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Abstract: This work is concerned with the practical stabilization of discrete–time
SISO linear systems under assigned quantization of the input and output spaces.
A controller is designed ensuring practical stability properties.
Unlike most of the existing literature, quantization is supposed to be a problem
datum rather than a degree of freedom in design. Moreover, in the framework of
control under assigned quantization, results are concerned with state quantization
only and do not include the quantized output feedback case considered here.
While standard stability analysis techniques are based on Lyapunov theory and
invariant ellipsoids, our study involves a particularly suitable family of sets, which
are hypercubes in controller form coordinates. Copyright, © 2006, IFAC
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1. INTRODUCTION

The need of studying quantized control sys-
tems (i.e., dynamical systems with discrete in-
put and/or output variables) arises by many con-
trol applications. Commonly encountered exam-
ples include the presence of digital sensors and ac-
tuators or of finite capacity communication links
in the control loop. Quantized control systems
have been attracting increasing attention of the
control community in the past twenty years

(
see

for instance (Delchamps, 1990; Wong–Brockett,
1999; Brockett–Liberzon, 2000; Elia–Mitter, 2001;
Baillieul, 2001; Bicchi et al., 2002; Tatikonda–
Mitter, 2004; Fagnani–Zampieri, 2004)

)
.

This paper deals with the control of the linear,
time–invariant dynamical system

1 This work was supported by European Commission
through the IST-2004-004536 (IP) “RUNES - Reconfig-
urable Ubiquitous Networked Embedded Systems” and
the IST-2004-511368 (NoE) “HYCON - HYbrid CONtrol:
Taming Heterogeneity and Complexity of Networked Em-
bedded Systems”.
2 Corresponding author, e–mail: b.picasso@sns.it
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Fig. 1. Graphical illustration of the quantized
control system considered in this paper.





x(t + 1) = Ax(t) + b u(t)
y(t) = q

(
Cx(t)

)
x ∈ Rn, u ∈ U ⊂ R , y ∈ Y , t ∈ N
A ∈ Rn×n, b ∈ Rn, C ∈ R1×n,

(1)

where U is a given closed discrete set and q :
R→ Y is an assigned output map taking values in
a countable set Y (finite or infinite) . A pictorial
representation of the control problem is illustrated
in Fig. 1 : the system has a hybrid structure and is
organized into two levels. At the logical level, the
controller manipulates output and input strings
from discrete alphabets. At the physical level, the
plant is modelled by Eqn. (1) .
We focus on the stabilization problem. It has been
clarified in (Delchamps, 1990) that “practical”
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stability notions are the suitable stability prop-
erties to be considered for quantized systems. Ac-
cordingly, our study concerns the construction of
symbolic feedback controllers capable of steering
the system to within small neighborhoods of the
equilibrium, starting from large attraction basins.
In most of the existing literature on stabiliza-
tion, quantization is considered as a degree of
freedom in control synthesis: the designer can
choose the elements of the control set U , as
well as the output map q . Results in this vein
have a strong theoretical interest as they allow
to identify fundamental limitations in quantized
control (Wong–Brockett, 1999; Elia–Mitter, 2001;
Ishii–Francis, 2002; Nair–Evans, 2004; Tatikonda–
Mitter, 2004; Fagnani–Zampieri, 2004) . On the
contrary, in this paper we assume that the input
and output sets U , Y , as well as the output map
q , are data of the problem: control synthesis for
practical stabilization is then subdued to these
data. This kind of study provides tools for the
analysis of achievable control objectives by using
a given technology, as e.g., actuators (modelled by
U ) or sensors (modelled by q ) .

