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Abstract: This paper employs the Input-to-State Stab{l85) framework to investigate
the robustness of discrete-time Piece-Wise Affine (PWA}esys in closed-loop with
Model Predictive Controllers (MPC), or hybrid MPC for shaffe show via an example
taken from literature that stabilizing hybrid MPC can getterMPC values functions
that are not ISS Lyapunov functiofigr arbitrarily small additive disturbances. As a
consequence, it is not easy to prove that nominally stafgihybrid MPC schemes
are robust. This motivates the need to design MPC schemesyfoid systems with
an a priori robust stability guarantee. A possible solutiorthis problem was recently
developed by the authors for a particular class of PWA systée when the origin lies
in the interior of one of the regions in the partition. The meontribution of this paper
is a novel dual-mode MPC algorithm for hybrid systems withagpriori ISS guarantee.
This MPC scheme is applicable to general PWA systems, i.enilie origin may lie on
the boundaries of multiple regions in the partiti@uopyright(©2006 IFAC

Keywords: Predictive control, Hybrid systems, Robust ititsb

1. INTRODUCTION closed-loop with MPC controllers (or hybrid MPC for
short), which is a problem that was not addressed be-

A certain maturity is reached in the field of Model fore in the literature. By the inherent robustness prop-
Predictive Control (MPC) for hybrid systems, regard- erty we mean that a nominally stabilizing controller
ing computational and nominal stability aspects. This has some robustness in the presence of perturbations.
is illustrated by the existing tools for solving hy- |ts importance cannot be overstated, since all con-
brid MPC optimization problems, the Hybrid Toolbox  trollers designed to be nominally stable are affected
(Bemporad, 2003) and the Multi Parametric Toolbox by perturbations when applied in practice.

(MPT) (Kvasnicaet al, 2004), and by the stability - .
results published in the literature, for example, SeeInherent robustness has been studied in MPC for linear

(Bemporad and Morari, 1999), (Borrelli, 2003) for and smooth nonlinear systems. In (Griratral., 2004)

attractivity results and (Kerrigan and Mayne, 2002), the authors proved that linear systems in closed-loop
(Lazaret al, 200%) for asymptotic stability results with stabilizing MPC are inherently robust due to the

for Piece-Wise Affine (PWA) systems. In this paper Pr€Sence of @ontinuousMPC value function, Which
we focus oninherent robustnessf PWA systems in IS @n Input-to-State Stable (ISS) Lyapunov function
(Jiang and Wang, 2001) in this case. However, they

also showed via examples that continuous and nec-
! Research supported by the Dutch Science Foundation (STW), essarily nonlinear systems in closed-loop with MPC
Grant “Model Predictive Control for Hybrid Systems” (DMR. B8 can actually have zero robustness to arbitrarily small

and by the European Union through the Network of Excellence . . .
HYCON (contract FP6-IST-511368), disturbances, in the absence of a continuous MPC
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value functior? . The first contribution of this paper sets{k€ Z, |k> ¢} and{k € Z; | &1 <k < ¢z},

is to issue a warning by presenting an example of arespectively, for some;,c; € Z.. Let | - || denote
PWA system in closed-loop with a stabilizing MPC an arbitrary Hlder vectorp-norm and let| - | de-
controller that generates an MPC value function that note the absolzute value. For a matdxe R™" let

is discontinuousand, more importantly, it isot an 1Z| & sug@éow denote its corresponding induced
ISS Lyapunov function. This indipates that_the natural matrix norm. For a sequencg&p}pez, With z, € R!
way to ensure ISS (robustness) in MPC fails for PWA |g¢ 1{zp} pez., | 2 sup{|zp]l | p € Zy }. Let 2y de-

systems. note the truncation ofzp}pez, at timek € Z,, i.e.

The aim of this paper is to design an MPC scheme for Zk.p = Zp: P < k. Also, letz ,,| denote the truncation
hybrid systems with an a priori robust stability guaran- Of {Zp}pez. at timesk, € Z>1 andk; € Z>y, i.e.

