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Abstract: This paper is devoted to the problem of design a dynamic controller
of switched linear systems. In the ¯rst part of this paper, we give some remarks
about the in°uences of switching signal on the asymptotic stability of switched
systems. We give a practical example to generate a large class of switching signals.
The second part is devoted to the switched dynamic controller design, based on
a common Lyapunov function approach. A su±cient condition are formulated as
an LMI problem for the switched controller design under arbitrary switching. A
stabilizing switched controller with regional pole placements is also formulated
as a convex problem, an LMI approach is used to derive the switched dynamic

controller with performance limitations.  Copyright © 2006 IFAC
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1. INTRODUCTION

Switched systems are hybrid dynamical systems
consisting of a family of continuous-time subsys-
tems and a switching rule that orchestrates the
switching among them. The primary motivation
for studying switched systems in control theory
comes partly from the fact that switched sys-
tems have numerous applications in control of
mechanical systems, process control, automotive
industry, power systems, aircraft, tra±c control,
biology, network and many other ¯elds [8], [9].
Stability of switched systems is not systematic
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and we can meet certain strange phenomena, even
when all the subsystems are asymptotically stable.
For example, the switched system can be unstable
under certain switching signals [2], [11]. Thus, the
stability of switched systems depends not only on
the dynamics of each subsystem but also on the
behavior of the switching signals.
The common Lyapunov approach is one of the
principal methods to study stability and de-
sign a controller of switched systems. This ap-
proach is based on the existence of a common
quadratic Lyapunov function for all subsystems
of the switched system. There have been various
attempts to derive conditions for the existence of a
common quadratic Lyapunov function. Under the
asymptotic stability of each subsystem, a common
Lyapunov function exists when the subsystems
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matrices are pairwise commutative [13]. In [1],
[10], the authors proposed a generalization of the
commutativity notion, based on the solvability
of the Lie algebra generated by the subsystems
state matrices, i.e., state matrices are upper-
triangularizable in the same reference frame. Note
that many other results are based on the multiple
Lyapunov (or like Lyapunov) functions approach
[2], [5], [11].
In the context of switched systems with linear
continuous-time subsystems, the issues of stabi-
lization and control have been studied in many
works [5], [11], [12], [14], [15], [16] and [17].
In this paper, we will focus on the study of a
dynamic stabilization of switched linear systems.
The paper is then organized as follows: In the next
Section, we present some remarks on the in°uence
of the switching signal on the stability of switched
systems. In section III, a switched dynamic con-
troller is studied based on an LMI approach. A
dynamic switched controller with regional pole
placements is investigated in section IV. Su±cient
conditions for the existence of a dynamic switched
controller with performance limitations are then
given.

2. STABILITY UNDER SOME SWITCHING
SIGNALS

In this section, we are interested in switched linear
systems of the form

ẋ(t) = Aσ(t)x(t) (1)

where Aσ ∈ Rn£n, ¾ ∈ Q
4
= {1, ..., N}, x ∈ Rn

and ¾(t) : [0, ∞) → Q is a piecewise constant
switching signal.
As mentioned in the introduction, the stability
of switched systems are strongly related to the
switching signal behavior, except in the case when
all subsystems share the same Lyapunov function.
Hereafter we will analyze the switched systems by
using di®erent class of switching signals. For this,
we give four basic classes of switching signals, each
class is characterized by some behavior, which
can have a signi¯cant in°uence on the asymptotic
stability of the switched system. These classes can
be summarized by:
Class 0. This class contains all switching signals
with a ¯nite number of switchings. We denote this
class by P0. Theoretically for this class, if all the
subsystems are asymptotically stable, then at a
certain ¯nite time, the switched system evolves
as only one subsystem. Therefore the switched
system is asymptotically stable.
The remaining classes considered in this paper are
those containing an in¯nite number of switchings.
Class 1. This class de¯nes all switching signals for
which any consecutive switching times tk and tk+1
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Fig. 1. The random signal used for the generation of σ(t)

are separated by some dwell-time ¿D. Denote by
P1 the set of this class,

P1 = {¾ ∈ Q : tk+1 ¡ tk ¸ ¿D} (2)

