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Abstract For hybrid systems in piecewise affine (PWA) form, this paper presents
a new methodology for computing the solution, defined over a set of (possibly
overlapping) polyhedra, of the finite-time constrained optimal control problem
based on quadratic costs. First, feasible mode sequences are determined via
backward reachability analysis, and multiparametric quadratic programming is
employed to determine candidate polyhedral regions of the solution and the
corresponding value functions and optimal control gains. Then, the value functions
associated with overlapping regions are compared in order to discard those regions
whose associated control law is never optimal. The comparison problem is, in
general, nonconvex and is tackled here as a DC (Difference of Convex functions)

programming problem. Copyright © 2006 IFAC

1. INTRODUCTION

In the recent years, different methods for the
design and the analysis of controllers for hybrid
systems have been studied (see e.g. (Corona, 2005)
and references therein). In particular, multipara-
metric programming techniques were proposed to
synthesize state-feedback controllers defined over
a set of polyhedral regions, by solving a finite-time
optimal control problems explicitly with respect
to the state and reference vectors.

(Bemporad et al., 2000) proposed a procedure for
synthesizing piecewise affine optimal controllers
for discrete-time linear hybrid systems. A state
feedback solution of a finite-time optimal control
problem with performance criteria based on linear
(1 or ∞) norms is obtained using multiparamet-
ric mixed-integer linear programming. A different
approach based on dynamic programming was
proposed in (Baotic et al., 2003). The use of linear
norms has some practical disadvantages, due to
the fact that typically good performance can only

be achieved with long time horizons. Moreover,
the resulting state-space partition is typically very
complex, because of the large number of regions.

Quadratic costs allow one to achieve better perfor-
mances with shorter horizons, although the parti-
tion associated with the fully explicit optimal so-
lution to a finite time constrained optimal control
(FTCOC) problem for hybrid systems may not be
polyhedral (Borrelli et al., 2005).

(Borrelli et al., 2005) proposed an algorithm for
computing the solution to the FTCOC problem
with quadratic costs. The procedure is based
on dynamic programming (DP) iterations. Multi-
parametric quadratic programs (mpQP) (Bemporad
et al., 2002) are solved at each iteration, and
quadratic value functions are compared to pos-
sibly eliminate regions that are proved to never
be optimal. In typical situations the total number
of solved mpQPs (as well as of generated polyhe-
dral regions) grows exponentially, and suffers the
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drawback of an excessive partitioning of the state
space.

A different approach was proposed in (Mayne,
2001; Mayne and Rakovic, 2002), where the au-
thors propose to enumerate all possible switching
sequences, and for each sequence convert the PWA
dynamics into a time-varying system and solve
an optimal control problem explicitly via mpQP.
As any given initial state may lie in more than
one polyhedral region, the associated control gain
giving the smallest cost needs to be selected by
on-line comparison. This leads to an exponential
number of mpQPs that need to be solved and a
possibly large on-line CPU time spent for com-
paring the cost functions.

In this paper we propose a different approach that
exploits dynamic programming ideas (more pre-
cisely, backwards reachability analysis) to obtain
all the feasible mode sequences (therefore avoid-
ing an explicit enumeration of all of them), and
that, after solving an mpQP for each sequence,
post-processes the resulting polyhedral partitions
to eliminate all the regions (and their associated
control gains) that never provide the lowest cost,
using a novel DC (Difference of Convex functions)
algorithm. The resulting number of total regions
that needs to be stored is minimized, and therefore
the CPU time needed by the on-line procedure
for searching the region with minimum cost is
reduced.

