ (this

algebraic statement denotes that "the system model
satisfies the set of properties ϕ") or, when such is not
the case, to propose a counterexample that revokes
those properties not verified by S.
Moreover, a DES may be represented in a generic
manner, as shown in Figure 2: a discrete controller
acting in a closed loop on a plant. As part of a
dependable controller design approach, the system
being targeted for verification can thus be (according
to Frey. and Litz, 2000) either the controller on its
own, presumed to be operating within an open loop
on the plant (a non "model-based" verification), or
the {controller + plant} assembly set interacting
within a closed loop ("model-based" verification).

control

instructions

Controller

Plant

information

Fig. 2. A generic closed-loop DES.

The research work focusing on DES verification
initially favored a non model-based approach
(Moon I., 1994). The reachable state space of the
controller model is thus to be built in the most
permissive manner possible, i.e. such that the
evolution of its inputs are in no way constrained by
plant behavior. In this case, the safety properties
capable of being demonstrated provide the basis for
strong proof given that they can be demonstrated
regardless of the evolution in controller inputs. On
the other hand, a good number of liveness or
accessibility properties cannot be demonstrated via a
non model-based model-checking approach given the
often fast-paced combinatory explosion of the
reachable state space.
One means for reducing this combinatory explosion,
using realistic constraints that depict the interaction
of plant behavior with controller behavior, is to
conduct a model-based verification. (Rausch and
Krogh, 1998), (Machado, et al., 2003).
Through reliance upon these results, we are now in a
position to study the possibilities offered by the
model-checking procedure in evaluating DES
performance (in terms of quality of service provided
by the automated system). To accomplish this task, it
is necessary to undertake a model-based approach by
selecting a hybrid plant model. The physical
variables of the plant, and not their discrete
abstraction by the controller, are what give the actual
performance measures to be evaluated. The coupling
of a hybrid plant model with a discrete controller
model thus leads to a Hybrid Dynamic
System (HDS) verification problem. We will now
proceed by recalling the basic knowledge acquired
and current limitations of HDS verification.

2.2 Hybrid systems verification.

While model design using hybrid automata is not
exactly straightforward, their semantics is well-
adapted to the analysis of HDS behavior. We will
then assume that HDS verification is tantamount to
exploring the reachable state space of a hybrid
automaton. When framed as such, the fundamental

 366

problem of HDS verification becomes one of
computing the reachable state space of a hybrid
automaton from an initial region. Not only is this
computation prone to encountering a rapid
combinatory explosion, but in the general case the
problem is not-decidable, i.e. impossible to identify a
computation algorithm with guaranteed convergence
(Henzinger, et al., 1995a). The linear hybrid
automata (Alur, et al. 1995) constitute a category of
hybrid automata that places verification within the
domain of a decidable problem and for this reason,
such automata have been selected for the purposes of
our work. From an other hand, modular approaches
are essential for modeling and verifying of industrial
systems. This is why we felt that the HYTECH tool
(Henzinger, et al., 1995b) was adapted to our needs,
by virtue of allowing for the verification of models
obtained by composition of linear hybrid automata.
With the context and objectives of our research now
established and both the category of hybrid automata
and model-checker selected, we will turn our
attention next to presenting our approach for
verifying discrete control performance via the
assessment of a pertinent example.

3. A CASE STUDY

3.1 Presentation of the production system.

The system we are targeting is one of
assembling / disassembling bearings within gears; it
comprises four workstations (see Figure 3a). The
four workstations pertain respectively to the
following functions: loading at the beginning of the
line (Station 1); identification of the gear material
and eventual presence of a bearing (Station 2);
insertion or removal of a bearing in the gear
(Station 3); and gear sorting, taking into account the
material, in anticipation of their unloading
(Station 4). This entire assembly line is controlled by
a Programmable Logic Controller (PLC).

Fig. 3. Assembly/disassembly line.