Class 2. This class can be de¯ned as

P2 = {¾ ∈ Q : ∃¿ > 0 : ∀T > 0, ∃ i > 0

such that ti+1 ¡ ¿ ¸ ti ¸ T} (3)

This class includes the class for which the number
of discontinuities of ¾ in any interval of time is
bounded [7]

Nσ(t, ¿) · N0 +
t ¡ ¿

¿D

, ∀t ¸ ¿ ¸ 0 (4)

where Nσ(t, ¿) is the number of discontinuities
of ¾ in the open interval (¿, t), ¿D is called the
average dwell time and N0 the chatter bound.
Class 3. This class is the class of all switching
signals who dot not belong to P0, P1 or P2. This
class contains the chattering and Zeno switching
signals. We can write that

P1 ½ P2 ½ P3 (5)

Now, we give a procedure to generate each
class of switching signals given above. Consider
a random signal, with some sample time ∆T , and
amplitude a ∈ [¡am, am]. Fig.1 shows an example
of such signal. The three classes P1, P2, P3 can
be generated for Q = {1, 2} as

Pi = {¾ ∈ Q :

¾ = 1 if [a · ¡ai] ∨ [(¡ai < a < ai) ∧ (¾¡ = 1)]

¾ = 2 if [a ¸ ai] ∨ [(¡ai < a < ai) ∧ (¾¡ = 2)]}

(6)

where i = 1, 2, 3 and a3 < a2 < a1 < am are the
parameters characterizing each class (see Fig.1),
and ¾¡ is the previous value of ¾. The same
procedure can be used for Q = {1, ..., N}, N > 2.
We can also generate more complex classes by this
procedure. Like a Zeno signal can be generated by
setting

ai =











¡®t + ¯ if t ·
¯

®

0 if t >
¯

®

, ®, ¯ > 0 (7)

for an analytic example see [7].
Now, we give some remarks about the stability
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under these classes. For this, we limit our re-
marks to the case of a Lyapunov function equal
to xT x. Rewrite each matrix Aσ as Aσ = Sσ +
Mσ, where Sσ and Mσ are the symmetric and
the skew-symmetric part of Aσ respectively, given
by Sσ = 1

2 (Aσ + AT
σ ) and Mσ = 1

2 (Aσ ¡ AT
σ ).

The following theorem is a su±cient condition for
stability of the switched system (1).

Theorem 1. If the following conditions

i) Sσ is semi negative for all ¾ ∈ Q,
ii) (Sσ, Aσ) is observable for all ¾ ∈ Q,

hold, then the switched system (1) is globally uni-
formly stable under arbitrary switching. Moreover,

iii) If ¾(t) ∈ P2, then the switched system is
globally uniformly asymptotically stable.

Proof. The proof can be found in [4].

Corollary 1.

1) If the matrices Aσ are Hurwitz, then the pair
(Sσ, Aσ) is observable, therefore condition ii) of
theorem 1 is ful¯lled.
2) If the symmetric part Sσ is negative de¯nite
for all ¾ ∈ Q, then the switched system is globally
uniformly asymptotically stable under arbitrary
switching, and condition iii) of theorem 1 can be
relaxed.
3) If the linear algebra generated by {Aσ, AT

σ }
is solvable and Aσ are Hurwitz, then Sσ are
negative de¯nite, therefore the switched system
(1) is globally uniformly asymptotically stable and
condition iii) of theorem 1 can be relaxed.