2. HYBRID MPC SETUP

Consider the Piecewise Affine System (PWA) de-
scribed by the relations

x(k + 1) = Aix(k) + Biu(k) + fi,
y(k) = Cix(k) + gi

if

[
x(k)
u(k)

]

∈ Xi

(1)
where {Xi}s

i=1 is a polyhedral partition of the
state+input set. Suppose there are no binary
states and inputs so that x(k) ∈ R

n, u(k) ∈
R

m, and Ai, Bi, fi, Ci, gi are matrices of suitable
dimension 1 . Hybrid systems of the form (1) can
be obtained for instance by system identification
tools or by converting HYSDEL models using the
method of (Bemporad, 2004).

Model Predictive Control (MPC) ideas can be
applied to control hybrid models of the form (1).
Here, at each sampling time, an open-loop optimal
control problem is solved over a finite horizon N .
Only the first sample of the optimal sequence is
then applied to the plant at time k. At the next
time step, a new optimal control problem based
on new measurements of the state is solved over a

1 The formulation and the results of this paper can be

immediately extended when some of the input/state com-
ponents are binary.

shifted horizon. The solution relies on the hybrid
model (1) of the system dynamics, minimizes a
performance figure, and respects all input, output
and state constraints.

For simplicity of notation, assume that we want
to regulate the system state to the origin. So, the
MPC open-loop optimal control problem can be
formulated as follows

V ∗(x(0)) = min
U

J(U, x(0))

J(U, x(0)) = x′(N)Px(N) +

N−1∑

k=0

x′(k)Qx(k) + u′(k)Ru(k)

(2a)

s.t. PWA Model (1)
xmin ≤ x(k) ≤ xmax,
ymin ≤ y(k) ≤ ymax, k = 0, . . . , N − 1,
umin ≤ u(k) ≤ umax,

x(N) ∈ XN ,
(2b)

where N is the control horizon, and U ,

{u(k), u(k+1), u(k+N−1)} is the input sequence
to be optimized. The bounds umin, umax, xmin,
xmax, ymin, ymax impose limits on inputs, states,
and outputs, respectively, P is a weight on the
terminal state, and XN is a terminal set contained
in the box {x : xmin ≤ x ≤ xmax}.

3. EXPLICIT SOLUTION FOR A FIXED
MODE SEQUENCE

Problem (2) is usually referred to as the Finite
Time Constrained Optimal Control (FTCOC)
based on quadratic costs (Borrelli et al., 2005).
With an MPC synthesis in mind, our goal is to
find the first optimal move u∗(x(0)) as a function
of the initial state x(0). While for a given x(0) the
input u∗(0) can be determined on-line by solving a
mixed-integer quadratic program (Bemporad and
Morari, 1999), determining the solution for all

vectors x(0) within a given polytopic set X (0) of
states of interest and off-line is a much harder
one (Mayne, 2001; Borrelli et al., 2005; Mayne
and Rakovic, 2002). Once the optimal control
law is obtained explicitly, on-line computation is
reduced to a simple function evaluation.

The problem can be decomposed in a certain
number of sub-problems that are easier to solve
by exploiting the properties of the hybrid model
(1). Starting from a given initial state x(0)
and by applying a given input sub-sequence
{u(0), . . . , u(k − 1)}, the state of the system
x(k) belongs to a certain polyhedron Xi(k) of the
partition, where i(k) is the mode entered by the
hybrid model at time k, i(k) ∈ {1, . . . , s}. We refer
to v = {i(0), . . . , i(N − 1)} as the switching (or
mode) sequence, and to vk = i(k) as the (k +
1)-th element of that sequence, so that vk = j
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means that
[

x(k)
u(k)

]

∈ Xj . The maximum number

of possible switching sequences is q , sN . Once a
switching sequence vi is fixed, system (1) is forced
to enter the modes defined by vi and becomes a
linear time-varying system.