Control of this assembly system is purely discrete;
since this proves to be the most typical case for such
systems, seeking more competitive costs leads to
avoiding servo controls as much as possible in favor
of logic controls. All continuous physical variables
of the process being controlled (which for the most
part consist of positions) are thus observed and
controlled via their discrete abstractions. In all, 82

logical inputs and 50 logical outputs are managed by
the PLC. The control model, written using Sequential
Function Chart (SFC) syntax according to IEC
61131-3 standard has been verified with a timed
model-checking technique (Bel Mokadem, et
al., 2005).
The objective of our study herein consists of
verifying whether the quality of the positions
obtained using such a discrete control is compatible
with the precision required by the process. This
concept of precision only takes on meaning with
respect to the positioning of objects manipulated by
either a displacement axis or a group of combined
axes. It is thereby unnecessary to include the entire
control model and the plant model in order to verify
position quality, but rather just the subset that
pertains to control of the axis (or group of axes)
involved in the studied displacement. Our
investigation will focus more heavily on the
displacement axis of station 2 (Fig. 3b), with the only
relevant information available for displacement
control being given in Figure 4.

M

Test_pos Load_pos

Conveyor

Motor

Logical control orders:
- Go_to_test
- Go_to_load

Logical sensors information:
- Load_pos
- Test_pos

0
X

Unload_pos

Fig. 4. Displacement axis of station 2.

The gear is initially located on the conveyor at the
loading station (Load_pos). A motor rotation order in
a clockwise direction (Go_to_test) implies the
conveyor in displacement to the test position
(Test_pos), a detailed view is provided in Figure 3c.
For the test to be successfully conducted, stopping
precision must be ≤ 1.5 mm. The conveyor position
between these two discrete positions is denoted X.
When the presence test of a bearing is completed, a
subsequent motor rotation order in the clockwise
direction positions the gear, where it gets unloaded
(Unload_pos). A motor rotation in the
counterclockwise direction then brings the conveyor
into the loading position, where a new cycle can be
launched. We are seeking to quantify the precision of
gear positioning at the test station, enabled by this
discrete control along the path Load_pos →
Test_pos, so as to verify whether this precision is
compatible with specification. Execution of this task
will entail application of hybrid model-checking
using the HYTECH tool (Henzinger, et al., 1995b).

 3.b - Station 2

3.a - Production line
3.c - Test

station

3.2 Modelling.

The model of the entire {controller + displacement
axis} set, which allows this positioning quality
verification, has been laid out in Figure 5.
The hybrid automaton is composed of two
synchronized automata.

367

Controller

start

stop

XtestX =

0Tc =

Q0

Q1

0Tc ≥
1cT −=&

]Tcmax[Tcmin,:Tc
Xtest)(X0)(Tc

=→
<∧=

Q1a

Q1b

Tcmax][Tcmin,:Tc =→

0Tc ≥
1cT −=&

Tcmax][Tcmin,:Tc =→

0Tc ≥

0Tc =

1cT −=&

][VmaxVmin,X =&

start

Load_pos

0X =&
0X =

0X =&
0Do ≥

1oD −=&

stop

0Do =

0X ≥

Domax][Domin,:Do =→

0:X =→

0:X =→

Go_to_
test

Test_pos

Displacement
axis

Fig. 5. Hybrid automata of the axis control.

The automaton that model electromechanical axis
contains three discrete locations: two correspond
with conveyor stopping positions at the extremities
(Load_pos and Test_pos), and the other location
corresponds with the movement phase between these
extreme positions (Go_to_test). The return to loading
position, which does not enter into the scope of the
present study, is modeled by means of a timer with
variable duration D0. The two continuous state
variables associated with this automaton are
conveyor position X and timer duration D0. Upon
initialization, the conveyor is placed into the loading
position and hence X = 0. Both of the stopping
situations are associated with the function
dX/dt = 0 (denoted = 0); the movement location is
associated with a continuous dynamics of the
form

X&

X& = a, with a representing a rational constant
arbitrarily chosen within an interval: [Vmin, Vmax].
This arbitrary assignment of constant a enables
abstracting the variability in conveyor displacement
speed due to perturbations undergone by the
displacement axis (mechanical friction, resistant
torque on the motor axis, kinematic non-
linearities, etc.). Two synchronization events with
the automaton used for modeling controller behavior,
called start and stop respectively, are associated with
the transitions that correspond to the conveyor
movement phase.

