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Abstract: This paper investigates the robust tracking and regulation control problems 
for discrete-time, piecewise affine systems subject to bounded disturbances. In 
particular, the main question addressed is related to the existence of a controller such 
that the closed-loop system exhibits an attainable desired behavior under all possible 
disturbances. Checking attainability and calculating the state space regions for which 
a robust control is assured despite the disturbance is performed using a polyhedral 
approach. A model predictive control law derived from a quadratic cost function 
minimization is further examined as a fast sub-optimal robust control. An application 
of the proposed technique to a two-tank benchmark is finally presented. Copyright © 
2006 IFAC 
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1. INTRODUCTION 
 
Hybrid systems are now of common use in many 
control applications in industry, e.g. in control of 
mechanical systems, process control, automotive 
industry, power systems, aircraft and traffic control. 
Hybrid systems are heterogeneous dynamical 
systems, their behavior is determined by interacting 
continuous variable and discrete event dynamics. 
Various approaches have been proposed to model 
hybrid systems (Branicky et al., 1998), such as 
Automata, Petri nets, Linear Complementary (LC), 
Piecewise Affine (PWA) (Sontag, 1981), Mixed 
Logical Dynamical (MLD) models (Bemporad and 
Morari, 1999a). Different techniques are used to 
control hybrid systems, for example Model Predictive 
Control (MPC) (Schutter and van den Boom, 2004; 
Thomas et al., 2003; Olaru et al., 2003; Olaru et al., 
2004) and optimal control (Bemporad, and Morari, 
1999a). 
 

An attractive and challenging field of research is 
currently dealing with hybrid systems subject to 
uncertainties (Bemporad and Morari, 1999b), either 
parameters uncertainties or disturbances influences, 
where problems like safety, reachability, attainability 
and robust control become interesting questions for 
researchers. 
 
In this direction, this paper examines a class of 
discrete-time piecewise affine systems subject to 
bounded disturbances. For this class of systems, some 
solutions to the above mentioned problems are 
already proposed in the literature. For example, in 
(Lin and Antsaklis, 2003), an attainability checking 
that employs the predecessor operator, and a 
controller technique using finite automata and linear 
programming is presented. In (Necoara et al., 2004, 
Bemporad et al., 2003), a control technique based on 
minimizing the worst-case cost function (min-max 
problem) is proposed to solve the control problem. 
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The contribution of this paper is based on a 
polyhedral approach enabling the elaboration of the 
state space regions for which a robust control exists 
which drives the plant to a desired behavior despite 
the disturbances. The safety, reachability and 
attainability questions are examined through this 
framework and a robust Model Predictive Control 
(MPC) with quadratic cost function is presented as a 
fast suboptimal robust control. 
 
The paper is organized as follows. A brief description 
of PWA systems and the related class is given in 
Section 2. Section 3 develops the polyhedral approach 
which will elaborate the state space regions where 
reachability, safety and attainability questions can be 
assured. A fast and suboptimal robust control is then 
developed in Section 4 for the considered class. An 
application of the proposed technique to a two-tank 
benchmark is presented in Section 5. Finally the 
conclusions and some remarks are given in Section 6. 
 
 
2. PIECEWISE AFFINE SYSTEMS SUBJECT TO 

BOUNDED DISTURBANCES 
 
Piecewise affine systems are powerful tools for 
describing or approximating both nonlinear and 
hybrid systems, and represent a straightforward 
extension from linear to hybrid systems. This paper 
focuses on the particular class of discrete-time 
piecewise affine systems subject to bounded 
disturbances, defined as: 
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DdUuXx ∈∈∈ i
kkk ,,  denote the state, input and 

disturbance vector respectively at instant k  (for the 
i th model) with DUX ,,  assigned polytopes ( D  
contains the origin). 
{ }s

ii 1=χ  is the polyhedral coverage of the state and 
input spaces UX × , s being the number of 
subsystems. Each iχ  is given by: 
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Exact state measurement x  is supposed to be 
available. Note that the sets iχ  are assumed here to 
be not disjoint so that the desired model dynamics can 
be chosen by the bias of switching (logical) decision 
variables. 
 
Each subsystem iS  defined by the 6-uple 
( ),,,,,, iiiiii qQfCBA  ( )sIi ,,2,1 L=∈  is a 
component of the global hybrid system where I  is 
the collection of all subsystems. 

( )mnpirnimninni i +××× ℜ∈ℜ∈ℜ∈ℜ∈ QCBA ,,,  and 
ipi ℜ∈q  is a suitable constant vector, where n , m , 

r  are respectively the dimension of state, input and 
disturbance vectors, and ip  is the number of 
hyperplanes defining the iχ  polyhedral. 
 
In this formalism, a logical control input is taken into 
account by developing an affine model (1) for each 
input value (1/0), defining linear inequality 
constraints linking the model with the relevant input 
value (2). 
 