For a fixed switching sequence vi, i ∈ {1, . . . , q},
problem (2) becomes

Jvi
(x(0)) , min

U
J(U, x(0))

s.t.







x(k + 1) = Avk
i
x(k) + Bvk

i
u(k) + fvk

i
,

y(k) = Cvk
i
x(k) + Dvk

i
u(k) + gvk

i
,

[
x(k)
u(k)

]

∈ Xvk
i
, k = 0, . . . , N − 1,

xmin ≤ x(k) ≤ xmax

ymin ≤ y(k) ≤ ymax, k = 0, . . . , N − 1,
umin ≤ u(k) ≤ umax,

x(N) ∈ XN .
(3)

Problem (3) is an optimal control problem with
finite horizon N for a constrained time-varying
system, and can be solved via multiparametric
quadratic programming, where U are the opti-
mization variables and x(0) ∈ X (0) are the pa-
rameters.

For all i = 1, . . . , q, the solution of the optimal
control problem (3) is a PPWA state feedback
control law of the form (Bemporad et al., 2002)

u∗
i (x(0)) = F i

jx(0)+Gi
j , ∀x(0) ∈ T i

j , j = 1, . . . , Nri

(4)

where Di ,

⋃Nri

j=1 T i
j is a convex polyhedron,

corresponding to the set of states x(0) for which
problem (3) admits a feasible solution. The
sub/superscript i in (4) means that this solution is
valid for a certain fixed sequence vi. The optimal
solution u∗(x(0)) to Problem (2) can be found
by solving problem (3) for all feasible sequences
vi, as suggested in (Mayne and Rakovic, 2002),
(Mayne, 2001), and then by comparing the costs
Jvi

(x(0)) on-line, given the current state x(0). The
optimal set D0 of the states x(0) for which (2)
admits a feasible solution is

D0 =

q
⋃

i=1

Di, (5)

and, in general, is not convex.

All polyhedra T i
j needs to be analyzed. If T i

j ∩
T l

m = ∅ for all l 6= i, l = 1, . . . , q, m = 1, . . . , Nrl,
then the switching sequence vi is the only feasible
one for all the states x(0) ∈ T i

j , and so the
optimal solution u∗(x(0)) is given by (4). We will
refer to T i

j as a polyhedron of single feasibility.
It can happen, however, that some initial states
belong to more than one set Di, so we need to
compare the cost functions Jvi

in order to choose
the optimal control gains (F i

j , G
i
j). If T i

j intersects
one or more polyhedra, then the states belonging
to the intersection are feasible for more than

one switching sequence and the corresponding
value functions need to be compared in order to
compute the optimal control law. In the simple
case when only two polyhedra overlap, for all
states belonging to T i

j ∩ T l
m the optimal move

u∗(x(0)) for problem (2) is

u∗(x(0)) =







F i
jx(0) + Gi

j ifJ∗
vi

(x(0)) < J∗
vl

(x(0))

F l
mx(0) + Gl

m ifJ∗
vi

(x(0)) > J∗
vl

(x(0))






F i
jx(0) + Gi

j

or

F l
mx(0) + Gl

m

ifJ∗
vi

(x(0)) = J∗
vl

(x(0)).

(6)
A polyhedron of multiple feasibility 2 . on which n
value functions intersect may be split into at most
n possibly nonconvex subsets where in each one
of them a certain value function is smaller than
all the others. Because J∗

vi
(x(0))(i = 1, . . . , q)

are quadratic functions on T i
j (j = 1, . . . , Nri) the

closure of the sets corresponding to the optimal
state partition, in general, has the form (Borrelli
et al., 2005)

R̄i
k , {x : x′Li

k(j)x + M i
k(j)x ≤ N i

k(j)}. (7)

In this paper we avoid splitting regions that over-
lap and storing non-polyhedral sets, but rather
keep all polyhedra T i

j for which the corresponding
cost J∗

vi
(x(0)) is optimal for at least one state x(0),

leaving the cost comparison to the on-line proce-
dure. This approach allows one to save memory
space (no split implies less regions to store), at the
price of a slightly increased on-line CPU time for
the evaluation of the control move, because if x(0)
belongs to a region of multiple feasibility, the costs
corresponding to all overlapping regions where
x(0) belong must be computed and compared.