tee. Several solutions that rely oontinuous(or even  Zkyky.p = Zp, K1 < p < ko. For a set? C R", we
Lipschitz continuogssystem dynamics are available denote byd & the boundary o, by int(#) its in-

in the literature, e.g. see (Limat al, 2002), (Grimm  terior and by dl#?) its closure. For two arbitrary sets
et al, 2003). However, since hybrid systems are inher- 1 € R" and %, CR", let #1 ~ 2, 2 {x e R" | x+
ently nonlinear and discontinuous, these methods are”2 € Z1} and 21 & P2 £ {x+y|xe 21,y € P}

not applicable to MPC of hybrid systems. Recently, denote their Pontryagin difference and Minkowski
in (Lazaret al, 200%) the authors developed a hybrid SUm, respectively. For any real > 0, the setA &
MPC scheme with an a priori ISS guarantee, under theis defined as{x € R" | x= Ay for somey € }. A
assumption that the origin lies in the interior of one of convex and compact set R that contains the origin
the regions in the state-space partition. However, thisin its interior is called a C-set. A polyhedron (or a
method cannot be applied to general PWA Systems,polyhedral set) is a set obtained as the intersection of
i.e. when the origin may lie on the boundaries of 2 finite number of open and/or closed half-spaces.
multiple regions in the state-space partition. The main
contribution of this paper is a new ISS dual-mode
MPC algorithm for hybrid systems, which extends the
results of (Lazaet al,, 200%) to these general PWA
systems. The dual-mode MPC scheme uses tightene
constraints and it does not require continuity of the
MPC value function, nor of the PWA system dynam-
ics. Note that tightened constraints were used before Xer1 = G(X,Wk), keZy, (1)

in order toensure robust feasibility onlyn smooth  \wherex, € R" is the statew, € R' is an unknown
nonlinear MPC (Limoret al, 2002). In this paper,  gjsturbance input ané : R" x R — R" is a non-
however, an extension of this technique is employed jinear, possibly discontinuous function. For simplicity
for discontinuous PWA systems to achiéah robust o notation, we assume that the origin is an equilib-

feasibility and ISSand thus, robustness to additive rjym in (1) for zero disturbance input, meaning that
disturbance inputs). G(0,0) = 0.

2. INPUT-TO-STATE STABILITY
PRELIMINARIES

%onsider the discrete-time perturbed autonomous non-
linear system described by

A special remark is dedicated to the results presented . i

in (Kerrigan and Mayne, 2002) and (Rakovand  Definition 1. For a given 0< A <1, a set% C R”
Mayne, 2004), which deal with dynamic program- wnhOemt(Q) is called qobustA—contractlve sefor
ming and tube based, respectively, approaches forSyStem (1) if forallx € 27 it holds thatG(x,w) € A 2
solving feedbacknin-maxMPC problems forcontin- for allwe W. ForA = la robust)\-contractlve setis
uousPWA systems, and also provide a robust stability called aRobust Positively Invariant (RPI) set
guarantee. These results are opening roads towards )

feedbackmin-maxMPC of hybrid systems. However, Def|n|t|on_2._ A functlpn ¢ Ry 7 Rff belongs to
in this paper we use a different approach that doesclass% if it is continuous, stnc_tly increasing a_md
not resort to computationally expensive min-max for- ¢(0) = 0. It belongs to class#. if ¢ € " and it
mulations and we specifically includéiscontinuous 1S radially unbounded (i.ep(s) — = ass — «). A
PWA systems with the origin lying on the boundaries funcnon B :_R+ x Ry — R, belongs to class_%/.f
of multiple regions in the partition, which is not the if for each fixedk, B(-,k) € /" and for each fixed,

case for the before-mentioned references. B(s.) is non-increasing and liga.c. B (s, k) = 0.
Notation and basic definitions . . .

Next, we introduce the notion of input-to-state sta-
LetR, Ry, Z andZ,. denote the field of real numbers, bility, as defined in (Jiang and Wang, 2001), for the
the set of non-negative reals, the set of integer num-discrete-time nonlinear system (1).
bers and the set of non-negative integers, respectively.
We use the notatio#.>c, andZ, ¢, to denote the  Definition 3. The perturbed system (1) iglobally
Input-to-State Stable (ISHj there exist a7 Z-
function 3 and a7 -functiony such that, for each ini-

2 The value function corresponding to the MPC cost is usualgdu ; it n ; |
tial condition R" and all{w with wp € R
as the candidate Lyapunov function to prove nominal stgbilit o € {Wp} pez. pE
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for_ all pe Zf, _it holds that the corresponding state Xier1 = (X, U) 2 Ajx¢+ Bjug + fj
trajectory satisfiegxy || < B(||oll, k) + y(|lwy_q|) for whenx, € Q;, (4a)
allk € Z>;. LetX andW be subsets dR" andR!, re- o e A n oo

spectively, with 0z int(X). We call system (1)SS for R 1 = G U W) = AR+ ~Bj U+ T+ wie

initial conditions inX and disturbances i if there whenx € Qj, (4b)
exist a.z .Z-function B and a.# -function y such

that, for eachx € X and all {Wp}pez, withwp e W Wherewx e W CR" k€ Z;, Aj € RV, Bj € R™T

for all p € Z., it holds that the corresponding state andfj € R", j € . with.# £ {1,2,...,s} afinite set
trajectory satisfiegxq|| < B(|xoll,k) + y([[wy_y||) for of indexes. We assume tHét is a bounded polyhedral
allk € Z~1. set that contains the origin, and the state and the input
B are constrained in some polyhedral C-s&tandU.

