
STABILIZATION OF SWITCHED LINEAR

SYSTEMS WITH UNKNOWN TIME VARYING

DELAYS

Laurentiu Hetel, Jamal Daafouz, Claude Iung

Institut National Polytechnique de Lorraine,

CRAN UMR 7039 CNRS - UHP - INPL,

ENSEM, 2, av. forêt de la Haye,

54516, Vandœvre-Lès-Nancy, Cedex, France.

Email:{Laurentiu.Hetel, Jamal.Daafouz,

Claude.Iung}@ensem.inpl-nancy.fr

Abstract: We consider continuous time switched systems that are stabilized via a
computer. Our goal is to construct a switched digital control for continuous time
switched systems that is robust to the varying feedback delay problem. The key
idea of this paper is that the control synthesis problem in the case of continuous
time systems with uncertain time varying feedback delays can be expressed as a
problem of stabilizability for uncertain systems with polytopic uncertainties. For
the sake of generality, the problem of switched systems will be considered (the
solution for LTI systems can trivially be deduced by eliminating the switching
aspect of the problem). Copyright c©2006 IFAC.
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1. INTRODUCTION

Nowadays, many control problems are solved via
a computer generated feedback. When dealing
with such a digital control, uncertain time varying
feedback delays are unavoidable. These delays can
affect system performances and lead to instability
if they are not taken into account (Wittenmark et

al., 1995). The problem engaged scientists from
both computer science (Buttazzo, 2002; Martí
et al., 2001; Stankovic et al., 2001) and control
systems (Åström and Wittenmark, 1997; Witten-
mark et al., 1995). It has been studied in the gen-
eral context of real-time control systems (Nilsson
et al., 1998) for embedded and networked control
systems (Årzen et al., 2000; Hristu-Varsakelis and

1 Work (partially) done in the framework of the HYCON
Network of Excellence, contract number FP6-IST-511368

Levine, 2005; Montestruque and P.J.Antsaklis,
2004; Tzes et al., 2005; Zhang et al., 2001).

Here, we treat the control synthesis problem for
continuous time systems affected by uncertain
time varying feedback delays in a digital control
context. This paper is organized as follows. In Sec-
tion 2, we mathematically formalize the problem
under study: "the robust stabilizability of continu-
ous time switched systems relative to time varying
feedback delays" and we introduce its sampled
version. In Section 3, we show that, by using a
Taylor series approximation, the system affected
by time varying feedback delays can be expressed
as a polytopic uncertain system. In Section 4,
we present the control synthesis for this problem
and we apply it to the polytopic version of the
system affected by feedback delays. The approach
is illustrated by a numerical example in Section 5.
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Notations: For a matrix M we denote by ‖M‖
the induced matrix norm. By M > 0 or M < 0 we
mean that the matrix M is positive or negative
definite respectively. By I (or 0) we denote the
identity (or the null) matrix with the appropriate
dimension.

2. PROBLEM FORMULATION

We consider a continuous time switched system

dx(t)

dt
= Mσx(t) + Nσu(t), (1)

The switching function σ(t) : R
+ → P =

{1, 2, .., N} gives a particular index i indicating
the active system regime. It is used to represent
sudden changing of system dynamic (for example
the switch on/off of a pump in a tank system).
{
Mi ∈ Rn×n : i ∈ P

}
and

{
Ni ∈ Rn×m : i ∈ P

}

are two families of matrices. Each pair (Mi, Ni), i ∈
P describes a continuous time model representing
different regimes of system behavior. Here σ will
be considered a piecewise constant function that
may change its value at t = kT, k ∈ Z

+ with T > 0
the sampling period.

In order to design a computer based control, a
sampled model of the continuous time system is
derived and discrete time control methods are ap-
plied. The final digital control is strongly depen-
dent on the sampling period and on the discrete
description of the plant.