 

3. DIRECT REACHABILITY, SAFETY AND 
ATTAINABILITY: A POLYHEDRAL APPROACH 
 
Let consider the region 1, >kkR  as a target region in 
the global state space X . This section considers the 
robust one-step control region 1−kR  as the region in 
the state space for which there exist a feasible mode 
(1) and an admissible control signal able to drive the 
states from 1−kR  into kR  in one-step despite all 
allowable disturbances, i.e.: 
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In the following, the computation of this region 1−kR  
is achieved through a polyhedral approach. 
Consider the global state space defined by the 
following constraints: 

 { }p
s

np
sss ℜ∈ℜ∈≤= × gFgxFX ,,:  (4) 

The control input is supposed to be bounded: 

 { }1,,: ×× ℜ∈ℜ∈≤= uu pmp nmnumU  (5) 

With disturbance given inside an assigned polytope 
Dd ∈−

i
k 1 , with the target region kR , defined by: 

 { }gFxR ≤= kk :  (6) 

and considering each valid model i  where 
( )si ,,2,1 L∈  and using the system evaluation 

equation (1), enables to derive the following region: 
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The presence of disturbances can be in a first step 
ignored, leading to the computation of the set: 
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and to the expression of the maximal admissible 
region for the mode i in the absence of disturbances: 

 i
k

i
k 11

~Prˆ
−− = RR X  (9) 

Remark 1: the projection of polyhedral sets can be 
efficiently handled in a double representation 
(generators/ constraints) and related tools can be 
found as for example - POLYLIB (Wilde, 1994). 
 
Due to the fact that the goal is the construction of a 
control strategy robust with respect to the entire 
family of possible disturbances realizations, the 
previous equation finally becomes: 

 DCRR ii
k

i
k −= −− 11

ˆ  (10) 

where the subtraction is computed in the Minkowsky 
sense (exact geometric operation, based on the double 
representation of polyhedral domains). The set DCi  
is the image of D  by the linear mapping: 

 dCdD in ff =ℜ→ )(,:  

With these sets constructed for each linear sub-model, 
the global one-step robust controllable region of the 
state space is thus given by: 
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The procedure presented above can be repeated in a 
recursive way to find the domain for any limited N  
steps horizon. Using a dynamic programming 
approach, after defining the target region Nk+R , the 
state space domain kR  can be recursively calculated, 
that includes all the states having a feasible control 
policy that can in N  steps derive the states to Nk+R  
despite the disturbances. 
 
Remark 2: For PWA systems with many sub-models 
s  and for long horizon N , this may imply the 
exploration of a large number of regions (exponential 
complexity, Figure 1a). Considering thus “no switch” 
between sub-models over the N  steps horizon 
(Figure 1b) leads to a lower complexity mechanism. 
Even if this may imply more conservatism, this 
suboptimal construction appears to be broad enough 
for many applications, this will be applied in the 
following sections. 
 
Safety, a well-known geometric condition for a set to 
be safe (control invariant) is the following (Lin and 
Antsaklis, 2002): 

the set 1+kR  is safe if and only if kk RR ⊆+1  
 
Attainability, given a finite number of regions 

χRRR ×∈++ INkkk ),,,( 1 L , the attainability for 
this sequence of regions is equivalent to the following 
two different properties: 

1. the direct reachability from region jk +R  to 
1++ jkR  for 10 −≤≤ Nj , 

2. the safety (or control invariance) for region 
Nk+R . 
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Fig. 1. Regions exploration, (a) complete exploration, 
(b) exploration with no switch over the N  steps. 
 
 

4. ROBUST MODEL PREDICTIVE CONTROL 
 
The min-max control technique is proposed in the 
literature as a robust control for such problems, which 
minimizes the maximum cost, to try to counteract the 
worst disturbance. This paper focuses on the model 
predictive control for PWA systems with quadratic 
cost function as a fast suboptimal robust solution. 
 
The model predictive control proposed here requires 
solving at each sampling time the following problem: 
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where ex  is the states reference, ΓΛ,  are the weigh-
ting diagonal matrices in the sense xxx T Λ=Λ

2 . 
 
(12) is solved according to the following steps: 
1. solve this quadratic problem for each dynamic 

among the s sub-models, staying on the dedicated 
branch of Figure 1.b (i.e. as assumed with 
Remark 2, the open-loop control sequence of the 
predictive law is elaborated without switching), 

2. compare all the resulting costs, 
3. retain the model with the lowest cost and the 

associated control sequence, 
4. apply only the first value of this sequence and 

restart the procedure at the next sampling time. 
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Remark 3: At each sampling time, the decision 
process can drive the system to any particular feasible 
mode due to receding horizon implementation of the 
optimal open-loop sequence. To sum up, the 
conservatism is only related to the feasible set 
coverage and not directly to the chosen performance 
index. 
 