The collection{Q; | j € ./} defines a partition oK,
meaning that)jc »Qj = X and in{Q;) Nint(Q;) = 0

for i # j. EachQ; is assumed to be a polyhedron (not
necessarily closed). Le¥p = {j € .| 0 € cl(Qj)}
andlet#; £ {j € 7 |0¢cl(Qj)}, so that¥ = HU

1. We assume that the origin is an equilibrium state
be a subset off' that contains the origin. LeK for (4) with u = 0 and therefore we require thit=0

with 0 € int(X) be a RPI set for system (1) and let for all j € ‘ZO' Notg that 'th|s does not exclude PWA
V:X — R, be a function withv(0) = 0. Consider systems which ardiscontinuous over the boundaries

The following sufficient conditions for ISS will be
used throughout the paper to establish ISS for the
particular case of MPC of hybrid systems.

Theorem 4.Let ay(s) £ as', az(s) £ bs, as(s) £
cs' for somea,b,c,A > 0 and leto € 7. Let W

now the following inequalities: Although we focus on PWA systems of the form (4),
the results developed in this paper have a wider ap-
aw([Ixll) = V(x) < az([[x]]), (22)  piicability since it is known (Heemelst al, 2001)
V(G(x,w)) =V (x) < —as(lIx]) +o(llwl]). (2b)  that PWA systems are equivalent under certain mild

assumptions with other relevant classes of hybrid
systems, such as mixed logical dynamical systems
(Bemporad and Morari, 1999) and linear complemen-
tarity systems (van der Schaft and Schumacher, 1998).

If inequalities (2) hold for allx € X and allw € W,
then system (1) is ISS for initial conditions ¥ and
disturbances inW. Moreover, the ISS property of
Definition 3 holds with
Next, consider the case when the MPC methodology
B(s,k) = alfl(zpkaz(s)), y(s) £ afl <20(S)> , is used to generate the control inpytk € Z, in (4).
1-p For afixedN € Zx1, letxy (X, Ux) = (X, - - -, Xnjk) de-
®) note the state sequence generated by the nominal PWA
system (4a) from initial stabey £ x and by applying
the input sequenag = (Ug, - .-, Un_1x) € UN, where
PROOF. The proof of this theorem can be based on N 2 [y« .. x U. Furthermore, leKt C X denote a
the proof of Lemma 3.5 in (Jiang and Wang, 2001). desired polyhedral target set that contains the origin
Note that although continuity of the candidate ISS in its interior. The class cddmissible input sequences
Lyapunov functionV is assumed in Lemma 3.5 of gefined with respect t& and state € X, k € Z.,
(Jiang and Wang, 2001), the continuity property is not js 4, (x,) £ {uy, € UN | x(X¢, Uy) € XN, Xnik € X7}
actually used in the proof. A complete proof, including For the rest of the paper It || denote theo-norm for
how the specific form of th@ andy functions given  shortness. Consider now the functidfgx) 2 ||Px|
in (3) is obtained, is given in (Lazat al, 2005). O whenx € Q; andL (x,u) 210X + [IRul, whereP,

. RPN je., Qe R¥”M"andRe R™"are assumed to
Remark 5.The hypothesis of Theorem 4 allows that be known matrices that have full-column rank.

both G andV are discontinuous. kbnly implies con-

tinuity at the pointx = 0, andnot necessarily on a  pryplem 7. Let Xt C X andN € Z-1 be given. At
neighborhood ok = 0. time k € Z, let x, € X be given and minimize the
Costd (X, Uk) = F (k) + 31t L%k, Uijk), with pre-
diction model (4a), over all sequenassin 7 (X)-

wherep £ £ €[0,1).