The main contribution of this paper consists in
providing a novel, simple and general technique
to solve the practical stabilization problem for
quantized SISO systems. The controller is syn-
thesized so as to encapsulate the trajectories into
increasingly smaller hypercubes in the controller
form coordinates. This approach results in a con-
troller in the form of a finite state automaton.
The fundamental observation is that most of the
significant information related to the input set U ,
to the output map q and to the dynamics of the
system, are contained in a pair ( ρ , H) of scalar
functions providing an effective representation of
the resolution (or dispersion) of the quantizers.
The quantization schemes typically encountered
in the literature include either innovation (Elia–
Mitter, 2001; Tatikonda–Mitter, 2004) or state
quantization (Delchamps, 1990; Wong–Brockett,
1999; Liberzon, 2003; Picasso–Bicchi, 2003) . In
the latter case, the output map y = q(x) is such
that q−1(y) is a bounded set. In this work instead,
quantized outputs are considered: the output map
q ◦ C : Rn → Y induces a state space partition
Rn =

⋃
y∈Y(q ◦ C)−1(y) made of unbounded sets

and this makes the problem considerably different.
We also remark that the only contributions ad-
dressing quantization as a problem datum do so
by fixing either input or state quantization. In our
work, we expressly consider the case in which both
input and output quantizations are assigned.

The paper is organized as follows: the problem is
formulated in Sec. 2, the main result about prac-
tical stability is in Sec. 3 (including an example)
and its proof is given in Sec. 4 . The easy proofs
of the most technical results are omitted.

Notation: Qn(∆) :=
[− ∆

2 ; ∆
2

]n
=

{
x ∈

Rn | ‖x‖∞ ≤ ∆
2

}
. Let E ⊆ Rk : Ech and # E

denote respectively its convex hull and its cardi-
nality; diam(E) := sup

x,y∈E
‖x− y‖2 is the diameter

of E . Given v ∈ Rk , E + v := {x ∈ Rk |x −
v ∈ E} . Let xi be the ith coordinate of x :
given Ω ⊆ Rn , Pri(Ω) := {ωi |ω ∈ Ω} and
diami(Ω) := diam

(
Pri(Ω)

)
. If A ∈ Rn×n , A Ω =

{Aω |ω ∈ Ω} while (Ax)i is the ith coordinate
of the vector Ax . x′ denotes the transpose of the
vector x , x+ stands for x(t + 1) .

2. PROBLEM STATEMENT

We deal with the discrete–time, quantized SISO
system given in Eqn. (1) . We assume that the pair
(A, b) is reachable and that the pair (A,C) is
observable. Without loss of generality, we assume
that the pair (A, b) is in controller form:

A =




0 1 · · · 0
...

. . . . . .
...

0 0 · · · 1
α1 α2 · · · αn


 , b =




0
...
0
1


 ,

where sn − αnsn−1 − · · · − α2s − α1 is the
characteristic polynomial of A . Because

‖A‖∞ = max
i=1,...,n

n∑

j=1

|Ai,j | = max
{

1 ,
n∑

i=1

|αi|
}

,

if
∑n

i=1 |αi| ≤ 1 then the system is stable, we
hence assume

∑n
i=1 |αi| > 1 and we let α :=∑n

i=1 |αi| .
The output quantizer q : R → Y is characte-
rized by the induced output space partition: R =⋃

y∈Y q−1(y) . The partition is supposed to be lo-
cally finite, namely, if B ⊂ R is bounded, # {y ∈
Y |B ∩ q−1(y) 6= ∅} < +∞ . We also assume that
∀ y ∈ Y , q−1(y) ⊆ R is a connected set. In this
case, by suitably redefining q without varying the
induced output space partition (hence, without
loss of generality) , we can assume that Y ⊂ R
and q : R → Y is such that ∀ y ∈ Y the closure
of q−1(y) is either an interval of length λy of the
type [ y − λy

2 ; y + λy

2 ] or a half–line. Let Y? :=
{y ∈ Y | q−1(y) is an interval of finite length} .
With regard to the control set, we assume that
0 ∈ U so that (x = 0, u = 0) is an equilibrium
pair. Given U∗ ⊆ U , let ρU∗ represent the disper-
sion (or maximal gap) of U∗ , that is:

ρU∗ :=





sup
{
diam

(
]a; b[

) ∣∣ ]a; b[⊆ U ch
∗ and

]a; b[ ∩ U∗ = ∅}
if #U∗ > 1

+∞ (conventionally) otherwise.
(2)

Definition 1. Given system (1) , let

ν : R −→ U (3)

be a map which associates to each real number
r an element of U minimizing the Euclidean
distance from r . The feedback law k : Rn → U
defined by

k(x) := ν
(−∑n

i=1 αixi

)
= ν

(−(Ax)n

)

is called state feedback quantized deadbeat con-
troller (state feedback qdb–controller).

