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1 Introduction

In the last decades many researchers from different fields have been interested in the study
of how innovation spreads in social networks. What is the mechanism that convinces an
individual to follow a new idea or to buy a new product? What is the best marketing
strategy which a company should adopt to take a competitive advantage? How does viral
marketing works?

The studies on diffusion of an innovation in social networks began in the middle of the
20th century and several mathematical models have been proposed to give an answer
to questions of this type. Among them we can mention threshold models and epidemic
models. All these models are based on the same concept: in a social network the behaviour
of each individual is highly influenced by the behaviour of its neighbors.

Models based on threshold assume that an individual adopts a behaviour if a certain ratio
of its social contacts have already adopted it. Granovetter [3] and Schelling [7] firstly
introduced the threshold models in 1978. Their approach was based on the use of node-
specific thresholds and different mathematical models for diffusion has been proposed
subsequently. Epidemic models assume that a node adopts a behaviour with a certain
probability if at least one of its neighbors has adopted it. Threshold models are more suit-
able to describe social influence phenomena and individual behaviours, while epidemic
models are more used for mass behaviours. Kempe et al. [4] showed that both models
can be generalized and their generalized versions become equivalent. However, the basic
linear threshold model and independent cascade model stay as two distinct models.

When a node adopts the innovation we say that it becomes active, otherwise is said to be
inactive. It is implicitly assumed that a node can adopt the innovation, but once adopted,
it cannot abandon it, i.e., a node can switch its state from inactive to active but cannot
switch it from active to inactive. This model can be used to represent systems in which
the adoption of an innovation is permanent and in the literature is called progressive. For
instance, a progressive model can be suitable to describe the behavior of individuals that
buy a certain item: once they spend money to buy that, i.e., once they adopt the innovation,
usually it is not possible to return it and have the money back, thus we can say that the
adoption of the innovation has a permanent nature.

In this note we discuss two models.

e The Independent Cascade Model: a stochastic epidemic model.

o The Linear Threshold Model: a deterministic threshold model.

2 Network structure

As in most of the models appeared in the literature, a social network is represented by a
directed graph G = (V,€) where V = {1,2,...,n} is the set of nodes and £ C V x Vis
the set of edges.



Figure 1: A directed graph with 5 nodes.

Each node 7 € V represents an individual and in this notes we use the terms individual or
node interchangeably. An oriented edge (i,j) € £ denotes that node j is influenced by
node ¢ (no selfloops, i.e., edges from one node to itself, are allowed).

Example 1 Consider the directed graph in Figure 3. The set of nodesis V = {1, 2, 3,4, 5}.
The set of edges is € = {(1,3),(2,1),(2,3),(3,2),(3,4),(4,3),(4,5)}. o

Node i is an in-neighbor of node j if (i, j) € &, i.e., there exists an edge going from ¢ (tail
node) to j (head node). The set of in-neighbors of anode j € V is!:

Ny={ieV | (ij) €&

Example 2 Consider again the directed graph in Figure 3. The set of in-neighbors of its
nodes are: N7 = {2}, N5 = {3}, M5 = {1,2,4}, etc. o

3 Independent Cascade Model (ICM)

In the Independent Cascade Model, the mechanism according to which the innovation
propagates is based on the assumption that when an individual observes the actions of
other persons may engage in the same acts. This decision occurs in a random way, with
different probabilities according to the influence that the observed person has on the con-
sidered individual. It has been observed that his is also the way in which contagious
diseases usually spread from one person to another, and for this reason models of this
type are called epidemics models.

As an example, consider an individual that so far has not yet bought a tablet. By observing
different friends that already use tablets, she may be convinced that the new device may
be useful to her for work, for accessing information while traveling, for reading books
and newspapers, etc.

3.1 Cascade network and evolution

As discussed in Section 2, the network is described by a directed graph G = (V,€). In
addition, an edge probability function by p : £ — [0, 1] associates to each edge (i,7) a

'Ts is usual to define the set of in-neighbor of a node j as ./\/Jm but here use the simpler notation N;.
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Figure 2: Simulating the propagation of innovation along edge (i, j): innovation propa-
gates if rand() < p; ;.

number p; ; € [0, 1] representing the probability that node j adopts the innovation if node
1 has adopted it. Thus, we denote an independent cascade network by a triple

QIC = (Va 5,]7)

Let us define ¢ as the seed set, i.e., the set of nodes which have adopted the innovation
at time k£ = 0. From the seed set the innovation spreads through the social network, and
we denote by ¢ the set of nodes activated at time k, i.e., those nodes that are not active
at time £ — 1 but adopt the innovation at time k. We also denote by &, = U?:o ¢; the set
nodes that are active at time k, i.e., those which have adopted the innovation during the
time interval [0, k.