Definition 6. A functionV that satisfies the hypothe-
sis of Theorem 4 is called d8S Lyapunov function

In the MPC literatureF, L andN are called the ter-
minal cost, the stage cost and the prediction horizon,
respectively. We call an initial statg € X feasibleif
3. MODEL PREDICTIVE CONTROL OF PWA WUn(Xo) # 0. Similarly, Problem 7 is said to Beasible
SYSTEMS PRELIMINARIES for x € X if 2(x) # 0. LetX¢(N) C X denote the
set offeasible statesvith respect to Problem 7 and
In this paper we consider nominal and perturbed let V : X¢(N) — R, V(x) £ infy, e240(x0) I (X Uk)
discrete-time PWA systems of the form: denote the MPC value function corresponding to Prob-

323



lem 7. Suppose there exists an optimal sequence Ofnt(Q;) mt(Q ) =0 for i # j) is a new partition

controlsu; £ (Uouo ul‘k, SUN 1“() for Problem 7 and

any stateq € X¢(N). ThenV (x) = J(, ug) and the
MPC control lawis obtained as

(%) = Ugps K€ Zy. (5)

Consider now an auxiliary state feedback control law
haux : R" — R™ with hax(0) = 0, which is usually
employed in proving stability oferminal cost and
constraint setMPC. In the PWA setting we take this
state feedback PWL, i.@aux(X) = Kjx whenx € Qj,

Kj e R™", je.7. LetXy £ {X € X | haux(X) € U}
denote thesafe setwith respect to both state and
input constraints for this controller. L&tp; with 0 €
int(Xp;) be a Positively Invariant (PI) set for system
(4a) in closed-loop withh,x that is contained irKy.
Consider now the following assumption.

Assumption 8 There exisf{P;,K| | j € ./} such that
IR (A +BjKj)x+Rfj || —[|Px]
+[1Qx + [[RKx|[ <0, (6)
forall x e Xpjand all(j,i) € .7 x.7.

Theorem 9.(Lazar et al, 2005) Suppose that As-
sumption 8 holds and takér = Xp,. Then, the PWA
system (4a) in closed-loop with the MPC controller
(5) is asymptotically stable in the Lyapunov sense for
initial conditions inX; (N).

The proof of Theorem 9 relies on the fact that As-
sumption 8 is equivalent to

F(g(X7 hauX(X))) _F(X>+L(X7 haux(x)) S 07 VX e XT-

This in turn ensures that the hybrid MPC value func-
tionV is aLyapunov functiorfor the closed-loop sys-
tem (4a)-(5), i.e. there existy(s) £ as', ax(s) £ bs',
as(s) £ cs', with a,b,c,A > 0, such thaio (||x]) <
V(x) < az(([X]]) andV (g(x, G(x))) =V (x) < —as([IX]])

for all x € X¢(N).

In the above setting, Theorem 8.4 of (Borrelli, 2003)
states that the MPC control lawdefined in (5) is a

PWA state-feedback. Hence, the resultiryytprid MPC
closed-loop systels a PWA system, i.e.

X1 =0(%, U(X)) = Ajx + Bj0(x) + fj,

0(x) = Lixc + i whenxc € Qj N Q;, (7a)
Kier1 =0(Kc, U(Re), Wi) = AjRe + BjO(%) + fj + Wi,
0(%) = Li%+ i whenx € Qj N Q;, (7b)

with (j,i) € .7 x .7 (# is a finite set of indexes),
k € Z4, whereLj € R™", |; € R™, andU;_5Q; =
Xt (N) (with int(Q) Nint(Q;j) = 0 fori # j) is a new
partition corresponding to the explicit MPC control
law. Moreover, the MPC value functiov is a PWA
function (recall that| - || denotes theo-norm), i.e.

V(x) 2 8
where Ej € R, g € R, | takes values in some
finite set of indexes”, andujeiﬁj = X¢(N) (with

Ejx+€j whenx € Qj,
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corresponding to the MPC value function.

4. NOMINALLY STABILIZING HYBRID MPC
VALUE FUNCTIONS ARE NOT NECESSARILY
ISS LYAPUNQOV FUNCTIONS

In the linear and continuous nonlinear case, nomi-
nally stable systems typically have some robustness
properties. Note that, as done classicallyVifis a
uniformly continuougor even stronget,ipschitz con-
tinuoug Lyapunov function for the nominal dynamics,
i.e. xx+1 = H(x), and the disturbance acts additively
on the state, i.ex.1 = H(xx) + Wk, then it is easy to
prove that the hypothesis of Theorem 4 is satisfied,
which ensures ISS. Indeed, uniform continuity implies
that for any compact subse®? of R" there exists a
¢ -function o such that for anyx,y € & it holds that
V(y) -V(x)| < a(|ly—x|). Hence,

V(HX) +w) =V(x) <V(H(X)) +a(|[w]) =V(x)
< —ag([|x])) + o ([jwl)

and thusV is an ISS Lyapunov function. For more
general robust stability results that usentinuous
candidate (ISS) Lyapunov functions see (Griral.,
2004). Clearly, the above continuity based robustness
(ISS) argument no longer holds if the functighis
discontinuous at some points.