4. ENUMERATION OF FEASIBLE MODE
SEQUENCES VIA BACKWARDS

REACHABILITY ANALYSIS

Computing the optimal solution via enumeration
of all possible switching sequences can be too
onerous, as the number of mp-QPs that need to
be solved is q = sN . Also, the set Di of states
x(0) for which problem (3) has a solution may be
empty for many switching sequences vi.

The list of all (and only) sequences that are fea-
sible for problem (3) can be obtained by solving
a backwards reachability analysis problem as de-
scribed below.

Assume that the terminal polyhedral set XN

is contained in one of the regions Xj of the
polyhedral partition of system (1), i.e., XN ⊆ Xj ,

2 In general, we say that a polyhedron T i

j
is of

multiplefeasibility if it has a non-empty intersection with
one or more polyhedra T l

m, (i, j 6= l, m) belonging to a

different solution of the form (4).
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for some j ∈ {1, . . . , s} (in case XN overlaps with
more than one region of the PWA partition, one
needs to consider all the nonempty intersections
XN ∩ Xi, i = 1, . . . , s). Next, for each mode i =
1, . . . , s we determine which polyhedral subsets of
R

n+m defined by the linear inequalities






AixN−1 + BiuN−1 + fi ∈ XN

[
x′

N−1 u′
N−1

]′ ∈ Xi

xmin ≤ xN−1 ≤ xmax

ymin ≤ CixN−1 + DiuN−1 + gi ≤ ymax

umin ≤ uN−1 ≤ umax

(8)

are nonempty (this just requires a phase-1 of
a linear program). Let XN−1

j , j = 1, . . . , kN−1

be such nonempty sets. At the next step of the
backwards reachability analysis, for each j =
1, . . . , kN−1 and for each mode i = 1, . . . , s we
determine which polyhedral subsets of R

n+2m

defined by the linear inequalities






[
(AixN−2 + BiuN−2 + fi)

′ u′
N−1

]′ ∈ XN−1
j[

x′
N−2 u′

N−2

]′ ∈ Xi

xmin ≤ xN−2 ≤ xmax

ymin ≤ CixN−2 + DiuN−2 + gi ≤ ymax

umin ≤ uN−2 ≤ umax

(9)
are nonempty. By letting XN−2

j , j = 1, . . . , kN−2

be such nonempty sets, the procedure is repeated
backwards until the time index reaches 0.

The switching sequences v1, . . . , vq̄, where q̄ =
k0 ≤ sN are all and only the switching sequences
for system (1) that satisfy the constraints in (3)
for at least one initial state x(0) and input se-
quence u(0), . . . , u(N − 1), and that will be re-
ferred to as the feasible switching sequences.

The above procedure is successfully implemented
in the Hybrid Toolbox for Matlab (Bemporad,
2003).

5. COST COMPARISONS AND REGION
ELIMINATION

The main problem (FTCOC) has been decom-
posed in q̄ subproblems, depending on the number
of feasible switching sequences.

Every subproblem (3), once solved via multipara-
metric quadratic programming, gives a PPWA
control law of the form (4) and an associated
optimal cost function J∗

vi
(x(0)) that is convex,

continuous, and piecewise quadratic (PWQ) on
the same partition.

By solving the problem for every feasible switch-
ing sequence vi, we obtain q̄ state partitions Di

that need to be compared in order to find the
optimal solution of Problem (2). For a given x(0),
the optimal input u∗(0) is obtained comparing
every cost function J∗

v1
(x(0)), , . . . , J∗

vq̄
(x(0)), and

find the associated control input at minimum cost.