When a node i € N; in the in-neighborhood of an inactive node j adopts the innovation
at time k, it may propagate the innovation to node j at time % + 1 with probability p; ;. To
simulate this stochastic event, we may may generate a random number rand() uniformly
distributed in the interval [0, 1] and assume that the innovation propagates when rand() <
pi,; as shown in Figure 2.

Note that a node ¢ activated at time k£ may only propagate the innovation to its inactive in-
neighbors at time & + 1. In other words, once the arc (7, j) has been selected to propagate
the innovation from node 7 to node j at time k, regardless of the fact that j adopts the
innovation or not, it cannot be selected any more at a future time.

The innovation spreads in the network until no more individual can adopt it, and we denote
the set of final adopters as:
o0
o = J o
k=0

Algorithm 1 describes the dynamic of the network and returns as output the set ®*, com-
puting also the set of nodes ¢, which adopt the innovation at each step & .

Algorithm 1 (Evolution of an independent cascade network)

INPUT: An independent cascade network Gio = (V, E,p). A set of initial adopters ¢y C
V.

OUTPUT: The set of final adopters P*.

1. Let ® = ¢y, CTDZV\¢0;



Figure 3: Network in Example 3.

2. Letk =0;
3. while ¢, # 1),

(a) Let k =k +1, ¢, = 0;

(b) for j € @,
fori € NN gy,
if rand() < p;;, then ¢, = ¢, U {j},
end for;
end for,

(c) Let ® = P U ¢y, (I):(i)\gbk,
end while;

4. Let &* = . o

Example 3 Consider the network in Figure 3 with seed set ¢y = {6}. Next to each arc
(¢, ) is shown the value of the probability p; ;.

A first evolution of the system is shown in Table 1. Here at step k£ = 1 we test edges (6, 3)
and (6,5): only node 3 adopts the innovation. At step k& = 2 we test edges (3,1) and
(3,4): only node 1 adopts the innovation. Finally at step & = 3 we test edge (1, 2): node
2 does not adopt the innovation and we stop. The set of final adopters is * = {1, 3,6}.

As we have pointed out, the diffusion of innovation in the ICM is stochastic. This means
that the set of final innovators may randomly change from one simulation to another one
starting with the same seed set. As an example, a second evolution of the system is shown
in Table 2. Here at step k& = 1 we test edges (6, 3) and (6, 5): both nodes 3 and 5 adopt
the innovation. At step £ = 2 we test edges (3,1), (3,4) and (5, 2): only node 4 adopts
the innovation. At step k& = 3 we test edge (4, 2): node 2 adopts the innovation. At step
k = 4 there are no edges to test — since the single edge outputting node 2 goes to node
4 that has already adopted the innovation — and we stop. The set of final adopters is
o ={2,3,4,5,6}. o



k| edge | p;; | rand() | adopt | ¢ D,
0 {6} | {6}
6,3) | 0.8 | 0.73 Y
JELE ©) | (3.6)
6,5 04] 052 | N
3,1)1 04| 0.37 Y
2 1) (a3 | {1.3.6)
3,4)]07] 082 | N
32 os5] 066 | N | 0 |{136)
Table 1: First simulation in Example 3.
edge | p;; | rand() | adopt | ¢ Oy
{6} {6}
6,3) ] 0.8 0.73 Y
(6.3) {3,5} {3,5,6}
6,5 ] 04] 032 | Y
3,1) 04| 064 | N
3,4)|07] 053 | Y | {4 | {3,456}
,2)]07] 091 | N
(4,2) 08| 048 | Y | {2} |{2,3,4,5,6)
_ | -] - _ 0 |1{2.3.4,56)

Table 2: Second simulation in Example 3.




3.2 Computing the activation probabilities

In an independent cascade network, given a seed ¢, we may be interested in computing
the probability 7; that each node 7 € V adopts the innovation. Obviously this probability
is equal to 1 for all nodes in the seed set but unknown for all other nodes.

We define the node activation probability vector as
™ = [71'17'('2 7Tn].

When it is necessary to explicitly point out the dependence of this vector from the seed
set we may also denote it by 7 ().

In [8] it was presented an algorithm, called Path Method, to compute the (exact) node
activation probability vector. However, the time complexity of such algorithm is O(6%,
i.e., exponential on the number of nodes N. For this reason, the Path Method can only be
used for small networks.