The definition of the map ν is well posed because
U is a closed set.

Problem statement: given system (1) , we are
interested in the synthesis of a controller which,
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based on quantized output measurements y ∈ Y ,
selects a quantized control u ∈ U and ensures
practical stability properties. We will consider dy-
namical controllers and we will study the practical
stability notion of (X0, X1,Ω)–stability.
More precisely, let the controller be described by
the following system defined on some set W :{

w(t + 1) = γ
(
w(t), y(t), t

)
u(t) = φ

(
w(t), y(t), t

)
,

(4)

where γ : W × Y × N → W and φ : W × Y ×
N→ U . The closed–loop dynamics induced by the
feedback interconnection of such a controller with
system (1) is:



x(t + 1) = Ax(t) + b φ
(
w(t), q

(
Cx(t)

)
, t

)

w(t + 1) = γ
(
w(t), q

(
Cx(t)

)
, t

)
.

(5)

Definition 2. (Cf. (Fagnani–Zampieri, 2004)) Let
Ω , X0 and X1 be subsets of Rn such that
Ω and X0 are neighborhoods of the origin and
X1 ⊇ X0 is bounded. The controller (4) is said
to be (X0, X1, Ω)–stabilizing iff the corresponding
closed–loop dynamics (5) is so that ∀x(0) ∈ X0

and ∀w(0) ∈ W , x(t) ∈ X1 ∀ t ≥ 0 and ∃ t̄ ∈ N
such that ∀ t ≥ t̄ , x(t) ∈ Ω .

3. INPUT AND OUTPUT QUANTIZATION

The use of a controller endowed with memory,
hence taking the general form in Eqn. (4) , al-
lows to treat the quantized output case by taking
advantage of some techniques introduced for the
quantized state case. In fact, by storing the past
inputs and outputs, it is possible to reconstruct
a bounded region within which the current state
is confined. Nevertheless, the state quantization
obtained in this way is time–varying so that the
results from the quantized state case need to be
further elaborated in order to be applied to the
quantized output problem.
Following (Picasso et al., 2002; Picasso–Bicchi,
2003) , the stabilization problem is studied taking
into consideration sets X0, X1 and Ω in the form
of hypercubes in the controller form coordinates.
This choice makes the analysis particularly simple
so that explicit results can be provided for arbi-
trarily assigned input and output quantized sets.

3.1 Preliminaries

Suppose that at time t the current state of
the system x(t) is only known to belong to a
certain bounded set, more precisely assume that
x(t) ∈ Cx(t) ⊂ Qn(∆) . The existence of a control
value u ∈ U ensuring that x(t + 1) ∈ Qn(∆)
is tantamount to requiring that ∃u ∈ U such
that ACx(t) + b u ⊆ Qn(∆) . For u ∈ U , by the
controller form of (A, b) , it holds that

x+ = (x2, . . . , xn,
∑

i αixi + u) ∈ Qn(∆)
⇐⇒

∣∣ ∑
i αixi + u

∣∣ ≤ ∆
2 .

(6)

Therefore, x(t + 1) ∈ Qn(∆) if and only if

Prn(ACx(t)) + u ⊆ [− ∆
2 ; ∆

2

]
. (7)

It is then important to have an estimate of
diamn(ACx(t)) . Furthermore, the control acts only

on the nth component while the others shift up-
ward

(
see Eqn. (6)

)
: hence, trajectories with both

the properties of converging to a small neighbor-
hood Ω of the equilibrium and a high speed of
convergence towards Ω can be obtained by select-
ing the control value u so that the middle point
of the set Prn(ACx(t))+u is as near as possible to
0 . This task is accomplished by the state feedback
qdb–controller.
Accordingly, the dynamic qdb–controller pro-
posed below is based on the following paradigm:

1- a bounded set within which the current state
lies is located;
2- an estimate x̂ of the current state is obtained;
3- the control action is selected by the state
feedback qdb–controller, namely u = k(x̂) .