The main problem is that, in the worst case, the
number of possible comparisons that need to be
made on line in order to find the minimum cost
is (q̄ − 1), and so the main advantage of saving
on-line CPU time by calculating the control law
off line may be lost. In addition, typically there
are several regions whose associated control law
is never the optimal one. A region of multiple
feasibility T i

j is dominated if

∀x ∈ T i
j ,∃l ∈ {1, . . . , q̄},m ∈ {1, . . . , Nrl} :

x ∈ T i
j ∩ T l

m, J∗
vl

(x) < J∗
vi

(x).
(10)

otherwise it is considered optimal, since it exists at
least one vector where its corresponding function
J∗

vi
(x) is optimal. It is desirable to eliminate

all dominated regions T i
j and the related cost

functions in order to avoid a useless waste of CPU
time for searching the region with minimum cost,
and of memory for storing dominated regions. In
other words, we want to keep only the regions T i

j

that are certainly optimal in a certain subset of
the state set D(0).

5.1 Determination of Polyhedra of Single Feasibility

We first locate all the regions T i
j for which

∃x̄ ∈ R
m : x̄ ∈ T i

j , x̄ /∈ T l
m,∀l 6= i, l = 1, . . . , q̄,

(11)
where clearly x̄ ∈ T i

j ⇒ q̄ /∈ T i
m, ∀m = 1, . . . , Nri,

m 6= j.

Regions T i
j satisfying (11) do not need to be

tested for domination by other regions, as they
are clearly optimal in at least one point x̄ ∈
R

m. Condition (11) can be tested by solving
the following MILP for all i = 1, . . . , q̄, ∀j =
1, . . . , Nri:

min
x,δ

0

s.t.

Nh∑

r=1

δhr ≤ Nh − 1, ∀h = 1, . . . , q̄, h 6= i

Ai
jx ≤ bi

j ,
Hr

hx − Kr
h > mδ,

Hr
hx − Kr

h ≤ M(1 − δ),
δhr ∈ {0, 1}, ∀h = 1, . . . , q̄, ∀r = 1, . . . , Nh

(12)
where q̄ is the total number of envelopes Di (that
is, of the switching sequences vi for which (3) is
feasible), (Ai

j , b
i
j) defines the region T i

j that needs
to be tested, Nh represents the total number of
facets of the envelope of the h-th partition Dh, and
r = 1, . . . , Nh is its r-th facet and finally m,M are
chosen such that

m < min
x∈X (0)

Hr
hx − Kr

h, M ≥ max
x∈X (0)

Hr
hx − Kr

h.

The binary variables δhr satisfy the condition
[δhr = 1] ↔ [Hr

hx ≤ Kh], i.e., δhr = 1 iff x ∈ T i
j
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satisfies the constraint that defines that r-th facet
of the h-th envelope Dh, and the first constraint
in (12) imposed that at least one facet inequality
is violated, so that x 6∈ Dh. Regions T i

j for which
(12) is feasible are regions of single feasibility and
therefore optimal, so they must be retained in the
final hybrid MPC control law.

5.2 DC Programming Approach

In order to find the optimal regions, we need to
compare quadratic functions over certain convex
sets of parameters, for this reason it can be recast
as a DC (Difference of Convex functions) problem
(Horst and Thoai, 1999).

For every region T l
m for which (12) is infeasible,

we need to determine all the partitions Dk, k 6= l,
such that T l

m ∩ Dk 6= ∅. Clearly, T l
m ⊆ ⋃

k 6=l Dk.

In general, T l
m intersects sl

m < q̄ partitions Dk.
By letting S = {1, .., q̄}, we will refer to Sl

m

as the subset of S of indices k 6= l, such that
T l

m∩Dk 6= ∅. Clearly sl
m = card (Sl

m). We assume
here for simplicity that T l

m ⊆ Dk, ∀k ∈ Sl
m. This

assumption will be removed shortly.

For every fixed switching sequence vl, the optimal
solution J∗

vl
obtained by solving the associated

mpQP problem (3) is piecewise quadratic (PWQ)
over the polyhedral partition Dl, and quadratic in
every single region T l

m. In the sequel we will refer
to V l

m(x) as the quadratic term of the value func-
tion J∗

vl
in the m-th region of the l-th partition.