When sampling and actuation are considered to
be periodic and synchronous with the periodicity
T , the equivalent discrete representation of the
system is given by integrating the solution of the
system over one sampling period:

x(k + 1) = Aσx(k) + Bσu(k), (2)

Aσ = eMσT , Bσ =

∫ T

0

eMσsdsNσ

A more realistic discrete representation should
consider that the system is affected by several
delays (Wittenmark et al., 1995): delays between
the sensor and the digital control τsc(k), com-
puting delays in the controller τc(k) and com-
munication delays between the controller and the
actuator τca(k). The total delay in the closed-loop
is ∆T (k) = τsc(k) + τc(k) + τca(k). These delays
have an unknown random varying length. How-
ever, the total system delay is bounded, ∆Tmin ≤
∆T (k) ≤ ∆Tmax. Here we will analyze the case
where ∆Tmax < T and where the switching signal
σ and the sampling T are synchronous. When the
effect of time delays is taken into account the
system input is given by:

u(t) =

{
u(k − 1), t ∈ [kT, kT + ∆T (k))
u(k), t ∈ [kT + ∆T (k), (K + 1)T )

(3)

Problem: Assuming that switching signal σ and

the sampling T are synchronous, find a switched

state feedback that robustly stabilizes the contin-

uous time switched system (1) when the input is

affected by time varying delays (3).

Remark: It is clear that this problem is the same
as the classical "timing problem" in the case of
LTI systems if we consider N=1.

In order to solve such a problem, we consider the
discrete representation of the system (1) over a
sampling period:

x(k + 1) = Φσx(k) + Γ0
σ(∆T (k))u(k)

+Γ1
σ(∆T (k))u(k − 1)

(4)

where Φσ = eMσT = Aσ, (5)

Γ1
σ(∆T (k)) =

∫ T

T−∆T (k)

eMσsdsNσ

Γ0
σ(∆T (k)) =

∫ T−∆T (k)

0

eMσsdsNσ (6)

= Bσ − Γ1
σ(∆T (k)). (7)

The proposed system can be written as:

z(k + 1) = Âσz(k) + B̂σu(k) (8)

where Âσ(k) =

[
Φσ Γ1

σ(∆T (k))
0 0

]

,

B̂σ(k) =

[
Γ0

σ(∆T (k))
I

]

and z(k) =

[
x(k)

u(k − 1)

]

.

This representation has been adapted for switched
systems from the real time linear system repre-
sentation presented by Åström and Wittenmark
(Åström and Wittenmark, 1997). In this model
Γ1

σ(∆T (k)) and Γ0
σ(∆T (k)) are strongly depen-

dent on the uncertain time varying delay ∆T (k).
Therefore the previous system is an uncertain
system with time varying uncertainty.

Now, the problem under study reduces to find a
switched state feedback u(k) = Kσz(k) that sta-
bilizes the discrete switched uncertain system (8)
when the total system delay ∆Tmin ≤ ∆T (k) ≤
∆Tmax is time varying and unknown.

In the next section we will show the way the uncer-
tain delay dependent system (8) can be expressed
as a switched polytopic uncertain system.

3. EXPRESSING UNCERTAINTIES AS
POLYTOPES OF MATRICES

When considering the equivalent discrete repre-
sentation (8), the two matrices Γ1

σ(∆T (k)) and
Γ0

σ(∆T (k)) are delay dependent uncertainties. If
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they can be expressed as convex polytopes, system
(8) can be treated as a switched polytopic uncer-
tain system, for which stability conditions can be
expressed in terms of linear matrix inequalities.

Step 1: Taylor series expansion of the un-

certainties Γ1
σ(∆T (k)) and Γ0

σ(∆T (k))

Proposition 1. Γ1
σ(∆T (k)) and Γ0

σ(∆T (k)), the el-
ements of system (8) matrices can be expressed as:

Γ1
σ(∆T (k)) = −

∞∑

q=1

(−∆T (k))q M q−1
σ

q!
eMσT Nσ and

(9)

Γ0
σ(∆T (k)) = Bσ +

∞∑

q=1

(−∆T (k))q M q−1
σ

q!
eMσT Nσ.

Proof. Consider

I(x) =

∫ T

T−x

eMσsds. (10)

Using the Taylor series expansion one can write:

I(x) = I(0) + İ(0)x + . . . +
dqI

dtq
(0)

xq

q!
+ . . .

= −
∞∑

q=1

(−x)q

q!
M q−1

σ eMσT
.

(11)
From (10), (11) and (5) Proposition 1 is proved
for x = ∆T (k). 2

Step 2: h-order approximation of Taylor

series for uncertainties

Focusing on the first h terms of the previous
formulation, Γ1

σ(∆T (k)) can be expressed as a
finite sum and a remainder

Γ1
σ(∆T (k)) = −

h∑

q=1

(−∆T (k))q M q−1
σ

q!
eMσT Nσ+Θh

σ

(12)
where the remainder is

Θh

σ
= −

∞∑

q=h+1

(−∆T (k))q
M

q−1
σ

q!
eMσT Nσ (13)

= −

(
∫ −∆T

0

eMστ dτ −

h∑

q=1

(−∆T )q
M

q−1
σ

q!

