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Abstract: This paper employs the Input-to-State Stability(ISS) framework to investigate
the robustness of discrete-time Piece-Wise Affine (PWA) systems in closed-loop with
Model Predictive Controllers (MPC), or hybrid MPC for short. We show via an example
taken from literature that stabilizing hybrid MPC can generate MPC values functions
that are not ISS Lyapunov functionsfor arbitrarily small additive disturbances. As a
consequence, it is not easy to prove that nominally stabilizing hybrid MPC schemes
are robust. This motivates the need to design MPC schemes forhybrid systems with
an a priori robust stability guarantee. A possible solutionto this problem was recently
developed by the authors for a particular class of PWA systems, i.e. when the origin lies
in the interior of one of the regions in the partition. The main contribution of this paper
is a novel dual-mode MPC algorithm for hybrid systems with ana priori ISS guarantee.
This MPC scheme is applicable to general PWA systems, i.e. when the origin may lie on
the boundaries of multiple regions in the partition.Copyright c©2006 IFAC
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1. INTRODUCTION

A certain maturity is reached in the field of Model
Predictive Control (MPC) for hybrid systems, regard-
ing computational and nominal stability aspects. This
is illustrated by the existing tools for solving hy-
brid MPC optimization problems, the Hybrid Toolbox
(Bemporad, 2003) and the Multi Parametric Toolbox
(MPT) (Kvasnicaet al., 2004), and by the stability
results published in the literature, for example, see
(Bemporad and Morari, 1999), (Borrelli, 2003) for
attractivity results and (Kerrigan and Mayne, 2002),
(Lazar et al., 2005b) for asymptotic stability results
for Piece-Wise Affine (PWA) systems. In this paper
we focus oninherent robustnessof PWA systems in
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Grant “Model Predictive Control for Hybrid Systems” (DMR. 5675)
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closed-loop with MPC controllers (or hybrid MPC for
short), which is a problem that was not addressed be-
fore in the literature. By the inherent robustness prop-
erty we mean that a nominally stabilizing controller
has some robustness in the presence of perturbations.
Its importance cannot be overstated, since all con-
trollers designed to be nominally stable are affected
by perturbations when applied in practice.

Inherent robustness has been studied in MPC for linear
and smooth nonlinear systems. In (Grimmet al., 2004)
the authors proved that linear systems in closed-loop
with stabilizing MPC are inherently robust due to the
presence of acontinuousMPC value function, which
is an Input-to-State Stable (ISS) Lyapunov function
(Jiang and Wang, 2001) in this case. However, they
also showed via examples that continuous and nec-
essarily nonlinear systems in closed-loop with MPC
can actually have zero robustness to arbitrarily small
disturbances, in the absence of a continuous MPC
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value function2 . The first contribution of this paper
is to issue a warning by presenting an example of a
PWA system in closed-loop with a stabilizing MPC
controller that generates an MPC value function that
is discontinuousand, more importantly, it isnot an
ISS Lyapunov function. This indicates that the natural
way to ensure ISS (robustness) in MPC fails for PWA
systems.

The aim of this paper is to design an MPC scheme for
hybrid systems with an a priori robust stability guaran-
tee. Several solutions that rely oncontinuous(or even
Lipschitz continuous) system dynamics are available
in the literature, e.g. see (Limonet al., 2002), (Grimm
et al., 2003). However, since hybrid systems are inher-
ently nonlinear and discontinuous, these methods are
not applicable to MPC of hybrid systems. Recently,
in (Lazaret al., 2005a) the authors developed a hybrid
MPC scheme with an a priori ISS guarantee, under the
assumption that the origin lies in the interior of one of
the regions in the state-space partition. However, this
method cannot be applied to general PWA systems,
i.e. when the origin may lie on the boundaries of
multiple regions in the state-space partition. The main
contribution of this paper is a new ISS dual-mode
MPC algorithm for hybrid systems, which extends the
results of (Lazaret al., 2005a) to these general PWA
systems. The dual-mode MPC scheme uses tightened
constraints and it does not require continuity of the
MPC value function, nor of the PWA system dynam-
ics. Note that tightened constraints were used before
in order toensure robust feasibility only, in smooth
nonlinear MPC (Limonet al., 2002). In this paper,
however, an extension of this technique is employed
for discontinuous PWA systems to achieveboth robust
feasibility and ISS(and thus, robustness to additive
disturbance inputs).

A special remark is dedicated to the results presented
in (Kerrigan and Mayne, 2002) and (Raković and
Mayne, 2004), which deal with dynamic program-
ming and tube based, respectively, approaches for
solving feedbackmin-maxMPC problems forcontin-
uousPWA systems, and also provide a robust stability
guarantee. These results are opening roads towards
feedbackmin-maxMPC of hybrid systems. However,
in this paper we use a different approach that does
not resort to computationally expensive min-max for-
mulations and we specifically includediscontinuous
PWA systems with the origin lying on the boundaries
of multiple regions in the partition, which is not the
case for the before-mentioned references.