A region T l
m is optimal if

∃x∗ ∈ T l
m : V l

m(x∗)− J∗
vk

(x∗) < 0,∀k ∈ Sl
m. (13)

Condition (13) can be verified by solving the
following DC programming problem for all k ∈ Sl

m

T ∗
lmk = min

x∈T l
m

V l
m(x) − J∗

vk
(x). (14)

If T ∗
lmk > 0 for some k ∈ Sl

m, region T i
j is certainly

dominated (i.e., not optimal) and can be safely
discarded. The DC problem (14) is a nonconvex
problem. On the other hand, we do not necessarily
need to find its optimal solution, but a positive
lower bound on the minimum would suffice for
checking condition (13). In the next sections we
describe a procedure for computing such a lower
bound in an arbitrarily tight manner.

In the more general case where T l
m 6⊆ Dk for some

k ∈ Sl
m, for all such indices k the quadratic and

piecewise quadratic costs are compared over the
subset Ωl,k

m , T l
m ∩ Dk. In this case, one can

conclude that the region T l
m is dominated if and

only if all its subsets Ωl,k
m are dominated.

5.3 DC Algorithm

In order to simplify the notation, given a region
T l

m of multiple feasibility and a partition Dk,
k ∈ Sl

m, we will refer to V l
m(x) and J∗

vk
(x) as f1(x)

and f2(x), respectively.

Now, suppose to compute two PPWA functions
f̄1 and f̄2 such that

∃ǫi > 0 : fi(x) ≤ f̄i(x), ǫi = max
x∈Ωl,k

m

(fi(x)−f̄i(x)), i = 1, 2.

(15)
Clearly, the following relations

f1(x)−f̄2(x) ≤ f1(x)−f2(x) ≤ f̄1(x)−f2(x) (16)

are verified ∀x ∈ Ωl,k
m .

Now define LBk, UBk ∈ R as the solutions of the
quadratic programs

LBk = min
x∈Ωl,k

m

J1(x) = f1(x) − f̄2(x) (17a)

UBk = max
x∈Ωl,k

m

J2(x) = f̄1(x) − f2(x) (17b)

By (16)–(17), it follows that

LBk ≤ min
x∈Ωl,k

m

f1(x) − f2(x) ≤ UBk, ∀k ∈ Sl
m.

(18)
If UBk < 0, ∀k ∈ Sl

m, then Condition (13) is
satisfied (region T l

m is optimal), while if LBk̄ > 0
for some k ∈ Sl

m, then T l
m is dominated by

partition Dk. In the other cases, one needs to
subpartition Ωl,k

m in order to obtain tighter upper
and lower bounds, as described in the following
algorithm.

function SignTest (f1, f2, Ωl,k

m )

(1) Obtain an initial triangulation of Ωl,k

m in simplices

Si, (i = 1, . . . , Ns) via Delaunay triangulation

(Yepremyan and Falk, 2005);

(2) Optimal := True;

(3) For (k ∈ S
l
m) and (Optimal=True) Do,

(a) Optimal := False;

(b) For i = 1 to Ns Do, \
∗loops over Si

∗
\

(i) {LBk, UBk } = Bounds(Si, True);

\
∗ Compute UBk, LBk as in (17a)-(17b)

over Si;
∗
\

(ii) If UBk < 0 then

Optimal=true; \
∗ f1(x) < f2(x), ∀x ∈

Si
∗
\

Choose another partition Dk, k ∈ S
l
m;

break;

(4) If (Optimal = False) then ’T l
m is dominated by

Dk, otherwise T l
m is optimal

function Bounds(Simplex S,boolean turn)

(1) If (Turn = true)

(a) Solve problem (17a).

(b) Set LB = LBk and x̄ = x∗ = arg minx J1(x).