)

eMσT Nσ.

Γ1,h
σ (∆T (k)) and Γ0,h

σ (∆T (k)), given by

Γ1,h
σ (∆T (k)) =−

h∑

q=1

(−∆T (k))q M q−1
σ

q!
eMσT Nσ,

Γ0,h
σ (∆T (k)) = Bσ − Γ1,h

σ (∆T (k)). (14)

will be called the h-order approximation.

Step 3: Polytopic form of the h-order ap-

proximation

Consider the notations:

Gσ,q = (−1)q+1 M q−1
σ

q!
eMσT Nσ, q = 1..h, and

φ1 =
[
ρ hI ρ h−1I . . . ρ 2I ρI

]′
,

φ2 =
[
ρ hI ρ h−1I . . . ρ 2I ρI

]′
, . . . , (15)

φh+1 =
[
ρ hI ρ h−1I . . . ρ 2I ρI

]′

with ρ = ∆Tmin and ρ = ∆Tmax.

Proposition 2. The h-order approximation Γ1,h
σ (∆T (k))

and Γ0,h
σ (∆T (k)) can be expressed as the convex

matrix polytopes:

Γ1,h
σ (∆T (k)) =

h+1∑

i=1

µi(k)U1,h
σ,i , (16)

Γ0,h
σ (∆T (k)) =

h+1∑

i=1

µi(k)U0,h
σ,i ,

h+1∑

i=1

µi(k) = 1, µi(k) > 0 ∀i = 1, .., h+1, ∀k ∈ Z
+,

where the polytope vertices are

U1,h
σ,i = [Gσ,1 . . . Gσ,h] φi

and
U0,h

σ,i = Bσ − U1
σ,i

respectively.

Proof. From equation (14) and the notations (15)
Γ1,h

σ (∆T (k)) can be expressed as

Γ1,h
σ (∆T (k)) =

h∑

q=1

ρq(k)Gσ,q (17)

with ρ(k) = ∆T (k). The equation (17) can be
written as:

Γ1,h
σ (∆T (k)) = [Gσ,1 . . .Gσ,h] Ψ(k) (18)

where

Ψ(k) =
[
ρ(k)hI . . . ρ2(k)I ρ(k)I

]′

In the space of parameters Ψ(k) it can be shown
that ρ(k) ∈ [ρ, ρ], ∀k ∈ Z

+

Ψ(k) =

h+1∑

i=1

µi(k)φi, with (19)

µi(k) > 0 and

h+1∑

i=1

µi(k) = 1 ∀k ∈ Z+.

The uncertain parameters µi(k) are solutions of
the linear system:









1 . . . . . . . . . 1
ρ ρ . . . . . . ρ

ρ 2 ρ 2 ρ 2 . . . ρ 2

...
. . .

...

ρ h . . . . . . ρ h ρ h

















µ1(k)
µ2(k)

...
µh+1(k)








=










1
ρ(k)
ρ2(k)

...

ρh(k)









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Using the classical Gauss method, the solutions
can be computed by the recursive formula:

µ1 = 1 −
ρ − ρ

ρ − ρ
, (20)

µk =
ρk−1 − ρk−1

ρk−1 − ρk−1
−

h+1∑

i=k+1

µi, k = 2..h.

One can prove that

µk =
ρk−1 − ρk−1

ρk−1 − ρk−1
−

ρk − ρk

ρk − ρk
, k = 2..h.

which is strictly positive since the function f :

ℜ → ℜ, f(x) =
ρx−ρx

ρx−ρx is monotone decreasing for

x ∈ (0,∞). We can remark that while ρ ∈
[
ρ, ρ
]
,

0 < µk < 1 ∀k = 1..h + 1 therefore all the so-
lutions are barycentric coordinates. From (18,19),
with the notations (15) and (14) Proposition 2 is
proved. 2

Step 4: System polytopic truncated form

Let

Âh
σi =

[
Φσ U1,h

σ,i

0 0

]

, B̂h
σi =

[
U0,h

σ,i

I

]

.