Notation and basic definitions

Let R, R+, Z andZ+ denote the field of real numbers,
the set of non-negative reals, the set of integer num-
bers and the set of non-negative integers, respectively.
We use the notationZ≥c1 and Z(c1,c2] to denote the

2 The value function corresponding to the MPC cost is usually used
as the candidate Lyapunov function to prove nominal stability.

sets{k ∈ Z+ | k ≥ c1} and{k ∈ Z+ | c1 < k ≤ c2},
respectively, for somec1,c2 ∈ Z+. Let ‖ · ‖ denote
an arbitrary Ḧolder vector p-norm and let| · | de-
note the absolute value. For a matrixZ ∈ R

m×n let
‖Z‖ , supx6=0

‖Zx‖
‖x‖ denote its corresponding induced

matrix norm. For a sequence{zp}p∈Z+ with zp ∈ R
l

let ‖{zp}p∈Z+‖ , sup{‖zp‖ | p ∈ Z+}. Let z[k] de-
note the truncation of{zp}p∈Z+ at time k ∈ Z+, i.e.
z[k],p = zp, p≤ k. Also, letz[k1,k2] denote the truncation
of {zp}p∈Z+ at timesk1 ∈ Z≥1 and k2 ∈ Z≥k1, i.e.
z[k1,k2],p = zp, k1 ≤ p ≤ k2. For a setP ⊆ R

n, we
denote by∂P the boundary ofP, by int(P) its in-
terior and by cl(P) its closure. For two arbitrary sets
P1 ⊆ R

n andP2 ⊆ R
n, letP1 ∼P2 , {x∈ R

n | x+
P2 ⊆ P1} andP1⊕P2 , {x+y | x∈ P1,y∈ P2}
denote their Pontryagin difference and Minkowski
sum, respectively. For any realλ ≥ 0, the setλP

is defined as{x ∈ R
n | x = λy for somey ∈ P}. A

convex and compact set inRn that contains the origin
in its interior is called a C-set. A polyhedron (or a
polyhedral set) is a set obtained as the intersection of
a finite number of open and/or closed half-spaces.

2. INPUT-TO-STATE STABILITY
PRELIMINARIES

Consider the discrete-time perturbed autonomous non-
linear system described by

xk+1 = G(xk,wk), k∈ Z+, (1)

wherexk ∈ R
n is the state,wk ∈ R

l is an unknown
disturbance input andG : R

n × R
l → R

n is a non-
linear, possibly discontinuous function. For simplicity
of notation, we assume that the origin is an equilib-
rium in (1) for zero disturbance input, meaning that
G(0,0) = 0.

Definition 1. For a given 0≤ λ ≤ 1, a setP ⊆ R
n

with 0∈ int(P) is called arobustλ -contractive setfor
system (1) if for allx∈P it holds thatG(x,w) ∈ λP

for all w∈ W. Forλ = 1 a robustλ -contractive set is
called aRobust Positively Invariant (RPI) set.

Definition 2. A function ϕ : R+ → R+ belongs to
class K if it is continuous, strictly increasing and
ϕ(0) = 0. It belongs to classK∞ if ϕ ∈ K and it
is radially unbounded (i.e.ϕ(s) → ∞ as s→ ∞). A
function β : R+ ×R+ → R+ belongs to classK L

if for each fixedk, β (·,k) ∈ K and for each fixeds,
β (s, ·) is non-increasing and limk→∞ β (s,k) = 0.

Next, we introduce the notion of input-to-state sta-
bility, as defined in (Jiang and Wang, 2001), for the
discrete-time nonlinear system (1).

Definition 3. The perturbed system (1) isglobally
Input-to-State Stable (ISS)if there exist aK L -
functionβ and aK -functionγ such that, for each ini-
tial conditionx0 ∈ R

n and all{wp}p∈Z+ with wp ∈ R
l
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for all p ∈ Z+, it holds that the corresponding state
trajectory satisfies‖xk‖≤ β (‖x0‖,k)+γ(‖w[k−1]‖) for
all k∈ Z≥1. Let X andW be subsets ofRn andR

l , re-
spectively, with 0∈ int(X). We call system (1)ISS for
initial conditions inX and disturbances inW if there
exist a K L -function β and aK -function γ such
that, for eachx0 ∈ X and all{wp}p∈Z+ with wp ∈ W

for all p ∈ Z+, it holds that the corresponding state
trajectory satisfies‖xk‖≤ β (‖x0‖,k)+γ(‖w[k−1]‖) for
all k∈ Z≥1.

The following sufficient conditions for ISS will be
used throughout the paper to establish ISS for the
particular case of MPC of hybrid systems.

Theorem 4.Let α1(s) , asλ , α2(s) , bsλ , α3(s) ,

csλ for somea,b,c,λ > 0 and letσ ∈ K . Let W

be a subset ofRl that contains the origin. LetX
with 0 ∈ int(X) be a RPI set for system (1) and let
V : X → R+ be a function withV(0) = 0. Consider
now the following inequalities:

α1(‖x‖) ≤V(x) ≤ α2(‖x‖), (2a)

V(G(x,w))−V(x) ≤−α3(‖x‖)+σ(‖w‖). (2b)

If inequalities (2) hold for allx ∈ X and allw ∈ W,
then system (1) is ISS for initial conditions inX and
disturbances inW. Moreover, the ISS property of
Definition 3 holds with

β (s,k) , α−1
1 (2ρkα2(s)), γ(s) , α−1

1

(
2σ(s)
1−ρ

)

,

(3)
whereρ ,

c
b ∈ [0,1).