(c) If LB > 0, return;

(d) for (k=0 to n) do

(i) Substitute the k-th vertex of S with x̄,

and obtain n+1 new simplices S0, . . . , Sn;
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(ii) Turn := false;

(iii) Bounds(Sk, Turn);

(2) Otherwise

(a) Solve problem (17b).

(b) Set UB = UBk and x̄ = x∗ = arg maxx J2(x).

(c) If UB < 0, stop

the region is optimal;

(d) Else for (k=0 to n) do

(i) Substitute the k-th vertex of S with x̄,

and obtain n+m+1 new simplices S0, . . . , Sn;

(ii) Turn := true;

(iii) Bounds(Sk, Turn);

Remark 1. The algorithm computes an initial
simplicial partition S0, .., Sn of the given set Ωl,k

m

and solves the two QPs defined in (17a)-(17b)
over Si, i = 0, .., n. Whatever none of the two
conditions is satisfied over the current simplex,
it proceeds recursively, by splitting every sim-
plex into n + 1 simplices, adding a new vertex
x̄ = arg minx{J1(x),maxx J2(x)}, until any of the
conditions (17a)-(17b) is satisfied. The algorithm
stops splitting the initial set of simplices when it
finds a point where UB < 0. Note that the gen-
erated simplices are only needed to compare cost
functions, and hence are discarded immediately
after the comparison. In particular, they are not
at all needed to store the control law.

5.4 Upper-approximation of the Value Function

Under the assumptions made in (3), the optimal
k-th mpQP solution J∗

vk
(x), k ∈ Sl

m, is a convex
(piecewise quadratic) function, defined over the
convex full-dimensional set of parameters Dk ⊆
R

n (Mangasarian and Rosen, 1964). A complete
reference for the algorithm used for computing
an upper-approximation in piecewise affine form
over a simplicial partition of a convex (piecewise
quadratic) function can be found in (Bemporad
and Filippi, 2006)

5.5 Reduction of Partially Dominated Regions

When a region is only partially dominated, that
is, if a polyhedral subset Ω̄ of a optimal region T l

m

is dominated by a certain partition Dk, it may be
desirable to reduce T l

m to a smaller region that
does not contain Ω̄.

Definition 1. A matrix-vector pair (A, b) is a min-

imal representation of a polyhedron P = {x :
Ax ≤ b}, if there does not exist a pair (A1, b1)
defining the same polyhedron and such that
dim(b1) < dim(b).

Lemma 1. Given two nonempty polyhedra P , Q
and their minimal representations P = {x ∈ R

n :
Ax ≤ b}, Q = {x ∈ R

n : Cx ≤ d}, the set P\Q ,

{x ∈ R
n : x ∈ P, x /∈ Q} is nonconvex if and only

if the number of hyperplanes cjx ≤ dj ∈ ∂G which
intersect the interior of P is greater or equal than
two.

Proof: Suppose that c′1x = d1 and c′2x = d2 are
two hyperplanes of Q which intersect the interior
of P in two points x1, x2, respectively.

Let [x1, x2] denote the line segment {x ∈ R
n :

x = λx1 + (1− λ)x2, 0 ≤ λ ≤ 1}, which is entirely
contained in Q. Since x1, x2 belong to the interior
of P then there exist two scalars θ1 > 1, θ2 < 0
such that x̄1 and x̄2 defined as x̄1 = θ1x1 + (1 −
θ1)x2, x̄2 = θ2x1+(1−θ2)x2 belong to the interior
of P . Since c′1x̄1 = θ1c