Before explicitly defining the dynamic qdb–con-
troller, we need the following preliminary result.

Lemma 1. If x ∈ Qn(∆) and u is such that
x+ ∈ Qn(∆) , then u ∈ [− ∆

2 (α +1) ; ∆
2 (α +1)

]
.

Hence, if the goal is to find u ∈ U such that x+

remains in Qn(∆) , the set of the control values
that are relevant to this problem is

U(∆) := U ∩ [− ∆
2 (α + 1) ; ∆

2 (α + 1)
]
. (8)

Notice that #U(∆) < +∞ because U is a closed
discrete set. Let{

m(∆) := min U(∆)
M(∆) := max U(∆)

and, according to (2) , let

ρ(∆) := ρU(∆) (9)

be the dispersion of U(∆) .

3.2 The dynamic qdb–controller

In this section the dynamic qdb–controller is de-
fined following the steps listed in the paradigm
described in the previous section. The practical
stability properties of the corresponding closed
loop system are then analyzed in Theorem 1 .

Step 1- Derivation of Cx(t)

The function q : Rn → Yn defined by q(z) :=(
q(z1), . . . , q(zn)

)
induces a partition of Rn such

that ∀y ∈ Yn
? the closure of q−1(y ) is y +Py ,

where Py =
∏n

i=1[−
λyi

2 ; λyi

2 ] . Let

S :=




0 0 · · · 0
Cb 0 · · · 0

CAb Cb
. . . 0

...
...

. . .
...

CAn−2b CAn−3b · · · Cb



∈ Rn×(n−1) .

Denote by u (t) and y (t) the vectors collecting
respectively the last n− 1 inputs and the last n
outputs at time t ( t ≥ n − 1 ) , that is u (t) :=(
u(t − n + 1), . . . , u(t − 1)

)′ , and y (t) :=
(
y(t −

n + 1), . . . , y(t)
)′ . Let R :=

[
An−2b | · · · |Ab |b ] ∈

Rn×(n−1) and O ∈ Rn×n be the observability
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matrix (i.e., the matrix whose i th row is CAi−1 ) :
O is invertible by hypothesis.
By standard theory on observability it holds that

y (t) = q
(O x(t− n + 1) + Su (t)

)
,

hence

x(t− n + 1) ∈ O−1
(
q−1

(
y (t)

)− Su (t)
)

and

x(t) ∈ An−1O−1
(
q−1

(
y (t)

))−
−An−1O−1Su (t) + Ru (t) .

If moreover y (t) ∈ Yn
? , as the closure of q−1(y )

is y + Py , then the current state belongs to the
following bounded set:

x(t) ∈ Cx(t) := An−1O−1
(Py(t)

)
+

+An−1O−1y (t) +(R−An−1O−1S)u (t) .
(10)

Step 2- State estimation

Let the map ψ : Yn × Un−1 → Rn be defined by

ψ(y,u ) :=An−1O−1y+(R−An−1O−1S)u . (11)

If y (t) ∈ Yn
? , then x̂(t) := ψ

(
y (t) , u (t)

)
is the

centroid of the parallelogram Cx(t) .

Step 3- Control selection

The controller is defined by selecting the control
action as if the current state was ψ

(
y (t) , u (t)

)
.

Naturally, such controller needs to be initialized
for t ≤ n − 2 , we hence define the dynamic qdb–
controller as follows: denote by k(x) the state
feedback qdb–controller and let 3

u(t) :=
{

0 if t ≤ n− 2
(k ◦ ψ)

(
y (t), u (t)

)
if t ≥ n− 1 . (12)

Practical stability analysis

Let us analyze the resulting closed–loop dynamics.
For t ≤ n−1 , by the controller form of A , it holds
that ∀x(0) ∈ Qn(∆) and ∀ t ≤ n − 1 , x(t) ∈
Qn(∆‖An−1‖∞) . For t ≥ n , let us determine an
upper bound H(∆) for diamn(A Cx(t)) : for any
∆ > 0 , consider Y(∆) :=

(
q ◦ C

)(
Qn(∆)

)
. If

Y(∆) ⊆ Y? , let Λ∆ := max
y∈Y(∆)

λy and H(∆) :=

diamn

(
AnO−1

(
Qn(Λ∆)

))
, else H(∆) := +∞ .