Considering the h-order approximation of the un-
certainties in equation (14) and Proposition 2,
the system (8) can be expressed in the truncated
polytopic form:

z(k + 1) = Âh
σz(k) + B̂h

σu(k) (21)

where

Âh
σ(k) =

h+1∑

i=1

µi(k)Âh
σi , B̂h

σ(k) =
h+1∑

i=1

µi(k)B̂h
σi.

System (8) truncation is a switched uncertain
system with polytopic uncertainty (21).

4. CONTROL SYNTHESIS

In the previous section it was shown that for any
switched system with time varying feedback delay
there exists a polytopic approximation. Consider-
ing the control synthesis in this context, one has
to find a switched state feedback that stabilizes
the h-order approximation system (21). It is clear
that finding such a control law and proving that it
is also valid for non truncated form of the system
(8) solves the original problem. Robust stability
results for switched uncertain systems with poly-
topic uncertainty are given in this section.

4.1 Switched control design for uncertain switched

systems

Until now several control approaches have been
presented separately for switched systems (Daafouz

et al., 2002) and for polytopic uncertain systems
(J.Daafouz and Bernussou, 2001). Here we extend
the existing approaches for the following switching
uncertain system:

z(k + 1) = Âσ(k)z(k) + B̂σ(k)u(k), (22)

where

Âσ =

naσ∑

j=1

ασj(k)Aσj , and B̂σ =

nbσ∑

l=1

βσl(k)Bσl,

naσ∑

j=1

ασj(k) = 1, ασj(k) ≥ 0,

nbσ∑

l=1

βσl(k) = 1, βσl(k) ≥ 0, ∀ k ∈ Z
+

represent the uncertainty on the dynamic and
input matrix, respectively. The switching signal
is given by σ. Here ασj and βσl are the uncertain
parameters describing each uncertainty while naσ

and nbσ represent the number of extreme points in
the uncertainty Âσ and B̂σ respectively. This is a
more general form of the switched polyopic system
(21); the input and the state matrix are affected
by distinct polytopic uncertainty with different
uncertain parameters. This system can also be
expressed as:

z(k+1) =

N∑

i=1

ξi(k)Âi(k)z(k)+

N∑

i=1

ξi(k)B̂i(k)u(k),

(23)

ξi : Z
+ → {0, 1},

N∑

i=1

ξi(k) = 1,

The closed-loop dynamics with the switched state
feedback

u(k) =

N∑

i=1

ξi(k)Kiz(k) (24)

is described by the equation:

z(k + 1) =
N∑

i=1

ξi(k)(Âi + B̂iKi)z(k).

With the uncertainty description (22), the equa-
tion becomes

z(k + 1) =

N∑

i=1

nai∑

j=1

nbi∑

l=1

ξi(k)αij(k)βil(k)Hijlz(k)

where
Hijl = Aij + BilKi.

We use switched parameter dependent Lyapunov
functions given by:

V (k) = zT (k)Pz(k) (25)

with

P =

N∑

i=1

nai∑

j=1

nbi∑

l=1

ξi(k)αij(k)βil(k)Pijl .

338



The difference along the system trajectories is:

V (k + 1) − V (k) = zT (k)(HTP+H−P)z(k),

where

H =

N∑

i=1

nai∑

j=1

nbi∑

l=1

ξi(k)αij(k)βil(k)Hijl ,

P+ =

N∑

i=1

nai∑

j=1

nbi∑

l=1

ξi(k + 1)αij(k + 1)βil(k + 1),

(26)

Pijl =

N∑

m=1

nam∑

u=1

nbm∑

v=1

ξm(k)αmu(k)βmv(k)Pmuv.

Theorem 1. System (23) is stabilizable via the
control law (24) if there exists symmetric positive
definite matrices Sijl and Smuv, and matrices Gi

and Ri, solutions of the LMI:
[

Gi + GT
i − Sijl GT

i AT
ij + RT

i BT
il

AijGi + BilRi Smuv

]

> 0, (27)

i, m = 1..N, j = 1..nai, l = 1..nbi, u = 1..nam, v =
1..nbm. The switched state feedback control is
given by (24) with Ki = RiG

−1
i .

Proof. see (Hetel et al., 2005). 2

Remark: Theorem 1 gives robust LMI stabi-
lizability conditions based on switched parameter
dependent Lyapunov functions and hence less con-
servative than all the other results in the literature
(Ji et al., 2003; Zhai et al., 2003). Moreover, these
results obviously apply to the state reconstruction
problem for uncertain switched systems (Daafouz
et al., 2003).