Example 4 Consider the network in Figure 3 with seed set ¢9 = {6}. Using the path
based method in [8] one can find that the node activation probability vector is @ whose
components are given in the following table:

nodes| 1 2 3 4 ) 6
e 0.3210.6758|0.8|0.6073|0.6068 | 1

3.2.1 Computing the activation probabilities by simulation

One possible way to experimentally compute the node activation probabilities consists in
simulating the evolution of the network for a large number of runs. Assume that we run
the simulation /V times, and observe that node j adopts the innovation r; < N times.
Then the observed frequency of activation is /N and as N goes to infinity we expect
that the observed frequency will go to the expected probability.

Example 5 Consider the network in Figure 3 with seed set ¢y = {6}. By simulating it
evolution for an increasing number of runs we obtain the results in Figure 4, where we
have reported for all nodes the observed frequencies as N goes from 1 to 5000. Note
that even with a large number of runs the results of the simulation are affected by small
random fluctuations.

The node activation probability vector computed via simulation is 7™
nents are given in the following table:

whose compo-

node 7 1 2 3 4 5 6
wm 110.318 10.674 [ 0.799 | 0.610 | 0.603 | 1.000

1

Note that in this simulation for all < € V if holds that

7; — 0.005 < ™ < m; + 0.005.
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Figure 4: Computation of the node activation probabilities by simulation for the network
in Example 3.



Figure 5: A node j with three neighbors.

3.2.2 Computing the activation probabilities by fixed-point iteration

The computation of the node activation probabilities by simulation is not very practical
and requires a large number of simulation runs. For this reason, in this subsection we
present a procedure based on fixed-point iteration which determines an upper bound of
the activation probabilities.

To show how this technique can be applied to the problem at hand, let us first consider a
network node j ¢ ¢, that has neighbors ; = {1, 2, 3} as shown in Figure 6. If the events
node i is activated” (for i € N;U{;j}) are independent events, then the probability 1 — 7;
that node j does not adopt the innovation is equal to :

3

(1—m) = (1= m pry) (1= pa) (1 — w3 ps) = [ [(1 = mipiy)
=1

since this requires that all three neighbors fail to activate 7. To justify this expression
consider, say, the first neighbor: assuming no other node activates j, the probability that
Jj is activated by node 1 is 7 p; ;. Hence (1 — 7y py ;) is the probability that node j is not
activated by node 1.

This expression can be rewritten and generalized so as to express the activation probability
of node j as a function of its neighbors activation probabilities, i.e.,

7Tj =1- H (1 — T pi,j)- (1)

ieN
Assuming that the activation probability of each node in a networks can be computed
using eq. (1), we can define the following vector.

Definition 1 Given an independent cascade network Gic = (V, €, p) let ¢ be a seed set.

The SteadyStateSpread probability vector 75°*(¢g) = [m5%° 5% ... 73] is the solution

n



of the following system of equations:
1 if j € o,

- . ' 2
" L= [T =7 piy)  ifi & oo VeV )
1EN;

We can finally state the following general result (see also [2, 8]).

Fact 1 Given an independent cascade network Gy = (V,E,p) let ¢o be a seed set. Let
7 (o) be the activation probability vector and 7% (¢, the SteadyStateSpread probability
vector. It holds:

(o) < (o),

where the relation < holds componentwise. o

The proof of the result follows from the fact that eq. 1 provides a correct value of the
activation probabilities for node j if and only if the events “node i is activated” (for ¢ €
N; U {j}) are independent events. When this does not happen, it can be shown that

mi* > pij, 1.e., the SteadyStateSpread probability of node j is in general larger than the

correct activation probability [2, 8].

The previous result provides an analytical characterization of the SteadyStateSpread prob-
abilities but it does not offer a computational viable approach to determine them, because
the system of equations is not linear. For this reason we present an algorithm to numeri-
cally compute the solution of (2).

The general idea behind this algorithm is briefly outlined. Given a real function of a real
variable? f : R — R, we say that a real number  is a fixed point of f if it satisfies

Given a point z( in the domain of f, the fixed-point iteration is
L1 = f(SCk), k= O, 1, 2, c.

which generates the sequence xg, x1, x2, . .. If the sequence converges to a point x and f
is continuous, then one can prove that x is a fixed point of f.