PROOF. The proof of this theorem can be based on
the proof of Lemma 3.5 in (Jiang and Wang, 2001).
Note that although continuity of the candidate ISS
Lyapunov functionV is assumed in Lemma 3.5 of
(Jiang and Wang, 2001), the continuity property is not
actually used in the proof. A complete proof, including
how the specific form of theβ andγ functions given
in (3) is obtained, is given in (Lazaret al., 2005a). 2

Remark 5.The hypothesis of Theorem 4 allows that
both G andV are discontinuous. Itonly implies con-
tinuity at the pointx = 0, andnot necessarily on a
neighborhood ofx = 0.

Definition 6. A function V that satisfies the hypothe-
sis of Theorem 4 is called anISS Lyapunov function.

3. MODEL PREDICTIVE CONTROL OF PWA
SYSTEMS PRELIMINARIES

In this paper we consider nominal and perturbed
discrete-time PWA systems of the form:

xk+1 = g(xk,uk) , A jxk +B juk + f j

whenxk ∈ Ω j , (4a)

x̃k+1 = g̃(x̃k,uk,wk) , A j x̃k +B juk + f j +wk

whenx̃k ∈ Ω j , (4b)

wherewk ∈ W ⊂ R
n, k ∈ Z+, A j ∈ R

n×n, B j ∈ R
n×m

and f j ∈ R
n, j ∈ S with S , {1,2, . . . ,s} a finite set

of indexes. We assume thatW is a bounded polyhedral
set that contains the origin, and the state and the input
are constrained in some polyhedral C-setsX andU.
The collection{Ω j | j ∈ S } defines a partition ofX,
meaning that∪ j∈S Ω j = X and int(Ωi)∩ int(Ω j) = /0
for i 6= j. EachΩ j is assumed to be a polyhedron (not
necessarily closed). LetS0 , { j ∈ S | 0 ∈ cl(Ω j)}
and letS1 , { j ∈S | 0 6∈ cl(Ω j)}, so thatS = S0∪
S1. We assume that the origin is an equilibrium state
for (4) with u = 0 and therefore we require thatf j = 0
for all j ∈ S0. Note that this does not exclude PWA
systems which arediscontinuous over the boundaries.

Although we focus on PWA systems of the form (4),
the results developed in this paper have a wider ap-
plicability since it is known (Heemelset al., 2001)
that PWA systems are equivalent under certain mild
assumptions with other relevant classes of hybrid
systems, such as mixed logical dynamical systems
(Bemporad and Morari, 1999) and linear complemen-
tarity systems (van der Schaft and Schumacher, 1998).

Next, consider the case when the MPC methodology
is used to generate the control inputuk, k∈ Z+, in (4).
For a fixedN∈Z≥1, letxk(xk,uk) , (x1|k, . . . ,xN|k) de-
note the state sequence generated by the nominal PWA
system (4a) from initial statex0|k , xk and by applying

the input sequenceuk , (u0|k, . . . ,uN−1|k)∈U
N, where

U
N

, U× . . .×U. Furthermore, letXT ⊆ X denote a
desired polyhedral target set that contains the origin
in its interior. The class ofadmissible input sequences
defined with respect toXT and statexk ∈ X, k ∈ Z+,
is UN(xk) , {uk ∈ U

N | xk(xk,uk) ∈ X
N, xN|k ∈ XT}.

For the rest of the paper let‖ ·‖ denote the∞-norm for
shortness. Consider now the functionsF(x) , ‖Pjx‖
whenx∈ Ω j andL(x,u) , ‖Qx‖+ ‖Ru‖, wherePj ∈
R

p j×n, j ∈S , Q∈R
q×n andR∈R

r×n are assumed to
be known matrices that have full-column rank.

Problem 7.Let XT ⊆ X and N ∈ Z≥1 be given. At
time k ∈ Z+ let xk ∈ X be given and minimize the
costJ(xk,uk) , F(xN|k)+ ∑N−1

i=0 L(xi|k,ui|k), with pre-
diction model (4a), over all sequencesuk in UN(xk).

In the MPC literature,F , L andN are called the ter-
minal cost, the stage cost and the prediction horizon,
respectively. We call an initial statex0 ∈ X feasibleif
UN(x0) 6= /0. Similarly, Problem 7 is said to befeasible
for x ∈ X if UN(x) 6= /0. Let X f (N) ⊆ X denote the
set of feasible stateswith respect to Problem 7 and
let V̂ : X f (N) → R+, V̂(xk) , infuk∈UN(xk)

J(xk,uk)
denote the MPC value function corresponding to Prob-
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lem 7. Suppose there exists an optimal sequence of
controlsu∗

k , (u∗0|k,u
∗
1|k, . . . ,u

∗
N−1|k) for Problem 7 and

any statexk ∈ X f (N). Then,V̂(xk) = J(xk,u∗
k) and the

MPC control lawis obtained as

û(xk) , u∗0|k; k∈ Z+. (5)

Consider now an auxiliary state feedback control law
haux : R

n → R
m with haux(0) = 0, which is usually

employed in proving stability ofterminal cost and
constraint setMPC. In the PWA setting we take this
state feedback PWL, i.e.haux(x) , K jx whenx∈ Ω j ,
K j ∈ R

m×n, j ∈ S . Let XU , {x ∈ X | haux(x) ∈ U}
denote thesafe setwith respect to both state and
input constraints for this controller. LetXPI with 0 ∈
int(XPI) be a Positively Invariant (PI) set for system
(4a) in closed-loop withhaux that is contained inXU.
Consider now the following assumption.