Let ∆ > 0 be such that Y(∆) ⊆ Y? and suppose
that y (t) ∈ Y(∆)n : since Cx(t) is a translation
of the set An−1O−1

(Py(t)

) (
see Eqn. (10)

)
, and

Py(t) ⊆ Qn(Λ∆) , then

diamn(ACx(t)) = diamn

(
AnO−1(Py(t))

) ≤
≤ diamn

(
AnO−1

(
Qn(Λ∆)

))
= H(∆) .

(13)

Theorem 1. Let ∆1 > 0 be such that



m(∆1) < −∆1

2
(α− 1)

M(∆1) >
∆1

2
(α− 1)

ρ(∆1) + H(∆1) < ∆1 ,

(14)

(15)

(16)

3 This controller can be modelled in the form of Eqn. (4)
with W := Yn × Un−1 : see in Appendix.

and ∆0 := ∆1
‖An−1‖∞ . Consider the following

algorithm:

◦ Input: ∆ := ∆1• h := 1 ;
• while

(
ρ(∆h) + H(∆h) < ∆h

)
do(

∆h+1 := ρ(∆h) + H(∆h) ;
∆ := (∆,∆h+1) ∈ Rh+1 ; h := h + 1

)
◦ Output: ∆ .

(17)

The output ∆ ∈ Rf for some f < +∞ and
∆h > ∆h+1 ∀h = 1, . . . , f−1 . Moreover, let k(x)
be the state feedback qdb–controller with satu-
rated inputs U = U(∆1) , then the dynamic qdb–
controller (12) is

(
Qn(∆0), Qn(∆1), Qn(∆f )

)
–

stabilizing.

Proof. The proof is given in next Section 4.

Example 1. Consider the unstable system




x+ =
(

0 1
5/4 1/4

)
x +

(
0
1

)
u

y = q(Cx) ,

where C = ( 3/2 1/3 ) , u ∈ U = {0 ,±1 ,±2 ,±3 ,
±4 ,±6 ,±8 ,±12 ,±16 ,±24} and the extremes of
the intervals forming the output space partition
induced by q are

{± 3
2 ,± 9

2 ,± 15
2 ,± 25

2 ,± 39
2

}
.

According to the developed theory, let Y = Y? ∪
{±ys} = {0 ,±3 ,±6 ,±10 ,±16 ,±ys}

(
where Y?

collects the middle points of the output quanti-
zation intervals and q takes the values ±ys for
|Cx| > 39

2

)
. The values of λy for y ∈ Y? are:

λ0 = λ±3 = λ±6 = 3 , λ±10 = 5 and λ±16 = 7 .
The infinity norm of A is α = 3

2 . By direct
computations it holds that ρ(∆) + H(∆) < ∆ ⇔
ρ(∆) + 6

7Λ∆ < ∆ ⇔ ∆ ∈ ]
25
7 ; 234

11

]
:= I . Also,

M
(

234
11

)
= 24 > 234

11 · α−1
2 ' 5.32 and inequali-

ties (14–15) are satisfied ∀∆ ∈ I (see Lemma 4 in
Sec. 4) , hence Theorem 1 guarantees that ∀∆ ∈
I , the dynamic qdb–controller with saturated
inputs U = U(∆) is

(
Q2(∆

α ), Q2(∆), Q2(∆f )
)
–

stabilizing with ∆f = 25
7 (see Fig. 2) .