Remark 4: If the initial state kx  is included in the 
union of regions i

Nk −R  of different modes ( i ), the 
MPC technique can select a suboptimal solution 
among all feasible modes. The feasibility at instant k  
implies feasibility at any instant 1+k  to Nk + . The 
longest the prediction, the largest the feasible domain 
will be. 
 
 

5. APPLICATION 
 
Let consider as application of the previous theory the 
following benchmark consisting of two tanks 
(Figure 2), filled by pump acting on tank 1, continu-
ously manipulated from 0 up to a maximum flow 1Q . 

1h  

2h  
vh  

12V  

1NV  2NV  1NQ  

1212vQ  

1Q  

2NQ  

1 2 

 
Fig. 2. Two-tank benchmark. 

 
One switching valve 12V  controls the flow between 
the tanks, this valve is assumed to be either 
completely opened or closed ( 0or  112 =V  
respectively). The 2NV  manual valve controls the 
nominal outflow of the second tank. It is assumed in 
further simulations that the manual valves, 1NV  is 
always closed and 2NV  is open. The liquid levels to 
be controlled are denoted 1h  and 2h  for each tank 
respectively.  
 
The conservation of mass in the tanks provides the 
following differential equations: 
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where the Qs denote the flows and A  is the cross-
sectional area of each of the tanks. The Toricelli law 
defines the flows in the valves by following 
expressions: 
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where iS  represents the area of valves iV  and a is a 
constant depending on the liquid. From this, a 
simplified linear model can be obtained under the 
form: 
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where: 
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The Euler discretisation technique is used to further 
derive the discrete form : 
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where sT  is the sampling time, equal to 10 s. 
 
This benchmark can be considered as a piecewise 
system of form (1), with two subsystems (two modes) 
described as follows: 
 
For mode one, the valve 12V  is open: 
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For mode two, the valve 12V  is closed: 
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The previous constraints have integrated limitations 
on the global state space: 

 

32143421
ss gF

xX

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

≤

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

=

0
0
62.0
62.0

10
01
10
01

:  (17) 

and limitations on the control signal: 
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The target region, to which system states will be 
derived to, is defined by the following constraints: 
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A polytope for bounded disturbance is finally 
considered with: 
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The approach presented above is first applied to 
elaborate the region kR  in the state space which 
includes the states that can be derived in finite N  
steps to Nk+R  despite the disturbance. However, a 
suboptimal approach is used here (see Remark 2) as a 
compromise with the computational load. 
 
With this assumption, Figure 3 presents the regions 
for mode one for 5=N , and Figure 4 for mode two 
with 5=N  as well. For both modes, the regions are 
presented in Figure 5 with 3=N . 
 

 
Fig. 3. Regions for mode one with 5=N . 

 
Fig. 4. Regions for mode two with 5=N . 

 
Fig. 5. Regions for both modes with 3=N . 
 
The robust model predictive control presented above, 
is applied considering many different initial states 
inside the region kR , and at each time step, a 
random disturbance is added to the system states. The 
weighting diagonal terms in the cost function are 
chosen such that 2*1000 I=Λ  and 1=Γ , and the 
states reference is )2.0,5.0( . 
 
Figure 6 shows some results of robust MPC with 

2=N  for extreme initial states inside kR  with 
random disturbance, and as Figure 6 shows, all the 
states in kR  are derived in two steps ( 2=N ) to the 
desired region 2+kR  despite the disturbance. 

 

 
Fig. 6. Robust MPC for different initial states, with 

2=N . 
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When talking about complexity, one has to mention 
that the convex regions computed here, i

k 1−R  as in 
(11), are obtained in a dual representation (extreme 
points/constraints), which does not represent a 
computational challenge (the MPT toolbox was used 
here – (Kvasnica et al., 2004)) as long as the number 
of vertices does not increase (there are polytopic 
regions with either 4 or 5 vertices). This fact is 
strongly related to the particular shape of the target 
region. In this case, neither the projections nor the 
difference of polyhedral regions should require an 
important computational effort. 
 
Finally, in Figure 6 one can remark several state 
trajectories generated based on random disturbance 
realizations validating any physical extreme 
combination of states. 
 
 

6. CONCLUSION 
 
This paper has examined a class of discrete-time 
piecewise affine systems with bounded disturbance, 
for which a polyhedral technique has been proposed 
to find the regions in the state space where a feasible 
mode and a robust control is assured to derive the 
system states to the desired region despite the 
disturbance. Model predictive control technique has 
been proposed as a fast and suboptimal robust control 
for the considered problem. 
 
Future work will consider applying the same 
techniques on discrete-time piecewise affine systems 
with parameter uncertainties and exogenous 
disturbances. 
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