4.2 Control synthesis for switched systems with

uncertain time varying feedback delay

The truncation (21) of the system with uncertain
feedback delay (8) can be considered as a switched
uncertain system with polytopic uncertainty (22)
for which we developed LMI stabilizability condi-
tions (27). The problem of finding a computer con-
trol u(k) = Kh

σz(k) for the discrete h-order trun-
cation (21) of the discrete time switched system
(8) is the same as the control synthesis problem
for a switched uncertain system with polytopic
uncertainty (22).

Proposition 3. If there exists positive definite
symmetric matrices Sij , Suv and matrices Gi and
Ri solutions of the LMI conditions:
[

Gi + GT
i − Sij GT

i ÂhT

ij + RT
i B̂hT

ij

Âh
ijGi + B̂h

ijRi Suv

]

> 0 (28)

where i, u = 1 . . .N , j, v = 1 . . . h + 1 then the
switched state feedback stabilizing gains are given
by Kh

i = RiG
−1
i .

Proof. see (Hetel et al., 2005) 2

A procedure based on considering the neglected
remainder Θh

σ (see Step 2 and Step 5 in Section 3)
as a disturbance and using LMI based conditions
for stability analysis can be used to check that
the control law obtained using Proposition 3 is
valid for the non truncated form of the system
(8). Consider the notations:

Hh
σj = Ah

σj + Bh
σjK

h
σ , Ĥh

σ =
h+1∑

j=1

µjH
h
σj , (29)

µi(k) > 0,

h+1∑

i=1

µi(k) = 1 ∀k ∈ Z+,(30)

Kh
σ =

[
K1,h

σ K2,h
σ

]

with

K1,h
σ ∈ Rm×n, K2,h

σ ∈ Rm×m

D = [I 0]
T

, Eh
σ =

[
I I
]
[
−K1,h

σ I

0 −K2,h
σ

]

.

Theorem 2. If there exists symmetrical positive
definite matrices Pij , and matrices Gij with i =
1, . . . , N and j = 1, . . . , h+1 solutions of the LMI :





−Pij H
hT

ij G
T
pq H

hT

ij GpqD E
hT

i

(•)T
Ppq − Gpq − G

T
pq 0 0

(•)T (•)T
D

T (Gpq + G
T
pq)D − I 0

(•)
T

(•)
T

(•)
T

−γI




 < 0

(31)

∀ i, p = 1, . . . , N j, q = 1, . . . , h + 1 with
∥
∥Θh

σ

∥
∥ ≤ γ− 1

2 for all σ, then the feedback gains Kh
σ

ensure the stabilizability of the original discrete
time system with time varying delays (8), that is
system (4) is stable.

Proof. see (Hetel et al., 2005)2

In practical applications, finding a feedback con-
trol for the original discrete time system (8) is a
compromise between two constraints: high order
uncertainty approximation, for a good discrete
system representation, and small number of LMIs.
These two constraints are opposite because a high
order uncertainty approximation implies a large
number of LMIs and the numerical LMI solvers
are not able to compute a feedback gain when the
number of LMIs is too large.

5. NUMERICAL EXAMPLE

Consider the following system:

dx

dt
= Mσx(t) + Nσu(t), σ ∈ {1, 2} with

M1 =

[
3 2
1 −1

]

, M2 =

[
2 1
3 −4

]

,
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N1 = [1 0]′ and N2 = [1.5 0]′

The system is sampled with T = 0.3s and the
feedback delay is bounded by ∆Tmin = 0s and
∆Tmax = 0.1s. When considering a first order
approximation of the system, state feedback K1

σ

gains are found via the LMIs (28) but are not
validated by (31). A second order approximation
is performed. In this case we obtain the switched
feedback gains:

K2
1 = [−2.99 − 1.3 0.27]

and

K2
2 = [−2 − 0.38 0.21]

which can be validated by (31) for the original
system.

6. CONCLUSION

This paper was dedicated to the robust control
synthesis for continuous time switched systems
relative to time varying feedback delays. The sam-
pled version of the system has been considered
and the control synthesis in this context has been
treated as a problem of stabilizability for un-
certain systems with polytopic uncertainties. A
method for switched state feedback control syn-
thesis has been presented. A numerical example
has been presented to illustrate this approach.
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