In the following 0,, denotes a vector of zero’s of length n and given a vector v € R" we

denote its 2-norm by
n 1/2
wi- (3507)
=1

Algorithm 2 (Computing the SteadyStateSpread probabilities)

INPUT: An independent cascade network Gic = (V, &, p). A set of initial adopters ¢y C
V. A desired tolerance € > (.

OUTPUT: The SteadyStateSpread probability vector 7% (¢y).

“More generally, the function f can be defined on any metric space (e.g., R™) with values in that same
space.

10



1. Let vV = 0,,.

2. Let w@ = [#9 20 720 such that vj € v

W(O):{ 1L ifj € o,
J p -
0 ifj & oo;
3. Letk = 0.
4. while |7 — x-=1|| > ¢,
(b) for j €V, let
1 ifj € o,
(k) _ _ .
=Yy 1- H(l—ﬂ§k Vpig)  if 5 & oo
1EN;
end while;
5. Let % (¢g) = wk), ©

It is easy to show that the previous algorithm produces a non decreasing sequence of
vectors, i.e., 7*) > 7(*=1)  Also this sequence is upper bounded because each component
of w*) is smaller than or equal to 1. Hence it converges to a fixed point, which is the
solution of the system of equations (2).

Example 6 Consider again the network in Figure 3 with seed set ¢y = {6}. By means
of Algorithm 2 with a tolerance ¢ = 10~° we compute in 13 steps the SteadyStateSpread
probability vector 7°**(¢,). In Figure 6 we have plotted the components of vector (%)
for k = 0,...,13. Comparing with Figure 4, we can immediately see that Algorithm 2
converges in a small number of steps in comparison the approach based on simulation.

The following table compares the SteadyStateSpread probability vector 7w%*(¢) with the
exact node activation probability vector 7r(¢g) previously computed in Example 4 .

node ¢ 1 2 3 4 5
%5 11 0.32 | 0782 | 0.8 | 0.663 | 0.639 1

)

U 0.32 | 0.676 | 0.8 | 0.607 | 0.607 | 1

In the case of nodes 2, 4 and 5 the SteadyStateSpread probabilities are significantly larger
than the actual activation probabilities. o

Several approaches have been proposed to modify the fixed-point approach so that a better
estimate of the node activation probability vector can be computed: see [8] for more
details.

11



Figure 6: Computation of the SteadyStateSpread probabilities by fixed-point iteration in
Example 6.

4 Linear Threshold Model (LTM)

In the simplest version of the Linear Threshold Model, a threshold value is assigned to
each individual and all its neighbors have the same influence on it. An individual adopts
the innovation as soon as the ratio of its neighbors who have already adopted it is above
its threshold value. The origin of the previous rule is the following: in several competitive
games such an individual decision rule has been proved to be the best response to the
actions of one’s neighbors. As an example, consider an individual belonging to a group
of friends; if most of the friends use a particular messaging software (say whatsapp), the
individual feels the need to use the same software to avoid being emarginated.

4.1 Threshold network and evolution

As discussed in Section 2, the network is described by a directed graph G = (V, ). In
addition, a threshold function \ : V — [0, 1] associated to each node j € V a number
A; € [0, 1] called its threshold value. Thus, we denote a linear threshold network by a
triple

Grr = (V,E,N).

Let us define the seed set ¢ as the set of initially active notes, i.e., the set of nodes which

12



adopt the innovation at time k£ = 0. From the seed set the innovation spreads through the
social network, and we denote as ¢;, the set of nodes which become active at time k. All
the individuals that are active at time k, i.e., those that have adopted the innovation during
the time interval [0, k], belong to the set @), = |, ¢s.

Consider a node ;7 ¢ ®; which is not active at time k. This node becomes active at time
k+1,i.e.,j € ¢gi1, if the following holds:

. NN
Sy 9
J

Note that |, N N;| denotes the number of in-neighbors of node j active at time k, while
W | denotes the total number of in-neighbors of node j. Thus a node adopts the innovation
if the fraction of it in-neighbors that are active reaches or exceeds the node threshold value.

The innovation spreads in the network until no more individual can adopt it, and we denote
the set of final adopters as:

& (o) = | o
k=0

Here we write ®*(¢y) to explicitly denote that the set of final adopters for a given linear
threshold network depends only on the seed set ¢y. When it will not be necessary to show
this dependence, we will use the simpler notation ®*(¢y).

Algorithm 3 describes the dynamic of the network where the innovation starts from a seed
set ¢ and and computes the set ®*(¢). The algorithm also computes the set of nodes ¢y,
which adopt the innovation at each step & .