′
1x1 +(1− θ1)c

′
1x2 > θ1d1 +

(1 − θ1)d1 = d1, then x̄1 6∈ Q, and similarly one
can show that x2 6∈ Q. Hence, x̄1, x̄2 ∈ P\Q.
Consider the convex combination of x̄1, x̄2 defined
as γx̄1 + (1 − γ)x̄2, γ ∈ (0, 1). We want to show
that there exists a 0 < γ < 1 such that γx̄1 +(1−
γ)x̄2 ∈ Q, and hence does not belong to P\Q.
Since γx̄1 + (1 − γ)x̄2 = γ(θ1x1 + (1 − θ1)x2) +
(1−γ)(θ2x1 +(1− θ2)x2) = (γθ1 +(1−γ)θ2)x1 +
(1−(γθ1 +(1−γ)θ2))x2 is a linear combination of
x1 and x2, and since the open segment (x1, x2) is
contained in the interior of Q, there exists ᾱ such
that x = ᾱx1 + (1 − ᾱ)x2 ∈ Q, 0 < ᾱ < 1}. By
setting ᾱ = γθ1 + (1 − γ)θ2 and by choosing any
γ such that

0 <
−θ2

θ1 − θ2
< γ <

1 − θ2

θ1 − θ2
< 1 (19)

it follows that x 6∈ P\Q, which proves that P\Q
is not convex.

In the same way we can show that P\Q is not
convex if the number of hyperplanes is more
than two, since it is enough to repeat the above
argument for every pair of inequalities defined by
(ci, di), (ck, dk). On the other hand, if only one
hyperplane of Q intersects the interior of P the
resulting set P\Q is the intersection of convex
sets, and therefore convex, or if no hyperplane of
Q intersects P then P\Q = P is also convex. 2

Thanks to Lemma 1, one can reduce all regions T l
m

that are partially dominated by partitions Dk that
intersect T l

m with at most two hyperplanes. In this
way, on-line computations are possibly simplified
because of the reduced overlaps among the regions
of the controller’s partition.

6. EXAMPLE

Consider the following system
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x(k+1) =







A1x(k) + B1u(k) if x2(k) + x3(k) < 0,
|x1(k)| < 2

A2x(k) + B2u(k) if x2(k) + x3(k) ≥ 0,
|x1(k)| < 2

A3x(k) + B3u(k) otherwise
(20)

where x(k) ∈ X = [−10, 10]3, u(k) ∈ U =

[−2, 2], A1 =
[

1 .4 .08
0 1 .4
0 0 1

]

, A2 =
[

1 .7 .245
0 1 .7
0 0 1

]

, A3 =
[

1 .8 .32
0 1 .8
0 0 1

]

, B1 = [ .0107 .08 .4 ], B2 = [ .0572 .245 .7 ],

and B3 = [ .0853 .32 .8 ]. The PWA system has three
dynamic modes, defined over 6 regions.

We want to regulate the state of the system to the
origin, and find the explicit control law using the
quadratic cost defined by the weights Q = I, P =
I, R = .1, and control horizon N = 3. We obtain
119 feasible switching sequences, instead of the
63 = 216 possible ones, and 632 polyhedral regions
T l

m. The preliminary inclusion test (12) finds
129 regions of single feasibility. The remaining
503 regions T l

m of multiple feasibility need to be
compared with the corresponding sl

m partitions
Dk in order to detect their optimality. After
running the algorithm described in Section 5.3,
283 regions are found to be totally dominated
while 36 can be reduced by using the results of
Lemma 1. In this way we have reduced the number
of regions in the final control law by 40%, therefore
decreasing the number of comparisons that needs
to be made on line, without any loss of optimality.

7. CONCLUSIONS

In this paper we have proposed an approach for
solving hybrid optimal control problems based on
quadratic costs explicitly with respect to the ini-
tial state. The method lists all feasible switching
sequences using backwards reachability analysis,
solves the associated multiparametric quadratic
programs, and then reduces the total number of
regions via a comparison of the value functions.
The latter is computed by using a recursive par-
tition of the parameter space in simplices, by
making a linear approximation of the convex value
functions in each simplex, and by calculating an
upper and a lower bound to their difference. The
procedure allows one to discard all those regions
whose associated value function is never optimal.
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