Assumption 8.There exist{Pj ,K j | j ∈ S } such that

‖Pi(A j +B jK j)x+Pi f j‖−‖Pjx‖
+‖Qx‖+‖RKjx‖ ≤ 0, (6)

for all x∈ XPI and all( j, i) ∈ S ×S .

Theorem 9.(Lazar et al., 2005a) Suppose that As-
sumption 8 holds and takeXT = XPI. Then, the PWA
system (4a) in closed-loop with the MPC controller
(5) is asymptotically stable in the Lyapunov sense for
initial conditions inX f (N).

The proof of Theorem 9 relies on the fact that As-
sumption 8 is equivalent to

F(g(x,haux(x)))−F(x)+L(x,haux(x))≤0, ∀x∈XT .

This in turn ensures that the hybrid MPC value func-
tion V̂ is aLyapunov functionfor the closed-loop sys-
tem (4a)-(5), i.e. there existα1(s) , asλ , α2(s) , bsλ ,
α3(s) , csλ , with a,b,c,λ > 0, such thatα1(‖x‖) ≤
V̂(x)≤α2(‖x‖) andV̂(g(x, û(x)))−V̂(x)≤−α3(‖x‖)
for all x∈ X f (N).

In the above setting, Theorem 8.4 of (Borrelli, 2003)
states that the MPC control law ˆu defined in (5) is a
PWA state-feedback. Hence, the resultinghybrid MPC
closed-loop systemis a PWA system, i.e.

xk+1 =g(xk, û(xk)) = A jxk +B j û(xk)+ f j ,

û(xk) = Lixk + l i whenxk ∈ Ω j ∩Ωi , (7a)

x̃k+1 =g̃(x̃k, û(x̃k),wk) = A j x̃k +B j û(x̃k)+ f j +wk,

û(x̃k) = Li x̃k + l i whenx̃k ∈ Ω j ∩Ωi , (7b)

with ( j, i) ∈ S ×S (S is a finite set of indexes),
k ∈ Z+, whereLi ∈ R

m×n, l i ∈ R
m, and∪i∈S

Ωi =

X f (N) (with int(Ωi)∩ int(Ω j) = /0 for i 6= j) is a new
partition corresponding to the explicit MPC control
law. Moreover, the MPC value function̂V is a PWA
function (recall that‖ · ‖ denotes the∞-norm), i.e.

V̂(x) , E jx+ej whenx∈ Ω̂ j , (8)

where E j ∈ R
1×n, ej ∈ R, j takes values in some

finite set of indexesŜ , and∪
j∈Ŝ

Ω̂ j = X f (N) (with

int(Ω̂i) ∩ int(Ω̂ j) = /0 for i 6= j) is a new partition
corresponding to the MPC value function.

4. NOMINALLY STABILIZING HYBRID MPC
VALUE FUNCTIONS ARE NOT NECESSARILY

ISS LYAPUNOV FUNCTIONS

In the linear and continuous nonlinear case, nomi-
nally stable systems typically have some robustness
properties. Note that, as done classically, ifV is a
uniformly continuous(or even stronger,Lipschitz con-
tinuous) Lyapunov function for the nominal dynamics,
i.e. xk+1 = H(xk), and the disturbance acts additively
on the state, i.e.xk+1 = H(xk)+ wk, then it is easy to
prove that the hypothesis of Theorem 4 is satisfied,
which ensures ISS. Indeed, uniform continuity implies
that for any compact subsetP of R

n there exists a
K -functionσ such that for anyx,y∈ P it holds that
|V(y)−V(x)| ≤ σ(‖y−x‖). Hence,

V(H(x)+w)−V(x) ≤V(H(x))+σ(‖w‖)−V(x)

≤−α3(‖x‖)+σ(‖w‖)

and thus,V is an ISS Lyapunov function. For more
general robust stability results that usecontinuous
candidate (ISS) Lyapunov functions see (Grimmet al.,
2004). Clearly, the above continuity based robustness
(ISS) argument no longer holds if the functionV is
discontinuous at some points.

Note that discontinuity of the candidate Lyapunov
function V does not necessarily obstruct the ISS in-
equality (2b) to hold. However, we show via an ex-
ample from literature that stabilizing hybrid MPC can
generate discontinuous value functions that are not
ISS Lyapunov functions for perturbed systems of the
form (7b). As in (7) and (8), the following notation
will be used: fori ∈ S and j ∈ Ŝ , ûi(x) , Lix+ l i
andV̂j(x) , E jx+ej for anyx∈ X.