4. PROOF OF THEOREM 1

In order to prove Theorem 1 some preliminary
results are needed. We will refer to the following
notation: ∀∆ > 0 such that ρ(∆) < +∞ ,
define the partition R = SM(∆) ∪ N∆ ∪ Sm(∆) ,
where SM(∆) := ] −∞ ; −M(∆) − ρ(∆)

2 [ , N∆ :=
[−M(∆) − ρ(∆)

2 ; −m(∆) + ρ(∆)
2 ] and Sm(∆) :=

]−m(∆) + ρ(∆)
2 ; +∞[ . Let S∆ := SM(∆)∪Sm(∆) .

Let us analyze the main properties of the map ν
defining the state feedback qdb–controller.

Lemma 2. (Basic properties of ν ). Let ∆ > 0 :
ı) if inequalities (14–15) hold, then ∀ z ∈
Prn

(
AQn(∆)

)
, ν(z) ∈ U(∆) ;

ıı) if ρ(∆) < +∞ and z ∈ N∆ , then |z +
ν(−z)| ≤ ρ(∆)

2 ;
ııı) assume ρ(∆) < +∞ and let z be such that
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-

6

∆

ρ(∆)+H(∆)

4
5

24
5

90
11

48
5

150
11

96
5

234
11

25/7

32/7

44/7

58/7

10

14
q

q

q

q

qp

p
p
p
p
p

p
p

p

p

p
p

p

-

6

x1

x2

Q2(14)

Q2(21)

Q2(25/7)

Fig. 2. Left : graph of ρ(∆) + H(∆) . Right : a trajectory generated by the dynamic qdb–controller for
∆0 = 14 and x(0) = (5.42 6.60) . Broken lines identify the state space partition induced by q ◦ C .

ν(−z) ∈ U(∆) . If z ∈ SM(∆) , then ν(−z) =
M(∆) and |z + ν(−z)| = −(

z + ν(−z)
)

> ρ(∆)
2 ;

if z ∈ Sm(∆) , then ν(−z) = m(∆) and z +
ν(−z) > ρ(∆)

2 .

The core of the proof of Theorem 1 is represented
by the following result:

Lemma 3. (Main tool). Let ∆ > 0 be such that
ρ(∆) < +∞ and inequalities (14–15) hold. As-
sume that x ∈ Qn(∆) and x̂ ∈ Rn are so that∣∣(A(x− x̂)

)
n

∣∣ ≤ H
2 (for some H ≥ 0 ) . Let k(x)

be the state feedback qdb–controller and suppose
that k(x̂) ∈ U(∆) , then x+ = Ax + b k(x̂) is
such that |x+

n| ≤ max
{ρ(∆)+H

2 , ‖x‖∞ − ϕ(∆)
}

,
where

ϕ(∆) := min
{

M(∆)− ∆
2 (α− 1) ,

−∆
2 (α− 1)−m(∆)

}
.

(18)

Proof. By definition of k , x+
n = (Ax)n + ν

( −
(Ax̂)n

)
. Notice also that, by Lemma 2. ı , ν

( −
(Ax)n

) ∈ U(∆) . Three cases can occur:
I) Suppose that (Ax̂)n ∈ N∆ , then
|x+

n| =
∣∣(A(x− x̂)

)
n

+ (Ax̂)n + ν
(− (Ax̂)n

)∣∣ ≤
≤

∣∣(A(x− x̂)
)
n

∣∣ +
∣∣(Ax̂)n + ν

(− (Ax̂)n

)∣∣≤
≤ H

2 + ρ(∆)
2 ,

where the last inequality follows by the hypothesis
on x̂ and by Lemma 2.ıı .
II) Suppose that (Ax̂)n ∈ S∆ and x is such
that (Ax)n ∈ N∆ . If (Ax̂)n ∈ Sm(∆) , then
k(x̂) = m(∆) thanks to Lemma 2. ııı which can
be applied because, by assumption, k(x̂) ∈ U(∆) .
Hence, x+

n = (Ax)n + m(∆) ≤ (Ax)n + ν
( −

(Ax)n

) ≤ ρ(∆)
2 , where the first inequality holds

because ν
( − (Ax)n

) ∈ U(∆) and the latter by
Lemma 2.ıı . Moreover, by Lemma 2. ııı , (Ax̂)n +
ν
( − (Ax̂)n