The automaton that models controller behavior is
composed of four discrete locations and is initialized
at location Q0. The start synchronization event with
the axis automaton shows that the motor starts up
during a PLC cycle change. The monitor of this PLC
is of the "periodic" type, indicating that execution of
the control program is to take place according to a
constant-duration cycle (see Figure 6), which the
user is required to setup in PLC. In practice, this
cycle duration undergoes slight variations (on the
order of 1%), called "jitters". To translate these
operations into the hybrid controller automaton, the
duration of each PLC processing cycle (Tc) is
assigned an arbitrarily-chosen value within an
interval: [Tcmin, Tcmax]. Once location Q1 has been
entered, the automaton remains there until the axis
has traveled the distance required to position it in
alignment with the test station (at which point
X = Xtest). Locations Q1a and Q1b serve to translate
that this information is taken into account by the
PLC during the subsequent input reading phase,
followed by processing and then execution of the
motor stop order (Figure 6). The stop

synchronization event thereby triggers controller
automaton re-initialization at the same time it
activates the Test_pos situation of the displacement
axis automaton.
Figure 6 shows the synchronization of the two
automata presented in Figure 5 by the stop event as
well as the evolution in continuous variables Tc
and X. The axis positioning error at the level of the
test station thus results from the time lag between the
moment the axis reaches the Xtest position and the
moment the PLC is able to react at this event in the
input reading phase, with the consequence being that
the axis stop order may be issued either within the
same PLC cycle or one cycle later. The experimental
campaign conducted using HYTECH has revealed this
finding and the following discussion is intended to
provide greater detail.

Tc

X

Xtest

stop

Q1 Q1a Q1b Q0
Controller
automaton

PLC
cycles I I O I I O T T T T TOI

stop

Go_to_test Test_pos
Axis

automaton

position
error

O

PLC phases:

t

t

t

Treatment T Input reading I O Output writing

Fig. 6. Synchronous evolutions of automata.

3.3 Implementation and the experimental protocol.

All of our experiments have been carried out by
constraining the variation of duration the conveyor's
return to the loading position (D0) over the
interval [3000ms, 3500ms] (which thus yields
Domin = 3000ms and Domax = 3500ms). Moreover,
the abscissa (Xtest) of the conveyor at the test station
is 80 mm.
Given that these data remain fixed, the HYTECH code
obtained from the hybrid automaton shown in
Figure 5 is a parametric code, with intervals
[Tcmin, Tcmax] (for the cycle time to be adjusted on
the PLC) and [Vmin, Vmax] (for the translation speed
of the conveyor subjected to perturbations)
constituting the two parameters. For each
experiment, numerical values are ascribed to these
two intervals. The model-checker then computes the
region the automaton is capable of reaching from its
initial region. We will initially derive the intersection
of this reachable region with the discrete location
Test_pos so as to build the accessibility domain of
the axis position, which is then obtained by
projection of this sub-region with respect to the
variable X. The set of positions reached by the
conveyor thus assumes the form of an interval on X.
As an example, for Vmin = Vmax = 200mm/s,
Tcmin = 11ms -0.5% and Tcmax = 11ms +0.5%, the
conveyor stopping position in front of the test station
is contained within the interval [83.182mm,

368

84.018mm], which represents a resultant position
deviation of 0.836mm.

3.4 Position-stopping quality without perturbations.

For this initial study, the hypothesis has been
adopted that the conveyor is not submitted to any
perturbation. Its translation speed is thus presumed to
be constant and yields: Vmin = Vmax = 200 mm/s.
The changes in conveyor stopping position may then
be observed as a function of the PLC cycle time
value when such value varies by more or less than
0.5% around the period adjusted by the user (the so-
called jitter phenomenon described in Section 3.2).
Figure 7 reveals that the positioning error evolves in
accordance with two phenomena that we will now
differentiate. The first corresponds to a systematic
error (positive slope line passing through the average
error interval value), which can be corrected by an
adapted adjustment of sensor position Test_pos. The
second phenomenon is homogeneous to a random
error (the fixed interval deviation on the positions
reached for a given Tc), whose general amplitude
shape increases with PLC cycle time. It can
nonetheless be remarked that for certain Tc values
(e.g. Tc = 9ms or Tc = 13.1ms), the range of these
"random" errors is narrower than that for proximate
Tc values. The existence of these particular zones of
smaller positioning error, while PLC cycle time is
increasing, highlights a non-trivial temporal
correlation phenomenon between the PLC cycle and
occurrence of the test position arrival event depicted
in Figure 8.