Example 10.Consider the following discontinuous
PWA system, taken from (Mignoneet al., 2000):

xk+1 =







A1xk +Buk if E1xk > 0

A2xk +Buk if E2xk ≥ 0

A3xk +Buk if E3xk > 0

A4xk +Buk if E4xk ≥ 0

(9)

where all inequalities hold componentwise,A1 =
[ −0.04 −0.461
−0.139 0.341

]
, A2 =

[
0.936 0.323
0.788 −0.049

]
, A3 =

[−0.857 0.815
0.491 0.62

]
,

A4 =
[−0.022 0.644

0.758 0.271

]
, B = [1 0]⊤, E1 = −E3 =

[−1 0
0 −1

]

and E2 = −E4 =
[−1 0

0 1

]
. The state and the input of

system (9) are constrained at all times in the sets
X = [−10,10]× [−10,10] and U = [−1,1], respec-
tively. The method presented in (Lazaret al., 2005b)
was employed to compute a common terminal weight
matrix P = P1 = P2 = P3 = P4 and feedbacks{K j |
j = 1, . . . ,4} such that inequality (6) of Assumption 8
holds for the stage cost weightsQ = diag([1 1]) and
R= 0.1.
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Fig. 1. The feasible setX f (1) and state trajectory for
the PWA MPC closed-loop system (9)-(5) with
x0 = [−1.9649−1.9649]⊤.

The following matrices were obtained:

P =

[
6.7001 3.1290
−2.1107 4.1998

]

, K1 =
[
0.2703 −0.1136

]
,

K2 =
[
−0.8042 −0.2560

]
,K3 =

[
1.0122 −0.7513

]
,

K4 =
[
−0.5548 −1.1228

]
. (10)

Then, we used the MPT (Kvasnicaet al., 2004),
which implements the algorithm of (Raković et al.,
2004), in order to calculate the terminal constraint set
XT as the maximal positively invariant set contained
in XU for system (9) in closed-loop withhaux with the
feedbacks given in (10), and whereXU =∪ j=1,...,4{x∈
Ω j | K jx ∈ U}. By Theorem 9, this is sufficient to
guarantee that the MPC closed-loop system (9)-(5)
is asymptotically stable in the Lyapunov sense for
all x ∈ X f (N), N ∈ Z≥1. Then, the MPT was used
to calculate the MPC control law (5) forN = 1 as
an explicit PWA state-feedback, and to simulate the
resulting PWA MPC closed-loop system (7a). The
explicit MPC controller is defined over 86 state-space
regionsΩi , i ∈S , {1, . . . ,86} that satisfy∪i∈S

Ωi =
X f (1). The set of feasible statesX f (1) is plotted in
Figure 1 together with the partition corresponding to
the explicit MPC control law. 2

Lemma 11.For the MPC closed-loop system (7) cor-
responding to system (9) of Example 10 it holds that:

(i) The value function̂V and the closed-loop dynamics
(7a)are not continuous;

(ii) V̂ is a Lyapunov functionfor the closed-loop
dynamics (7a) showing asymptotic stability inX f (1);

(iii) For anyε > 0, V̂ is not an ISS Lyapunov function
for the closed-loop dynamics (7b) and disturbances
w∈ Bε , {w∈ W | ‖w‖ ≤ ε}.

PROOF. (i) We have chosen the statex∗ = [0 −
2.1830]⊤ ∈ {∂Ω38 ∩ ∂Ω58} ∩ Ω38 to show that the
MPC closed-loop system (7a) and̂V for the above
example are not continuous on int(X f (1)). We have
obtained the following values:

A2x∗ +Bû38(x
∗) = [0.0130 0.1070]⊤;

A3x∗ +Bû58(x
∗) = [−0.7791 −1.3535]⊤;

V̂(x∗) = V̂38(x
∗) = 2.6766; lim

x→x∗, x∈Ω58

V̂(x) = V̂58(x
∗) = 11.7383.

(ii) As Assumption 8 is satisfied via the procedure
of (Lazar et al., 2005b), the statement follows from
Theorem 9.

(iii) The MPC closed-loop system (7a) corresponding
to system (9) is such that the dynamics active in region
Ω38 is employed forxk = x∗. The nominal state tra-
jectory obtained for the initial statex0 = [−1.9649−
1.9649]⊤ ∈ {∂Ω47 ∩ ∂Ω53} ∩ Ω47 reaches the state
x1 = x∗ in one step (see Figure 1 for the trajectory
plot). Then, for anyK -function σ we can take an
arbitrarily small disturbancew such thatx∗ + w ∈
Ω58, for which V̂(x∗ + w)− V̂(x0) = V̂58(x∗ + w)−
V̂(x0) ≈ 0.5970> σ(‖w‖) ≥ −α3(‖x0‖) + σ(‖w‖)
for any α3 ∈ K∞. Hence, the ISS inequality (2b) of
Theorem 4 does not hold for arbitrarily smallw and
thus,V̂ is not an ISS Lyapunov function for the closed-
loop dynamics (7b). 2

The result of Lemma 11-(iii) implies that the most
likely and natural candidate (i.e. the MPC value func-
tion V̂) for proving ISS for the closed-loop system
(7b) fails. Hence, one should be careful in drawing
conclusions on robustness from nominal stability (es-
tablished viaV̂) when dealing with hybrid MPC. At
least, there is no obvious way to infer ISS from nom-
inal stability in hybrid MPC, or to modify nominally
stabilizing MPC schemes for hybrid systems such that
ISS is ensured a priori.

5. MAIN RESULT

In this section we present a new technique for setting
up ISS MPC schemes for hybrid systems, which uses a
dual-mode approach. In the sequel, the nomenclature
of Section 3 is employed, i.e.haux(x) = K jx when
x ∈ Ω j and, letXRPI ⊆ XU with 0 ∈ int(XRPI) be a
RPI set for system (4b) in closed-loop withhaux. Let
ξ , maxj∈S ‖Pj‖, let η , maxj∈S ‖A j‖ and, for any
i ∈ Z≥1, let L i

µ , {x∈ R
n | ‖x‖ ≤ µ ∑i−1

p=0 η p}.