Note that discontinuity of the candidate Lyapunov
functionV does not necessarily obstruct the ISS in-
equality (2b) to hold. However, we show via an ex-
ample from literature that stabilizing hybrid MPC can
generate discontinuous value functions that are not
ISS Lyapunov functions for perturbed systems of the
form (7b). As in (7) and (8), the followmg notation
will be used: fori € .7 and j € 5” Gi(X) £ Lix+;
andVj(x) £ Ejx+ e; for anyx € X.

Example 10.Consider the following discontinuous
PWA system, taken from (Mignoret al., 2000):

Arxc +Bu if

Aoxg +Bug  if
X1 = .

Asxx +Bug if

Asx+Bug if

Eixx >0
Exx¢ >0
Esx, > 0
Eaxc >0

(©)

where all inequalities hold componentwisé; =

[ 0130 gaat | A2 = [3788 58] Ao = [ouat’ aez -
Aa=[og asril: B=[10]", E1=—Es =[G 9]

andE; = —E4 = [ 9]. The state and the input of
system (9) are constrained at all times in the sets
X =[-10,10 x [-10,10 and U = [-1,1], respec-
tively. The method presented in (Lazetral., 200%)
was employed to compute a common terminal weight
matrix P = P, = P, = P; = P4 and feedbackgK; |

j .,4} such that inequality (6) of Assumption 8
holds for the stage cost weigh@®= diag([1 1]) and
R=0.1.



Aox* + Bligg(x*) = [0.0130 01070 T;
AgX* + Blisg(x*) = [-0.7791 —1.3535;
V(x) =Vag(x*) = 2.6766;  lim_ V(x) = Vsg(x*) = 11.7383

X—X*, XxEQsg

(i) As Assumption 8 is satisfied via the procedure
of (Lazaret al, 200%), the statement follows from
Theorem 9.

(iif) The MPC closed-loop system (7a) corresponding
to system (9) is such that the dynamics active in region
Qgzg is employed forx, = x*. The nominal state tra-
jectory obtained for the initial statey = [—1.9649 —
196497 € {9Q47N dQs3} N Q47 reaches the state
X1 = X* in one step (see Figure 1 for the trajectory
Fig. 1. The feasible séf; (1) and state trajectory for plot). Then, for any.# -function o we can take an
the PWA MPC closed-loop system (9)-(5) with arbitrarily small disturbancev such thatx* +w €

Xo = [~1.9649 —1.9649". Qsg, for which V(X" 4+ W) — V(%) = Veg(X* + W) —
The following matrices were obtained: V(x0) = 0.5970> o([[wl]) = —as(l[xll) + o(|w])
for any a3 € %,. Hence, the ISS inequality (2b) of

b { 6.7001 31290}

91107 41908+ K =[0.2703 ~0.113§, Theorem 4 does not hold for arbitrarily smatland

Kz — [~0.8042 —0.2560],K; — [1.0122 —0.7513, thus,V is notan ISS Lyapunov function for the closed-
loop dynamics (7b). O
K4 = [-0.5548 —1.122§ . (10)
Then, we used the MPT (Kvasnia al, 2004), o
which implements the algorithm of (Rakévet al, The result of Lemma 11-(iii) implies that the most

2004), in order to calculate the terminal constraint set lIkely and natural candidate (i.e. the MPC value func-
Xt as the maximal positively invariant set contained tion V) for proving ISS for the closed-loop system
in Xy, for system (9) in closed-loop withu,y with the (7b) fall§. Hence, one should be careful in Qr_awmg
feedbacks given in (10), and whefte = Uj_1__a{xe conplusmns on robustnes; from. nomlna}l stability (es-
Q; | Kjx € U}. By Theorem 9, this is sufficient to tablished V|<'_;\V) When_ dealing Wlth hybrid MPC. At
guarantee that the MPC closed-loop system (9)-(5)!€ast, there is no obvious way to infer ISS from nom-
is asymptotically stable in the Lyapunov sense for Ina! stability in hybrid MPC, or to modify nominally
all x € X{(N), N € Z=1. Then, the MPT was used stab_|I|Z|ng MPC schemes for hybrid systems such that
to calculate the MPC control law (5) fod = 1 as 1SS is ensured a priori.
an explicit PWA state-feedback, and to simulate the
resulting PWA MPC closed-loop system (7a). The
explicit MPC controller is defined over 86 state-space
gty i =
;gefg(li); S-frzf']é ief o? f{elails.il.)’IS E;}t;fggéfsgt)lsifsy:;ﬁﬁga Tn In this section we present a new technique for setting