Example 1. Consider the switched system ẋ =
Aσ(t)x, with

A1 =

·

0 ¡1
1 ¡2

¸

, A2 =

·

0 1
¡1 ¡2

¸

(8)

The symmetric part of the matrices Aσ, ¾ = 1, 2
are given by

S1 = S2 =

·

0 0
0 ¡2

¸

(9)

which are semi-negative de¯nite. Condition i)
and ii) of theorem 1 are satis¯ed, then the
switched system is globally uniformly stable. Now
we present some situations in which the switched
system can be stable or asymptotically stable de-
pending on condition iii) of theorem 1.

a) We use a switching signal of class 3. As stated
in theorem 1, in Fig.2, the switched system is
stable but does not converge to zero (see [7] for
an analytic proof).

b) We use a switching signal ¾(t) ∈ P2. In Fig.3
the switched system is asymptotically stable as
mentioned in iii) of theorem 1.

c) In the third case, we use a switching signal of
class 1. Fig.4 shows that the switched system is
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Fig. 2. Trajectory of the switched system under a switch-

ing signal of class 3, σ ∈ P3.
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Fig. 3. Trajectory of the switched system under a switch-

ing signal of class 2, σ ∈ P2.
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Fig. 4. Trajectory of the switched system under a switch-

ing signal of class 1, σ ∈ P1.

asymptotically stable. However the convergence
is faster than situation b).

This example con¯rms that the asymptotic sta-
bility depends critically on the class of switching
signals considered.
In the sequel, the stability based on the com-
mon Lyapunov function will be used to design a
stabilizing dynamic controller of switched linear
systems.

3. SWITCHED DYNAMIC CONTROLLER

Consider the continuous-time switched linear sys-
tem described by

x(t) = Aσ(t)x(t) + Bσ(t)u(t),

y(t) = Cσ(t)x(t), (10)

¾(t) : R+ → Q, Q := {1, ..., N}.

where x(t) ∈ Rn is the continuous state, u(t) ∈
Rnu is the control input, y(t) ∈ Rny is the output,
¾(t) is the switching signal, and Aσ ∈ Rn£n, Bσ ∈
Rn£nu , Cσ ∈ Rny£n are the subsystem matrices.
We assume that the switching signal ¾(t) is avail-
able in real time. In this section, we search a dy-
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namic stabilizing controller having the following
state representation







ẋc(t) = Aσ(t)xc(t) + Bσ(t)y(t)
u(t) = Cσ(t)xc(t) + Dσ(t)y(t)
¾(t) ∈ Q, xc(0) = x0

(11)

where xc(t) ∈ Rnc is the state of the controller,
Aσ ∈ Rnc£nc , Bσ ∈ Rnc£ny , Cσ ∈ Rnu£nc and
Dσ ∈ Rnu£ny , ¾ ∈ Q are the state parameters
of the switched dynamic controller. A su±cient
conditions for the existence of the stabilizing con-
troller of the form (11) are provided by the follow-
ing theorem.
Theorem 2. If there exist matrices P1, Q1,
(F 1, F 2, F 3, F 4)σ, ¾ ∈ Q, and matrices P2, P3, Q2

such that the following LMIs/equation












AσP1 + P1A
T
σ

+BσF 2
σ + F 2T

σ BT
σ

Aσ + BσF 1
σCσ

+F 4T
σ

AT
σ + CT

σ F 1T
σ BT

σ

+F 4
σ

Q1Aσ + AT
σ Q1

+F 3
σCσ + CT

σ F 3T
σ













< 0,

(12)
Q1P1 + P2Q

T
2 = I, (13)

and
·

P1 PT
2

P2 P3

¸

> 0 (14)

hold, then the dynamic controller (11), with the
parameters (A ,B,C ,D)σ given by

·

Aσ Bσ

Cσ Dσ

¸

=

·

Q2 Q1Bσ

0 I

¸¡1 µ·

F 4
σ F 3

σ

F 2
σ F 1

σ

¸

+

·

Q1AσP1 0
0 0

¸

)

·

P2 0
CσP1 I

¸¡1

(15)

ensures the asymptotic stability of the closed
loop switched system under arbitrary switching,
and all closed loop subsystems share the com-
mon Lyapunov function V (x̃) = x̃T P¡1x̃, P :=
·

P1 PT
2

P2 P3

¸

.