Next, choose the terminal set asXT , XRPI∩XN ⊂
XRPI, whereXN , ∪ j∈S {Ω j ∼ L N

µ } ⊆ X, and let

Q1(XT) , {x ∈ XU | g(x,haux(x)) ∈ XT}. Consider
now the following (tightened) set of admissible input
sequences:

ŨN(xk) , {uk ∈ U
N |xi|k ∈ Xi , i = 1, . . . ,N−1,

xN|k ∈ XT}, k∈ Z+, (11)

whereXi , ∪ j∈S {Ω j ∼ L i
µ} ⊆ X for all i ∈ Z[1,N−1]

and(x1|k, . . . ,xN|k) is a state sequence generated from

initial statex0|k , x̃k and by applying the input se-

quenceuk to the nominal PWA model (4a). Let̃X f (N)
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denote the set of feasible states for Problem 7 with
ŨN(xk) instead ofUN(xk), and letV̂ andû denote the
corresponding MPC value function and MPC control
law, respectively.

We define a dual-mode MPC control law as follows:

ûDM(xk) ,

{

û(xk) if xk ∈ X̃ f (N)\XRPI

haux(xk) if xk ∈ XRPI
; k∈ Z+.

(12)
Therefore, the set of feasible states corresponding to
ûDM is X̃ f (N)∪XRPI, which contains the origin in its
interior due to 0∈ int(XRPI).

Remark 12.Usually, e.g. see (Kerrigan and Mayne,
2002), in dual-mode robust MPC the terminal set is
taken asXRPI. The terminal state is restricted here to
a disconnected subset ofXRPI, i.e.XT = XRPI∩XN ⊂
XRPI, with 0 6∈ XT , in order to guarantee robust fea-
sibility of Problem 7 withŨN(xk) instead ofUN(xk)
and ISS, as it will be shown next. If the state trajectory
reaches eitherXT or XRPI\XT , the dual-mode control
law switches to the PWL local controller and then the
state trajectory remains inXRPI (and not necessarily in
XT ) forever, due to robust positive invariance ofXRPI.

Theorem 13.Takeµ > 0 andN ∈Z≥1 such thatXT =
XRPI∩XN 6= /0 and letBµ , {w ∈ W | ‖w‖ ≤ µ}.
Suppose thathaux and the terminal cost satisfy (6) for
all x∈ XRPI. Then it holds that:

(i) If XT ⊕L N
µ ⊆Q1(XT) and Problem 7 with̃UN(xk)

instead ofUN(xk) is feasible at timek ∈ Z+ for
state ˜xk ∈ X, then Problem 7 withŨN(xk) instead of
UN(xk) is feasible at timek+1 for state ˜xk+1 = A j x̃k+
B j ûDM(x̃k)+ f j +wk for all wk ∈ Bµ and allk∈ Z+;

(ii) The perturbed PWA system (4b) in closed-loop
with ûDM is ISS for initial conditions iñX f (N)∪XRPI

and disturbances inBµ .

PROOF. (i) There are two situations possible: either
x̃k ∈ XRPI or x̃k 6∈ XRPI. If x̃k ∈ X̃ f (N)\XRPI for some
k∈ Z+, let (x∗1|k, . . . ,x

∗
N|k) denote an optimal predicted

state sequence obtained at timek from initial state
x0|k , x̃k ∈ X̃ f (N) \XRPI and by applying the input
sequenceu∗

k = (u∗0|k, . . . ,u
∗
N−1|k) to the PWA model

(4a). Let(x1|k+1, . . . ,xN|k+1) denote the state sequence

obtained from the perturbed initial statex0|k+1 ,

x̃k+1 = xk+1+wk = x∗1|k+wk and by applying the input

sequenceuk+1 , (u∗1|k, . . . ,u
∗
N−1|k,haux(xN−1|k+1)) to

the nominal PWA model (4a). The state constraints
imposed in (11) ensure that: (P1)(xi|k+1,x

∗
i+1|k) ∈

Ω j i+1 ×Ω j i+1, j i+1 ∈ S for all i = 0, . . . ,N− 2 and,
‖xi|k+1− x∗i+1|k‖ ≤ η i µ for i = 0, . . . ,N−1. Then, as
shown in the proof of Theorem 4.3-(i) of (Lazaret
al., 2005a), we have thatxi|k+1 ∈ Ω j i+1 ∼L i

µ ⊂Xi for

i = 1, . . . ,N−2. Next,xN−1|k+1 = x∗N|k + ∏N−1
i=1 A j i wk

andx∗N|k ∈ XT imply thatxN−1|k+1 ∈ XT ⊕L N
µ . Since

XT ⊕L N
µ ⊆ Q1(XT), it follows thathaux(xN−1|k+1) ∈

U and xN|k+1 ∈ XT . Hence,uk+1 is feasible at time
k+ 1 and the optimization problem as given in Prob-
lem 7 withŨN(xk) instead ofUN(xk) remains feasible.
Consider now the other situation, i.e. ˜xk ∈ XRPI. If the
state trajectory enters (or starts in)XRPI ⊆ XU (note
that XT ⊂ XRPI), feasibility of ûDM(xk) = haux(xk) is
ensured due to robust positive invariance ofXRPI for
system (4b) in closed-loop withuk = haux(xk), k∈Z+.