Figure 1 together with the partition corresponding to up ISS MPC schemes for hybrid systems, which uses a
the explicit MPC control law. dual-mode approach. In the sequel, the nomenclature

of Section 3 is employed, i.éaux(X) = Kjx when

x € Qj and, letXrp C Xy with 0 € int(Xrpi) be a
Lemma 11.For the MPC closed-loop system (7) cor- RP!I set for system (4b) in closed-loop with,. Let
responding to system (9) of Example 10 it holds that: ¢ = MaXe [|Pj], letn = maxec» [|Aj[| and, for any
i€ Z>1, let.Z) 2 {xeR"| |X| < uy, 550"}

5. MAIN RESULT

(i) The value functio® and the closed-loop dynamics
(7a)are not continuous Next, choose the terminal set ¥ = XgpN Xy C

N A _ N
(i) V is a Lyapunov functiorfor the closed-loop XRP, threXN = Ujer Q) ~ it € X, and' let
dynamics (7a) showing asymptotic stability3n (1); 21(X7) = {x € Xy | g(X,haux(X)) € Xr}. Consider

R now the following (tightened) set of admissible input
(i) Foranye >0,V is not an ISS Lyapunov function sequences:

for the closed-loop dynamics (7b) and disturbances  __ . N _
Weﬂgé{W€W| w|| < e} () ={uke U |Xi|k€Xia|:1a---7N*17
XN\kGXT}7 k€Z+7 (11)
PROOF. (i) We have chosen the stat = [0 —
2.1830" € {dQ38N 0Qsg} N Qsg to show that the

VPG closed.l tem (72) and for the ab and (xyk, - - -, Xnjk) IS & state sequence generated from
closed-loop system (7a) and for the above . .. Ao . . i
example are not continuous on (it (1)). We have  nitial statexoy = % and by applying the input se
obtained the following values: qguencaly to the nominal PWA model (4a). L&t; (N)

whereX; £ Uje o {Qj ~ £} CXforalli € Zj n_q

325



denote the set of feasible states for Problem 7 with X @gﬁ\' C 2;(X7), it follows thathaux(fol‘kJrl) €

U (%) instead ofZ4 (), and letV andu denote the
corresponding MPC value function and MPC control
law, respectively.

We define a dual-mode MPC control law as follows:

{

(%) if X € X¢(N)\ Xgp|
haux(X«) if Xk € Xrpy

~DM

G A

(%) T keZ,.

12)

U and xyk+1 € X7. Hence,ux, is feasible at time
k+ 1 and the optimization problem as given in Prob-
lem7 With% (%) instead of4y (%) remains feasible.
Consider now the other situation, i>¢.€ Xgp,. If the
state trajectory enters (or starts ke C Xy (note
that Xt C Xrpy), feasibility of iPM (x¢) = haux(X«) is
ensured due to robust positive invarianceXgfp, for
system (4b) in closed-loop withk = haux(Xk), k € Z+..

Therefore, the set of feasible states corresponding to(ii) The result of part (i) implies th§~(f(N) UXgp is

aPM is Xt (N) UXRrpy, Which contains the origin in its
interior due to G int(Xgp)).

Remark 12.Usually, e.g. see (Kerrigan and Mayne,
2002), in dual-mode robust MPC the terminal set is
taken asXgrp). The terminal state is restricted here to
a disconnected subsetXkp), i.e. X7 = XgpiNXN C
Xrpi, With 0 ¢ X, in order to guarantee robust fea-
sibility of Problem 7 withZq (x«) instead ofZa (%)
and ISS, as it will be shown next. If the state trajectory
reaches eithéXt or Xgp\ Xt, the dual-mode control
law switches to the PWL local controller and then the
state trajectory remains Krp| (and not necessarily in
X7) forever, due to robust positive invarianceXyp,.

Theorem 13.Takeu > 0 andN € Z1 such thaiXt =
XrpiNXN # 0 and |et<@“ £ {we W | |w| < u}.
Suppose that,x and the terminal cost satisfy (6) for
all x e Xgpy. Then it holds that:

(i) If X7 & 2} € 21(X7) and Problem 7 withy (xc)
instead of % (x«) is feasible at timek € Z, for
statex; € X, then Problem 7 with#y () instead of
() is feasible at tim&+ 1 for statexi, 1 = AjX+
B;j0PM (%) + f; -+ w for all wi € 8, and allk € Z;

(i) The perturbed PWA system (4b) in closed-loop
with GPM is ISS for initial conditions irX (N) U Xgp)
and disturbances i#,;.