)
> ρ(∆)

2 , and by assumption
(
A(x −

x̂)
)
n
≥ −H

2 , therefore x+
n =

(
A(x − x̂)

)
n

+
(Ax̂)n + ν

(− (Ax̂)n

)
> −H

2 + ρ(∆)
2 > −H +ρ(∆)

2 .
To sum up, |x+

n| ≤ ρ(∆)+H
2 . The case (Ax̂)n ∈

SM(∆) is similar.
III) Suppose that (Ax̂)n ∈ S∆ and (Ax)n ∈ S∆ .
If (Ax̂)n ∈ Sm(∆) , we know by part II that
k(x̂) = m(∆) and x+

n > −H +ρ(∆)
2 . Assume that

(Ax)n ∈ SM(∆) , since ν
(− (Ax)n

) ∈ U(∆) , then
x+

n = (Ax)n + m(∆) < (Ax)n + M(∆) = (Ax)n +
ν
(− (Ax)n

)
< −ρ(∆)

2 , where both the last equal-
ity and the last inequality hold by Lemma 2.ııı .
Hence, |x+

n| < H +ρ(∆)
2 . If instead (Ax)n ∈

Sm(∆) , then |x+
n| ≤ ‖x‖∞ − ϕ(∆) . In fact: in

this case k(x) = k(x̂) = m(∆) and, thanks to in-
equalities (14–15) , we can write m(∆) = −∆

2 (α−
1)−ϕ(∆)−θ , with θ ≥ 0 . Again by Lemma 2. ııı ,
x+

n = (Ax)n + m(∆) > ρ(∆)
2 > 0 , hence |x+

n| =
(Ax)n +m(∆) ≤ ∑

i |αi| |xi|+m(∆) ≤ α · ‖x‖∞+
m(∆) = α ·‖x‖∞− ∆

2 (α−1)−ϕ(∆)−θ ≤ ‖x‖∞−
ϕ(∆) because

(‖x‖∞ − ∆
2

)
(α − 1) − θ ≤ 0 . The

case (Ax̂)n ∈ SM(∆) is similar.

Remark 1. The motivation for assuming k(x̂) ∈
U(∆)

(
which corresponds to the restriction of

the state feedback qdb–controller to the saturated
input set U = U(∆1) in Theorem 1

)
is that, by

Lemma 1 , if k(x̂) 6∈ U(∆) , then x+ 6∈ Qn(∆) .

Lemma 4. If ∆ > 0 satisfies inequalities (14–15) ,
and ∆′ is such that ρ(∆) ≤ ∆′ < ∆, then ∆′
satisfies inequalities (14–15) .

Proof of Theorem 1. The sequence defined by
the algorithm (17) is decreasing by construction,
let us show that it is finite: first notice that, by
definition, H(∆) is a piecewise constant and non–
decreasing function. As for ρ(∆) , ∃ ∆̄ > 0 such
that ρ(∆) = +∞ ∀∆ < ∆̄ , whilst for ∆ ≥ ∆̄ ,
ρ(∆) is piecewise constant and non–decreasing
with ∆ . If ρ(∆h+1) + H(∆h+1) < ρ(∆h) +
H(∆h) , then ρ(∆h+1) < ρ(∆h) or H(∆h+1) <
H(∆h) : in the first case #U(∆h+1) < #U(∆h) ,
in the latter #Y(∆h+1) < #Y(∆h) . Therefore,
f ≤ #U(∆1) + #Y(∆1) < +∞ because U is a
closed discrete set and the output space partition
induced by q is supposed to be locally finite.
We have already noticed that ∀x(0) ∈ Qn(∆0)
and ∀ t ≤ n − 1 , x(t) ∈ Qn(∆1) , therefore
y (n − 1) ∈ Y(∆1)n . Since H(∆1) < +∞(
see inequality (16)

)
, then Y(∆1) ⊆ Y? and

diamn(ACx(n−1)) ≤ H(∆1) . Because x̂(n − 1) is
the centroid of the parallelogram Cx(n−1) , then∣∣∣
(
A