Proof. The closed loop switched system is given
by

˙̃x(t) = Acl
σ(t)x̃(t), x̃(0) = x̃0 (16)

with

Acl
σ :=

·

Aσ + BσDσCσ BσCσ

BσCσ Aσ

¸

; x̃ :=

·

x
xc

¸

(17)
a su±cient condition for quadratic stability of (16)
under arbitrary switching is the existence of a
common Lyapunov function V (x̃) = x̃T Wx̃, such
that

W = WT > 0, WAcl
σ +AclT

σ W < 0, ¾ ∈ Q (18)

Multiplying the second inequality in (18) on the
left and right by W¡1, and de¯ning a new variable
P = W¡1, we may rewrite (18) as

P = PT > 0, Vσ := Acl
σ P + PAclT

σ < 0, ¾ ∈ Q
(19)

This dual inequality is an equivalent condition for
quadratic stability. Now, consider that there exists
a symmetric matrix P > 0, such that (19) holds.
De¯ne P and its inverse as

P :=

·

P1 PT
2

P2 P3

¸

, P¡1 :=

·

Q1 Q2

QT
2 Q3

¸

(20)

The development of (19) gives

Vσ =

·

Vσ(1, 1) Vσ(1, 2)
Vσ(2, 1) Vσ(2, 2)

¸

< 0 (21)

where

Vσ(1, 1) = AσP1 + P1A
T
σ + P1C

T
σ D

T
σ BT

σ

+PT
2 C

T
σ BT

σ + BσDσCσP1 + BσCσP2

Vσ(1, 2) = AσPT
2 + BσDσCσPT

2 + BσCσP3

+P1C
T
σ BT

σ + PT
2 A

T
σ

Vσ(2, 1) = BσCσP1 + AσP2 + P2A
T
σ

+P2C
T
σ D

T
σ BT

σ + P3C
T
σ BT

σ

Vσ(2, 2) = BσCσPT
2 + AσP3 + P2C

T
σ BT

σ

+P3A
T
σ

We show well that Vσ with the parameters de¯ned
in the above equations, is not a±ne in the vari-
ables P1, P2, P3 and (A ,B,C ,D)σ, then Vσ < 0
is not a convex problem. For this we must trans-
form (21) to an a±ne form in synthesis variables.
First, we apply to (21) a transformation, (21) is
equivalent to

Vσ < 0 ⇔ ©TVσ© < 0 (22)

where © is a matrix transformation to be deter-
mined, such that

©T Acl
σ P© + ©T PAclT

σ © < 0

and ©T Acl
σ P©,©T PAclT

σ © = indirectly a±ne (P1,

P2, P3,Aσ,Bσ,Cσ,Dσ)

De¯ne the matrix transformation © as

© :=

·

I Q1

0 QT
2

¸

⇒ P© =

·

P1 I
P2 0

¸

(23)

where I is the identity matrix.

De¯ne the following change of variables

F 1
σ := Dσ, (24)

F 2
σ := CσP2 + DσCσP1, (25)

F 3
σ := Q2Bσ + Q1BσDσ, (26)

F 4
σ := Q2AσP2 + Q1AσP1 + Q2BσCσP1

+Q1BσCσP2 + Q1BσDσCσP1 (27)

by this change of variables, ©T Acl
σ P©,©T PAclT

σ ©
become

©T Acl
σ P© =

[

AσP1 +BσF
2

σ Aσ +BσF
1

σCσ

F 4

σ Q1Aσ + F 3

σCσ

]
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©T PAclT
σ © =

[

P1A
T
σ + F 2T

σ BT
σ F 4T

σ

AT
σ + CT

σ F
1T
σ BT

σ AT
σQ1 + CT

σ F
3T
σ

]

which are a±ne in the variables F 1
σ , F 2

σ , F 3
σ ,

F 4
σ , P1, Q1 and the nonlinear inequality of the

synthesis variables P1,P2,P3 and (A ,B,C ,D)σ

can be transformed to an LMI form, with F 1
σ , F 2

σ ,
F 3

σ , F 4
σ , P1 and Q1 as variables of the LMI. Then

the problem which consists to ¯nd Aσ,Bσ,Cσ,Dσ

is transformed to an LMI problem, which consists
to compute the variables F 1

σ , F 2
σ , F 3

σ , F 4
σ , P1, Q1.