PROOF. (i) There are two situations possible: either
X« € XRrp) Or X € Xrpr If X € X (N) \XRPI for some
keZ.,,let (x’i‘k, . ’X?Q\k) denote an optimal predicted
state sequence obtained at tikkdrom initial state
Xok = % € Xt(N) \ Xrp and by applying the input
sequencel; = (ug‘k,...,u;,_llk) to the PWA model
(4a). Let(Xykt1, - - -, Xnjk+1) denote the state sequence
obtained from the perturbed initial statgy.; =
Rir1 = Xep1 + Wi = x’i‘k+wk and by applying the input

A
sequencealy, i = (Ui\ka---7U§,1|k7haux(XN71\k+1)) to

the nominal PWA model (4a). The state constraints

imposed in (11) ensure that: (P@(”kﬂ,xi*ﬂ‘k) €
Qji1 X Qjiyyy Jin € L foralli=0,...,N—2 and,
Hxi|k+1—Xi*+1|k|| <n'pfori=0,...,N—1.Then, as
shown in the proof of Theorem 4.3-(i) of (Lazat
al., 200%), we have thak1 € Qj;,, ~ £}, C X for
i =1,...,N—2. Next, Xy 1)1 = Xy + NN A Wi
andxy, € Xt imply thatxy g1 € X7 & 7). Since

326

a RPI set for system (4b) in closed-loop with the dual-
mode MPC controlPM and disturbances ig8,,. To
prove ISS, we consider three situations: in Case 1 we
assume that e X¢(N)\ Xgp forallke Z.., in Case 2

we assume thatpc Xrpj, and in Case 3 we assume
thatxp € Xt (N) \ Xrpj and there exists p€ Z>1 such
thatxy & Xrp for all k € Z.p andX, € Xgp!.

In Case 1, the hypothesis already ensures that the
MPC value function/ satisfies the 1SS condition (2a)
for somea,b,c > 0 andA =1 (see Theorem 4.3 of
(Lazaret al, 200%) for a proof). Then, it follows that
ar(|Ix]]) <V (x) < az(]|x||) for all x e X (N). Let X1
denote the solution of the perturbed system (4b) in
closed-loop withuPM obtained as indicated in part (i)
of the proof and Iexglk £ %i. Due to full-column rank

of Q there existy > 0 such that|Qx|| > y/||x|| for all

X. Then, as shown in the proof of Theorem 4.3-(ii) of
(Lazaret al,, 200%) it holds that

~ ~

V (&r1) =V (%) < IRt 1, Uiga) — I(Kie, U)
< —a3([IR) + o ([lwkl),

with a(s) = (NN + Q| $p=gnP)s and as(s) =

ys. Hence, it follows thaV satisfies the hypothesis of
Theorem 4, thereby establishing ISS in this particular
case for the closed-loop system (4b)-(12), for initial
conditions inX(N) \ Xrp and disturbances i8,,.

In Case 2, we prove that the closed-loop system is
ISS by showing that the candidate (discontinuous)
ISS Lyapunov functiorF (x) = ||Pjx|| whenx € Q;
satisfies the hypothesis of Theorem 4. Silgehas
full-column rank for all j € . there exist posi-
tive constantsa; and b; £ ||Pj|| such thata;||x|| <
IP;x|| < bj||x|| forall j € .. Hence, the#-functions
ai(s) £ minje» ajs and az(s) £ maxe.» bjs satisfy
ar(JIx]) < F(x) < az(]|x|)) for all x e R". Next, from
the hypothesis we have that inequality (6) holds for all
x € Xgprand all(j,i) € & x ., which yields:

F((Aj +BjKj)x+ fj +w) —F(X)
= [[R((Aj +BjKj)x+ fj +w) || — [|P;x]|
<[IR(Aj +BjKj)x+ R fj| + |Rw| — [|Px]
< — Qx| +max|[R[w]| < —as([xl]) + a([lwi),

for all x € Xgpy, (j,i) € & x & and disturbances in
%y, whereas(s) £ ys (with y > 0 such thaf|Qx|| >

ylIX|]) and o (s) £ maxc« ||R||s. Then, due to robust
positive invariance oKrpy, ISS for initial conditions



in Xgrpy and disturbances i), follows from Theo-
rem4.