78

79

80

81

82

83

84

85

86

87

0 2 4 6 8 10 12 14 16

Tc (ms)

X
 ra

ng
e

(m
m

)

5.1 9 13.1

Fig. 7. Conveyor positioning error.

When the temporal detection region of the X=Xtest
event has been included within a single PLC cycle,
conveyor stopping will systematically be controlled
during the subsequent cycle output assignment phase
(see Figure 8a). In contrast, while the temporal
detection region of the X=Xtest event straddles two
PLC cycles, stopping will intervene during the output
assignment phase of one of the two subsequent
cycles (Figure 8b). The range of the stopping zone
will thus increase.

This temporal dispersion in stop order execution is
heavily correlated with the PLC cycle time jitter
(Figure 8c). Though the ratio between the distance to
be traversed and Tc is such that, despite the jitter
on Tc, the number N of PLC cycles elapsed between
the conveyor start order and detection of the test
position (X=Xtest) is the same with each new
conveyor displacement from X=0 to X=Xtest, the
conveyor stop order will always be issued at the end

of the same PLC cycle and the error range will
always solely depend on the jitter and cycle
number N (this configuration will be referred to as
"Scenario 1" in the following discussion). On the
other hand, should the ratio between the distance
traveled and Tc be such that a variable number of
cycles is necessary for conveyor displacement, the
stop order may then be issued at the end of the
various PLC cycles (Figure 8c). The error range is
thus merely a function of Tc (this configuration will
be called "Scenario 2").

 T T T TI I I O O I
PLC

cycles

(a)
stop

[///////]

stop
(b)

O

(c)

T’n-1 T’n T’n+1 I I I

O O

O O O I

Tn-1 Tn Tn+1 I I I I

T T T TI I I I

stop

[///////]
O O O

{Xtest} {Xtest}

X Xtest

Fig. 8. Correlation between Tc, Xtest event

occurrences and stop order.

Figure 9 clearly highlights this phenomenon. For
Scenario 2, the stopping range is proportional to the
cycle time value. Whereas for Scenario 1 positioning
error is independent of cycle time (at least up to the
limit of values selected for our experiment).
If specifications call for a maximum positioning error
in Test_pos of 1.5mm, the PLC cycle period has to be
set at a value of below 7.4ms. If the full PLC load
(for execution of the overall assembly line program
with its 82 inputs and 50 outputs) does not enable
parameterizing such a low cycle time, it would then
be necessary to target a Scenario 1 parameterization,
e.g. 9.0ms or 13.1ms.

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10 12 14 16

Tc (ms)

X
 ra

ng
e

(m
m

)

Scenario 1

Scenario 2

5.1 9 13.1

dX/dt = 200 mm/s
Tc jitter = ±0.5 %

Fig. 9. Conveyor positioning error range.

3.5 Positioning robustness.

It has already been demonstrated that the PLC cycle
time may be judiciously chosen in order to guarantee
the quality of conveyor positioning under a
hypothesis of no translation speed perturbations.
Figure 10 presents the results from experiments
conducted in order to evaluate the influence of such
perturbations on positioning quality for a given cycle
time Tc=13.1ms (which remains contaminated with a
jitter of ± 0.5%). This curve shape is the same for
Tc = 9ms or Tc = 5.1ms.

369

0

0.5

1

1.5

2

2.5

3

0.0% 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0%

Speed Perturbation

X
 ra

ng
e

 (m
m

)

0.8%

Tc = 13.1 ms
Tc jitter = ±0.5 %

Fig. 10. Effect of conveyor speed perturbation.

Two distinct zones appear on this curve. Above 2%
speed perturbation, the positioning error is basically
constant; this corresponds to Scenario 2, for which
the error range is directly correlated with Tc without
any major influence on the speed-related
perturbation. Below this 2% level, the error increases
linearly with perturbations since the system here is
behaving according to Scenario 1, which is sensitive
to both the jitter on Tc and perturbations on the
conveyor translation speed.
For a requirement that limits the positioning error to
1.5mm, it thus becomes necessary to ensure that
speed perturbations remain less than 0.8% (in the
case of a PLC adjustment to Tc=13.1ms). Should
such not be the case, adopting a servo control in the
conveyer position would need to be examined.