These LMIs are given by












AσP1 + P1A
T
σ

+BσF 2
σ + F 2T

σ BT
σ

Aσ + BσF 1
σCσ

+F 4T
σ

AT
σ + CT

σ F 1T
σ BT

σ

+F 4
σ

Q1Aσ + AT
σ Q1

+F 3
σCσ + CT

σ F 3T
σ













< 0,

(28)
the change of variables (24)-(27) can be putted in
the compact form

·

F 4
σ F 3

σ

F 2
σ F 1

σ

¸

=

·

Q2 Q1Bσ

0 I

¸ ·

Aσ Bσ

Cσ Dσ

¸ ·

P2 0
CσP1 I

¸

+

·

Q1

0

¸

Aσ

£

P1 0
¤

(29)

LMI (28) do not depend on P2, Q2, but these two
variables appear in (29), then these variables are
necessary to compute the switched controller pa-
rameters (Aσ,Bσ,Cσ,Dσ). For this the variables
P2 and Q2 should be computed a posteriori. Given
matrices Q1 > 0 and P1 > 0, the matrices P2 > 0
and Q2 > 0 must be computed from 13, and
¯nally the dynamic switched controller gains are
computed using (15).

Remark 1. If dim x = dim xc, i.e., the controller
has the same order of the plant, then P2, Q2

are square and nonsingular matrices. Thus the
controller parameters can be calculated by the
equation

·

Aσ Bσ

Cσ Dσ

¸

=

·

Q¡1
2 ¡Q¡1

2 Q1Bσ

0 I

¸

.

·

F 4
σ ¡ Q2AσP1 F 3

σ

F 2
σ F 1

σ

¸ ·

P¡1
2 0

¡CσP1P
¡1
2 I

¸

Corollary 2. In the case of a switched static
controller of the form u(t) = Kσ(t)x(t), where
Kσ, for ¾ ∈ Q are the controller gains. Assume
that x(t) is available, the conditions in theorem 1
are reduced to the LMI with Xσ as variables of
synthesis

PAT
σ + AσP + BσXσ + XT

σ BT
σ < 0, ¾ ∈ Q (30)

where P is a symmetric positive de¯nite matrix.
The switched static controller gains Kσ, for ¾ ∈ Q
are given by

Kσ = XσP¡1, ¾ ∈ Q (31)

 

σr  

σf−  

σσ rf −  

Re  

Im  ),( σσ rfℜ  

Fig. 5. Circular region R(fσ , rσ)

and the closed loop switched system stability is en-
sured by the common Lyapunov function V (x) =
xT P¡1x.

4. DYNAMIC SWITCHED CONTROLLER
WITH REGIONAL POLE PLACEMENTS

The goal of this section is to combine the ¯rst
result of theorem 2 and pole placements, our ob-
jective consists then to determine a stabilizing dy-
namic switched controller of the switched system
with some constraint speci¯cations on the poles of
the closed loop system, which is de¯ned previously
as

Acl
σ :=

·

Aσ + BσDσCσ BσCσ

BσCσ Aσ

¸

(32)

The ¯rst objective is then to place the poles of
the closed loop switched system inside a circular
region R(fσ, rσ) in the complex plane, with a
center at (¡fσ, 0), radius rσ · fσ, ¾ ∈ Q,
and distance (fσ ¡ rσ) from the imaginary axis.
Fig.5 shows the circular region R(fσ, rσ) for pole
location. The full problem can then be formulated
as

¯nd

·

Aσ Bσ

Cσ Dσ

¸

subject to:

eigenvalues(Acl
σ ) ∈ R(fσ, rσ)