Algorithm 3 (Evolution of a linear threshold network)
INPUT: A linear threshold network G = (V,E, \). A set of initial adopters ¢pg C V.
OUTPUT: The set of final adopters O*.

1. Let® = ¢y, =V \ ¢y,
2. Letk =0,
3. while ¢, # 0,
(a) Let k =k +1, ¢, = 0;

(b) for j € @,
o [Pora N :
i > N\, then = ¢ U ;
if TNV S o =L U{j}
(c) Let ® =D Uy, =D\ ¢y;
end while;
4. Let ®* = . o

13
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Figure 7: Network in Example 7.

Example 7 Consider the network in Figure 7 with seed set ¢y = {1,2}. Next to each
node ¢ is shown the value of the threshold \;. An arc directed from node 7 to node j
denotes that ¢ influences j: note that some arcs are are bidirectional to denote that the two
nodes influence each other. The evolution of the system is shown in Table 3. The set of

final adopters is ®* = {1,2,3,4,5,7,9}. o
k| o Py,
0| {1,2} {1,2}
1| {3} {1, 2,3}
2| {4} {1,2,3,4}
31457} {1,2,3,4,5,7}
4| {9} |{1,2,3,4,5,7,9}
5 0 {1,2,3,4,5,7,9}

Table 3: Evolution in Example 7.

4.2 Cohesiveness

The following definition formalizes the concept of cohesive set.

Definition 2 (Cohesive set in [1]) Given a linear threshold network Gy = (V,E, \), the
set X C V is called cohesive if for all 7 € X it holds

X NNl
| S @)
Wil ’
or equivalently? AX) A
<\ (5)
Nl !

3The two conditions in eq. (4) and eq. (5) are equivalent, i.e., one holds if and only if the other one
holds. Each one of them can be used to characterize a cohesive set.

14



According to eq. (5), a set X C ) is cohesive if for each ;7 € X the ratio of neighbors
which do not belong to X is strictly smaller than ;.

Example 8 Consider the network in Figure 7 discussed in Example 9.

One can easily proof that X’ = {1, 2, 3} is cohesive. In fact using eq. (4) it holds:

X'N 2 1
| NI‘:H }‘:_:1>0_4:1_)\1
Vi {23 1
X'N 3 1
AN {8 L 1>04=1-X
N2 {33 1
X'N 1,2 2
| NB‘: {1,231 =->05=1- )3
N3] {1,2,4}] 3
In a similar way, one can show that X” = {6,8} and X" = {10, 11} are also cohesive
sets. Finally it is possible to show that the union of cohesive sets is also a cohesive set.
Sosets X' UX" X' UX" X"UX" and X' U X" U X" are also cohesive. o

The following result shows that nodes in a cohesive set X cannot become active unless
some node in X is initially active. In other words, a cohesive set where no node has
adopted the innovation remains forever closed to the innovation spreading.

Proposition 1 Given a linear threshold network Grr = (V,E, N), let X be a cohesive set
and consider a seed set ¢.

If oo N X = (0 then for all k > 0 it holds ®;, N X = 0, i.e., no individual in X will ever
adopt the innovation.

Proof. We proof the result by induction.
(base step) Obviously &5 N X = ¢y N X = () by assumption.

(inductive step) We know show that if &, N X = () then ®;,; N X = (). In fact in such a
case using eq. (5) one can see that for all nodes j € X holds (see also the Venn diagram
in Figure 8)

2NN _ [\ X) N A

Vil T Wil
This implies that no node j € X adopts the innovation at time k£ + 1 and ®,; N X = 0.
OJ

<.

Based on the previous property, the following result from [1] characterizes the set of final
adopters in terms of the net structure and of the seed set ¢y.

Lemma 1 (Lemma 2 in [1]) Given a linear threshold network G = (V,E, ), let ¢ C
V be the seed set and let M C V \ ¢ be the maximal cohesive set contained in the
complement of ¢g. The set of final adopters ®* is given by:

O = V\ M, (©6)

i.e., all nodes in the network will eventually adopt the innovation except those in M.

15



Figure 8: Diagram used in the proof or Proposition 1.

m}
v

Figure 9: Diagram used in the proof or Lemma 1.

Proof. We know by Proposition 1 that no node in M will adopt the innovation, i.e.,

P CV\ M.