3.5 Assessment of the use of HYTECH.

The results provided above have necessitated several
hundreds of model-checking experiments on the
hybrid automaton shown in Figure 5 using the
HYTECH tool, with different parameter sets being
introduced for each experiment. The search for the
reachable region of a model never took more than
5 minutes and, in most instances, 30 seconds were
sufficient. Computation time did not therefore pose
any problem for this study. The primary difficulty
encountered had to do with the interruption of
reachability computations due to exceeding the
integer limit value (264) during the region
computation step. Our case study did necessitate
manipulating numerical values with quite varied
scales. As an example, the conveyor position
progressed over a total path length of 80mm,
whereas the calculated stopping error at times
amounted to just a few hundredths of a millimeter.
For all of the distances manipulated, numerical
values out to 4 significant digits thus had to be used.
The same difficulty gets magnified when
manipulating time since the duration of the conveyor
position return lasts approximately 3s, while a
± 0.5% jitter on Tc = 1ms equals ± 5µs; seven
significant digits therefore proved necessary. This
numerical value coding is very detrimental when
running HYTECH, which interrupts the computation
of regions once the integer coding capacity has been
exeeded, thereby making it impossible to draw any
conclusion on the current verification. In order to
avoid this predicament, the units for each model
parameter set have been adjusted. For example,
depending on the value of Tc, the time unit has been
fixed at 1µs, 10µs or 100µs, which makes only 5%
of the verifications inconclusive.

4. CONCLUSION AND OUTLOOK

In this paper, we have focused on the verification of
systems composed of a discrete controller coupled
with a continuous (or partially-continuous) physical
process, whose full extent of observed and controlled
variables are logical abstractions of physical
variables. For that, we employed a model-checking
technique that couples the timed discrete model of
the controller with a hybrid plant model. By relying
upon a case study, we showed the possibility of
verifying whether or not system performance is
compatible with the specifications. By
parameterizing the hybrid system model, it becomes
possible for the model-checker to evaluate discrete
control robustness to plant perturbations.
According to this approach, HYTECH has proven to
be an efficient tool. It goes without saying that the
size of the model being verified must remain
compatible with the difficulties inherent in the well-
known combinatory explosion phenomenon typical
of model-checking. For this reason, it is necessary to
limit performance verification to just the {control +
plant} subsystem involved in deriving the evaluated
variables. Determining this subsystem being targeted
by performance verification along with building the
hybrid model used as the abstraction are the current
focus of a complementary research project.

REFERENCES

Alur R. et al. (1995). The algorithmic analysis of hybrid

systems. Theoritical computer science, Vol. 138, p. 3-
34.

Bel Mokadem H., Bérard B., Gourcuff V., Roussel J.-M.,
De Smet O. (2005). Verification of a timed multitask
system with UPPAAL. Proc. of 10th IEEE ETFA,
CDRom paper, 8 pages, September, Catania-Italy.

Clarke, E. M., Emerson, E. A. and A. P. Sistle, (1986).
Automatic verification of finite state concurrent system
using temporal logic. ACM Trans. on Programming
Languages and Systems Vol. 8, n° 2, p. 244-263.

Emerson E.A. and Halpern J.Y. (1986). Sometimes and
Not Never revisited : on branching versus linear time
temporal logic. Journal of the ACM. Vol. 33, n° 1, p.
151-178.

Frey G. and Litz L. (2000). Formal method in PLC
programming. Proc. of IEEE SMC’2000, CDRom
paper, 6 pages, October 8-11, Nashville, USA.

Henzinger T.A., Kopke P.W., Puri A., Varaiya P. (1995a).
Waht’s decidable about hybrid automata ?. Proc. of
the 27th annual ACM Symposium of Theory of
Computing, p. 373-382.

Henzinger T.A., Ho P.-H., Wong-Toi H. (1995b). A user
guide to HyTech. Proc. of TACAS, Lecture Notes in
Computer Science 1019, Springer-Verlag, p. 41–71.

Mac Millan K.L. (1993). Symbolic model checking, Kluwer
Academic.

Moon I. (1994). Modeling programmable logic controllers
for logic verification. IEEE Control Systems, Vol. 14,
n° 2, 1994, p. 53-59.

Rausch M. and Krogh H. (1998). Formal verification of
PLC programs. Proc. of ACC’98, Philadelphia, USA.

 370