(ii) The result of part (i) implies that̃X f (N)∪XRPI is
a RPI set for system (4b) in closed-loop with the dual-
mode MPC control ˆuDM and disturbances inBµ . To
prove ISS, we consider three situations: in Case 1 we
assume that ˜xk ∈ X̃ f (N)\XRPI for all k∈Z+, in Case 2
we assume that ˜x0 ∈ XRPI, and in Case 3 we assume
thatx̃0 ∈ X̃ f (N)\XRPI and there exists ap∈Z≥1 such
that x̃k 6∈ XRPI for all k∈ Z<p andx̃p ∈ XRPI.

In Case 1, the hypothesis already ensures that the
MPC value function̂V satisfies the ISS condition (2a)
for somea,b,c > 0 andλ = 1 (see Theorem 4.3 of
(Lazaret al., 2005a) for a proof). Then, it follows that
α1(‖x‖)≤ V̂(x)≤α2(‖x‖) for all x∈ X̃ f (N). Let x̃k+1

denote the solution of the perturbed system (4b) in
closed-loop with ˆuDM obtained as indicated in part (i)
of the proof and letx∗0|k , x̃k. Due to full-column rank
of Q there existsγ > 0 such that‖Qx‖ ≥ γ‖x‖ for all
x. Then, as shown in the proof of Theorem 4.3-(ii) of
(Lazaret al., 2005a) it holds that

V̂(x̃k+1)−V̂(x̃k) ≤ J(x̃k+1,uk+1)−J(x̃k,u
∗
k)

≤−α3(‖x̃k‖)+σ(‖wk‖),

with σ(s) , (ξ ηN−1 + ‖Q‖∑N−2
p=0 η p)s and α3(s) ,

γs. Hence, it follows that̂V satisfies the hypothesis of
Theorem 4, thereby establishing ISS in this particular
case for the closed-loop system (4b)-(12), for initial
conditions inX̃ f (N)\XRPI and disturbances inBµ .

In Case 2, we prove that the closed-loop system is
ISS by showing that the candidate (discontinuous)
ISS Lyapunov functionF(x) = ‖Pjx‖ when x ∈ Ω j

satisfies the hypothesis of Theorem 4. SincePj has
full-column rank for all j ∈ S there exist posi-
tive constantsa j and b j , ‖Pj‖ such thata j‖x‖ ≤
‖Pjx‖≤ b j‖x‖ for all j ∈S . Hence, theK∞-functions
α1(s) , min j∈S a js andα2(s) , maxj∈S b js satisfy
α1(‖x‖) ≤ F(x) ≤ α2(‖x‖) for all x∈ R

n. Next, from
the hypothesis we have that inequality (6) holds for all
x∈ XRPI and all( j, i) ∈ S ×S , which yields:

F((A j +B jK j)x+ f j +w)−F(x)

= ‖Pi((A j +B jK j)x+ f j +w)‖−‖Pjx‖
≤ ‖Pi(A j +B jK j)x+Pi f j‖+‖Piw‖−‖Pjx‖
≤ −‖Qx‖+max

i∈S

‖Pi‖‖w‖ ≤ −α3(‖x‖)+σ(‖w‖),

for all x ∈ XRPI, ( j, i) ∈ S ×S and disturbances in
Bµ , whereα3(s) , γs (with γ > 0 such that‖Qx‖ ≥
γ‖x‖) andσ(s) , maxi∈S ‖Pi‖s. Then, due to robust
positive invariance ofXRPI, ISS for initial conditions
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in XRPI and disturbances inBµ follows from Theo-
rem 4.

In Case 3 there exists a finitep ∈ Z≥1 such that
x̃k 6∈ XRPI for all k ∈ Z<p and x̃p ∈ XRPI. Then, from
Theorem 4, Case 1 and Case 2, it follows that there
exist K L -functions β1,β2 and K -functions γ1,γ2

such that for allp∈ Z≥1 it holds:

‖x̃k‖ ≤ β1(‖x̃0‖,k)+ γ1(‖w[k−1]‖), ∀k∈ Z≤p,

‖x̃k‖ ≤ β2(‖x̃p‖,k− p)+ γ2(‖w[k−p,k−1]‖), ∀k∈ Z>p,

for all w[k−1] ∈ {Bµ}k and allw[k−p,k−1] ∈ {Bµ}p, re-
spectively. The functionsβ1 ∈K L , γ1 ∈K andβ2 ∈
K L , γ2 ∈ K are obtained as in (3) for some con-
stantsρ̄,ρ ∈ [0,1) and someK∞-functionsᾱ1(s) , ās,
ᾱ2(s) , b̄sandα1(s) , as, α2(s) , bs, with ā, b̄,a,b>
0, respectively. Then, for allk ∈ Z>p and allp∈ Z≥1

it follows that

‖x̃k‖ ≤ β2(β1(‖x̃0‖, p)+ γ1(‖w[p−1]‖),k− p)

+ γ2(‖w[k−p,k−1]‖)
≤ β2(2β1(‖x̃0‖, p),k− p)

+β2(2γ1(‖w[p−1]‖),k− p)+ γ2(‖w[k−p,k−1]‖)
(13)
≤ β3(‖x̃0‖,k)+β2(2γ1(‖w[p−1]‖),1)