In Case 3 there exists a finitp € Z~1 such that
X & Xgpi for all k € Z., andX, € Xgpi. Then, from

Theorem 4, Case 1 and Case 2, it follows that there

exist 7 Z-functions 31, 3> and 7 -functions y1, y»
such that for allp € Z> it holds:
1%/l < Ba(lI%ll k) + va([[Wi—qll), VK € Z<p,
%]l < Ba([[%pll, k= P) + Yol Wi—pr-1[]), YK € Zp,
for all wy_q) € {8, }* and allwy_p 1 € {By}P, re-
spectively. The functiong; € 2 %, y1 € # andf3; €
H L, ¥ € X are obtained as in (3) for some con-
stantg, p € [0,1) and some#4-functionsa; (s) = as
az(s) 2 bsanday(s) = as a»(s) = bs witha,b,a,b >
0, respectively. Then, forak € Z.., and allp € Z>,
it follows that
1%l < B2(Ba([I%ll, p) + e ([l Wip-1 1), k= P)
+ Yo ([IWik—pk-1 )
+ B2y ([Iwip- ), k= p) + oWk pr—1 )

D Ba1%]1,K) + Ba(2a([Wp_y ). 1)
el pry )

< Ba(1%6]1.K) + B2 ([Wy_g1)- 1)
(e )

< Bs([[%oll k) + ya(lIWk—1 )

where ys(s) £ B2(2yi(s),1) + y.(s) and we used the
fact that

B2(2B1<Sa p)a k— p)
© a; 120" Pay (201, 1 (267 (9)))

bb ., A
< 8— =
< Saa_p s= B3(s k), (13)

andp £ maxp,p) € [0,1). Hence,3s € .#.Z and,
sincef; € # ¥ andy, y» € £, we obtain thats €
. Applying Case 1 and Case 2 and combining with
the result obtained above for Case 3 it follows that:

1%l < B([[%ll K) + y(lIWi-11]),
for all %o € X(N) UXrpl, Wi 1) € {Zu}* and all
k€ Z>1, where
B(S k) £ maX(Bl(Sv k)a BZ(Sv k)7 B3(37 k))
is a7 .Z-function andy(s) £ max(yi(s), 5(s), 5(s))
is a.# -function. Hence, ISS is proven for system (4b)

in closed-loop withuPM for all initial conditions in
Xt (N) UXRrp; and disturbances ig,,.

lllustrative example

Next, we demonstrate the ISS properties of the dual-

mode MPC control law (12) on the PWL system (9)
of Example 10, introduced in Section 4. The terminal
weight matriced®; = P for j = 1,...,4 and the feed-
backs{K;j | j € .} givenin (10) are such that inequal-
ity (6) holds for allx € R". In order to implement the
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Fig. 2. The terminal constraint sEy = Xrp;NXj.

//A

Fig. 3. The feasible s&X; (1) UXgpi: Xt (1) - light
grey; a part oikrp, - dark grey.

dual-mode MPC control law one has to compute the
terminal seiXt. The MPT (Kvasnicat al, 2004) was
employed in order to calculate the maximal RPI set
Xgpi contained inXy. We choosqt = 0.1 andN =1,

for which the terminal constraint séft = Xgp N

X1 # 0 (see Figure 2), wher&; = Uj_1_ 4{Qj ~

41}, satisfies the hypothesis of Theorem 13. An ex-

plicit solution of Problem 7 Witl"é/vN(xk) instead of
(%) was calculated with the MPT. The feasible set
§§f (1) UXRgp) of the dual-mode MPC control law and
the state-space partition (138 regions) corresponding
to the explicit MPC control law are plotted in Figure 3.

Note that, by Theorem 13, ISS is ensured for the
closed-loop system for initial states X (1) U Xrp)
and disturbances i%,,, without employing aontinu-
ous MPC value functiarindeed, the dual-mode MPC
value functionV is discontinuous at any € Qs»N
dQgo. For exampleVay(x*) = 2.9038 andVgo(x*) =
11.7383 forx* = [0 —2.1830", i.e. the critical point

at which the nominal MPC value function of Exam-
ple 10 is not an ISS Lyapunov function.

In order to illustrate the ISS property of the dual-mode
MPC controller we simulated system (9) in closed-
loop with iPM for initial statesxg; = [—1.9649 —
1.9649" (solid line) andxp, = [5 — 5] (dashed line)
and the disturbance values depicted in Figure 4 - (a),
(b) for bothxg; andxgz. The control inputs are also
plotted in Figure 4 - (c), (d) for initial stateg; and

Xo2, respectively. Once the disturbance converges to
zero, the state trajectories also converge to the origin
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