˙̃x(t) = Acl
σ(t)x̃(t) is asym-stable ∀¾ ∈ Q

The asymptotic stability of Acl is ensured by
the existence of a common Lyapunov function
V (x̃) = x̃T Wx̃, W = W T > 0. The problem
concerning the eigenvalues of Acl is resolved as :
In [6] a necessary and su±cient condition assuring
that all eigenvalues of a given matrix Acl

σ lie inside
a circular region R(fσ, rσ) is provided by the
existence of a symmetric positive de¯nite matrix
P such that

[Acl
σ + (fσ ¡ rσ)I]P + P [Acl

σ + (fσ ¡ rσ)I]T

+
1

rσ

[Acl
σ + (fσ ¡ rσ)I]P [Acl + (fσ ¡ rσ)I]T < 0

(33)
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Theorem 3. If there exist matrices P1, Q1,
(F 1, F 2, F 3, F 4)σ, ¾ ∈ Q, and matrices P2, P3, Q2

such that the following LMIs/equation








`11 `12 `13 `14
`21 `22 `23 `24
`T
13 `T

23 ¡rσP1 ¡rσI

`T
14 `T

24 ¡rσI ¡rσQ1









< 0, (34)

Q1P1 + P2Q
T
2 = I, (35)

hold, where

`11 = AσP1 + BσF 2
σ + P1A

T
σ + F 2T

σ BT
σ

+2(fσ ¡ rσ)P1

`12 = Aσ + BσF 1
σCσ + F 4T

σ + 2(fσ ¡ rσ)I

`13 = AσP1 + BσF 2
σ + (fσ ¡ rσ)P1

`14 = Aσ + BσF 1
σCσ + (fσ ¡ rσ)I

`21 = F 4
σ + AT

σ + CT
σ F 1T

σ BT
σ + 2(fσ ¡ rσ)I

`22 = Q1Aσ + F 3
σCσ + AT

σ Q1 + CT
σ F 3T

σ

+2(fσ ¡ rσ)Q1

`23 = F 4
σ + (fσ ¡ rσ)I

`24 = Q1Aσ + F 3
σCσ + (fσ ¡ rσ)Q1

then the dynamic controller (11), with the param-
eters (A ,B,C ,D)σ given by (15), is a stabilizing
controller for (10), and the stability of the closed
loop switched system is ensured by the common
Lyapunov function V (x̃) = x̃T P¡1x̃, where P is
de¯ned as in theorem 2.

Proof. If there exists a matrix transformation
©̃ which will be determined, such that [Acl

σ +
(fσ ¡ rσ)I]P , P [Acl

σ + (fσ ¡ rσ)I]T and rσP
can be transformed to an a±ne form of all the
variables synthesis like (Aσ,Bσ,Cσ,Dσ). Then the
Schur complement can be applied to nonlinear
equation (33), which is equivalent by using the
Schur complement to
·

Acl
σ P + PAclT

σ + 2(fσ − rσ)P Acl
σ P + (fσ − rσ)P

PAclT
σ + (fσ − rσ)P −rσP

¸

< 0

(36)

De¯ne P ,P¡1 and the transformation © as in (20)
and (23), and de¯ne the transformation ©̃ :=
diag(©,©). Apply this transformation to (36),
we obtain (34), which is an LMI of the vari-
ables synthesis F 1

σ , F 2
σ , F 3

σ , F 4
σ , P1, Q1, where

(F 1, F 2, F 3, F 4)σ are the change of variables de-
¯ned as in (24)-(27).

5. CONCLUDING REMARKS

The problem related to the in°uence of switching
signal on the asymptotic stability of switched sys-
tem is investigated in the ¯rst part of this paper,
some remarks are driven, based on identity Lya-
punov function, an illustrative example is given,

to show that stability depends critically on the
behavior of the switching signal. The problem of
synthesis of a switched dynamic controller has
been addressed through LMI approach. A general-
ization of this result is given, consisting to regional
pole placements, an LMI formulation is also given.
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