(
x(n− 1)− x̂(n− 1)

))
n

∣∣∣ ≤ H(∆1)
2 . Moreover,

k
(
x̂(n − 1)

) ∈ U(∆1) by assumption, therefore
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Lemma 3 guarantees that

|xn(n)| ≤ max
{

∆2
2 = H(∆1)+ρ(∆1)

2 ,
‖x(n− 1)‖∞ − ϕ(∆1)

}
< ∆1

2

(19)

(
where ϕ(∆1) > 0 is defined in Eqn. (18)

)
. Since

x+ = (x2, . . . , xn, x+
n) , then x(n) ∈ Qn(∆1) and

y (n) ∈ Y(∆1)n : therefore, the arguments which
have allowed us to prove that x(n) ∈ Qn(∆1)
can be repeated so that ∀ t > n , x(t) ∈ Qn(∆1) .
Furthermore, because ϕ(∆1) > 0 does not de-
pend on t , ∃ t1 > 0 such that ∀ t ≥ t1 , x(t) ∈
Qn(∆2) . Therefore y (t1 + n− 1) ∈ Y(∆2)n and
diamn(ACx(t1+n−1)) ≤ H(∆2) . If f > 2 , the
arguments above can be iterated until tf−1 is
found such that ∀ t ≥ tf−1 , x(t) ∈ Qn(∆f ) : we
have only to check that ∀h = 2 . . . , f − 1 , ∆h
satisfies the hypotheses of Lemma 3 .
Indeed, let h ∈ {2, . . . , f − 1} . By the algo-
rithm (17) , ρ(∆h) = ∆h+1 − H(∆h) < +∞ .
Inequalities (14–15) are satisfied by ∆h

(
this

guarantees that ϕ(∆h) > 0
)
, in fact: such in-

equalities hold for ∆1 by assumption and, since
ρ(∆h−1) ≤ ∆h = ρ(∆h−1) + H(∆h−1) < ∆h−1 ,
then the result follows by recursive application
of Lemma 4 . As far as the remaining two hy-
potheses are concerned, that is k

(
x̂(th−1 + n −

1)
) ∈ U(∆h) and

∣∣∣
(
A

(
x(th−1 +n− 1)− x̂(th−1 +

n − 1)
))

n

∣∣∣ ≤ H(∆h)
2 , we have already noticed

that diamn(ACx(t1+n−1)) ≤ H(∆2) implies that∣∣∣
(
A

(
x(t1 + n − 1) − x̂(t1 + n − 1)

))
n

∣∣∣ ≤ H(∆2)
2 .

Moreover, since ∀ t ≥ t1 , x(t) ∈ Qn(∆2) , then
∀ t ≥ t1 , k

(
x̂(t)

) ∈ U(∆2) thanks to Lemma 1 .
We then conclude by a recursive argument.

5. CONCLUSION

We have introduced a novel technique for the
stabilizability analysis of quantized SISO systems.
The results hold under very general hypotheses
and are of direct applicability. Interesting ques-
tions are open for future investigations, especially
in the framework of sampled continuous–time sys-
tems under communication constraints.
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6. APPENDIX

Let us represent the dynamic qdb–controller de-
fined in Eqn. (12) in the form of Eqn. (4) . Let

W := Yn × Un−1 ,

the elements w ∈ W are denoted either by w =
(y, u) or w = (w1, · · · , w2n−1) . Let

φ̃ : W × (N ∪ {−1}) → U
be defined by

φ̃
(
(y, u), t

)
=

{
0 if t ≤ n− 2
(k ◦ ψ)(y, u) if t ≥ n− 1 ,

and
γ : W ×Y × N → W

be defined by

γ
(
w, y, t

)
=

(
y, w1, · · · , wn−1,

φ̃(w, t− 1), wn+1, · · · , w2n−2

)
.

Finally,
φ : W ×Y × N → U(

w, y, t
) 7→ φ̃

(
γ(w, y, t), t

)
.
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