+ γ2(‖w[k−p,k−1]‖)
≤ β3(‖x̃0‖,k)+β2(2γ1(‖w[k−1]‖),1)

+ γ2(‖w[k−1]‖)
≤ β3(‖x̃0‖,k)+ γ3(‖w[k−1]‖),

whereγ3(s) , β2(2γ1(s),1) + γ2(s) and we used the
fact that

β2(2β1(s, p),k− p)

(3)
= α−1

1 (2ρk−pα2(2ᾱ−1
1 (2ρ̄ pᾱ2(s)))

≤ 8
bb̄
aā

ρ̃ks, β3(s,k), (13)

and ρ̃ , max(ρ, ρ̄) ∈ [0,1). Hence,β3 ∈ K L and,
sinceβ2 ∈ K L andγ1,γ2 ∈ K , we obtain thatγ3 ∈
K . Applying Case 1 and Case 2 and combining with
the result obtained above for Case 3 it follows that:

‖xk‖ ≤ β (‖x̃0‖,k)+ γ(‖w[k−1]‖),

for all x̃0 ∈ X̃ f (N) ∪ XRPI, w[k−1] ∈ {Bµ}k and all
k∈ Z≥1, where

β (s,k) , max(β1(s,k),β2(s,k),β3(s,k))

is aK L -function andγ(s) , max(γ1(s),γ2(s),γ3(s))
is aK -function. Hence, ISS is proven for system (4b)
in closed-loop with ˆuDM for all initial conditions in
X̃ f (N)∪XRPI and disturbances inBµ . 2

Illustrative example

Next, we demonstrate the ISS properties of the dual-
mode MPC control law (12) on the PWL system (9)
of Example 10, introduced in Section 4. The terminal
weight matricesPj = P for j = 1, . . . ,4 and the feed-
backs{K j | j ∈S } given in (10) are such that inequal-
ity (6) holds for allx∈ R

n. In order to implement the

Fig. 2. The terminal constraint setXT = XRPI∩X1.

Fig. 3. The feasible set̃X f (1)∪XRPI: X̃ f (1) - light
grey; a part ofXRPI - dark grey.

dual-mode MPC control law one has to compute the
terminal setXT . The MPT (Kvasnicaet al., 2004) was
employed in order to calculate the maximal RPI set
XRPI contained inXU. We chooseµ = 0.1 andN = 1,
for which the terminal constraint setXT = XRPI ∩
X1 6= /0 (see Figure 2), whereX1 = ∪ j=1,...,4{Ω j ∼
L 1

µ }, satisfies the hypothesis of Theorem 13. An ex-

plicit solution of Problem 7 withŨN(xk) instead of
UN(xk) was calculated with the MPT. The feasible set
X̃ f (1)∪XRPI of the dual-mode MPC control law and
the state-space partition (138 regions) corresponding
to the explicit MPC control law are plotted in Figure 3.

Note that, by Theorem 13, ISS is ensured for the
closed-loop system for initial states iñX f (1)∪XRPI

and disturbances inBµ , without employing acontinu-
ous MPC value function. Indeed, the dual-mode MPC
value functionV̂ is discontinuous at anyx ∈ ∂Ω32∩
∂Ω80. For example,̂V32(x∗) = 2.9038 andV̂80(x∗) =
11.7383 forx∗ = [0 −2.1830]⊤, i.e. the critical point
at which the nominal MPC value function of Exam-
ple 10 is not an ISS Lyapunov function.

In order to illustrate the ISS property of the dual-mode
MPC controller we simulated system (9) in closed-
loop with ûDM for initial statesx01 = [−1.9649 −
1.9649]⊤ (solid line) andx02 = [5 −5]⊤ (dashed line)
and the disturbance values depicted in Figure 4 - (a),
(b) for bothx01 andx02. The control inputs are also
plotted in Figure 4 - (c), (d) for initial statesx01 and
x02, respectively. Once the disturbance converges to
zero, the state trajectories also converge to the origin
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Fig. 4. Disturbance inputsw = [w1 w2]
⊤ - (a) and (b);

ûDM for x01 - (c); ûDM for x02 - (d).

for both initial states, due to the ISS property. It is
also worth to point out that the initial statex01, which
was a problematic initial condition, as shown in the
proof of Lemma 11, is contained in the feasible set of
the ISS dual-mode MPC controller. This illustrates the
effectiveness of the proposed methodology.

6. CONCLUSIONS

This paper considered robust asymptotic stability in
terms of ISS fordiscontinuousPWA systems con-
trolled by MPC strategies, as this is an important prop-
erty from a practical point of view. We presented an
example of a PWA system (with the origin lying on the
boundaries of multiple regions in the partition) taken
from literature for which a nominally stabilizing MPC
scheme generates an MPC value function that is not
an ISS Lyapunov function. In such cases, there are no
systematic ways available for modifying hybrid MPC
schemes such that robustness (ISS) is a priori ensured.
Therefore, a new method for setting up MPC schemes
for general discontinuous PWA systems, with an a
priori ISS guarantee, was developed via a dual-mode
approach. The dual-mode hybrid MPC algorithm uses
tightened constraints and does not require continuity
of the system, the MPC control law nor of the MPC
value function. An example demonstrated the effec-
tiveness of the developed methodology.
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