Assume now, by contradiction, that ®* C V' \ M and consider the set M’ = V\ ®* O M
(see also Figure 9). Since no node in M’ adopts the innovation when all nodes in ®* do,
it must hold by (3)

[ N A : :
—_— <\ forall j € M
Wil !
which also implies
/
ﬂ .
(VA M) M|<Aj forall j € M’
Wil
and thus by (5) M’ is a cohesive set contained in V' \ ¢o. However, M’ 2 M contradicts
the statement that M is the maximal such set. U

Example 9 Consider again the network in Figure 7 discussed in Example 9. Given the
seed set ¢ = {1, 2} it holds

V\ ¢y = {3,4,5,6,7,8,9,10, 11}.

One can easily verify that the set M = {6,8,10,11} is the maximal cohesive set con-
tained in V \ ¢y. (Note that this cohesive set if the union of the sets X’ and X" de-

16



fined in Example 8.) As expected, the set of final adopters computed in Example 7 is
d* =1{1,2,3,4,5,7,9} =V \ M. o

4.3 A linear algebraic characterization of cohesive sets

In this section we want to show that the set of final adopters determined by Algorithm 3
can also be computed solving an integer programming program (IPP).

We observe that topological information about the graph describing a social network can
be encoded in the adjacency matrix A € {0, 1}"*"™ which is defined as follows:

. . J 1 if there is an edge from node i to j
AG,j) = { 0 otherwise

We define the in-neighbors scaled adjacency matrix A € [0,1]"*" as follows:

L A(L))
Ali, ) = —2=.
Wil
We denote with A = diag([\; Ay ... A,]) the diagonal matrix whose diagonal entries are

the thresholds of the graph nodes.
We associate to each set of nodes X C V a characteristic vector defined as follows.

Definition 3 Given a set X C V), the associated characteristic vector x € {0, 1}" is such
thatx; = 1if j € X else x; = 0.

We now propose a linear algebraic characterization of cohesive sets.

Lemma 2 Given a linear threshold network Gy = (V,E,\), a set X C V is cohesive if
and only if its characteristic vector x for all j € X satisfies

el A(-,§) > 1),

where )
AN —— if\i- N, €N
J |N}| ' ] | .7|

Aj if \j- Wil ¢ N

S\j:

Proof. Firstly we make the following obvious remark:

T A s ::UTA(,]) o ’XQA/H
TACD=TACH T

Then we observe that equation (4) can be rewritten as follows:

X NN
Wil

Since the LHS of the last inequality of (7) is an integer, we consider two cases:

S1-X & XN > W)= A . ™

17



e if \; - [NV;| € N the inequality can be rewritten as:
X AN = NG = A5 - VGl + 15
e if \; - [N| ¢ N the inequality can be rewritten as:
XN = NG = A5 - NG
Dividing these inequalities by || the result follows immediately. d

According to the definition of 5\]- introduced in Lemma 2 we define the diagonal matrix
We can finally show how the maximal cohesive subset of '\ ¢, can be computed solving

an IPP whose optimal solution is the characteristic vector of M.

Proposition 2 Given a linear threshold network G = (V,E,\), let ¢pg C V be a seed
set with characteristic vector y.

The maximal cohesive set M contained in V' \ ¢ has a characteristic vector x* that is
the optimal solution of the following IPP:

max 17 .z
T

[I—/_X—AT} T
x € {0,1}"

1-y

0 ®)

VARPVAN

Proof. Firstly, we observe that if x is the characteristic vector of a set X C V
XNoy=10 = r+y<1,
which can be rewritten as the first constraint in (8).
Secondly, if X is a cohesive set, by Lemma 2 it holds
VieM, xTA(j)>1-)

T
>
r

2T A > 2T — A]

vieV, xTA(,j) > (1 -\

and this can be immediately rewritten as the second constraint in (8).

Finally, the cohesive set computed by IPP (8) is maximal because of the chosen objective
function. 0

Note that, as shown in [1] a such a maximal cohesive set always exists — but may be the
empty set — and is unique.

Lemma 1 shows that, given a network with seed set ¢, the knowledge of the maximal
cohesive set M C V' \ ¢, permits an immediate computation of the set of final adopters
®*. Thus the linear algebraic characterization of cohesive sets given in Proposition 2
could be used to compute the set final adopters for given seed set as stated in the following
corollary.
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Corollary 1 Given a linear threshold network Grr = (V,E, \) and a seed set ¢y C 'V
with characteristic vector y, let x* € {0, 1}" be the optimal solution of IPP (8). The set
of final adopters ®* has characteristic vector w* =1 — x*.

Proof. Follows from Lemma 1 and Proposition 2. In fact w* = 1 — x* implies ®* =

Y\ M. 0

Thus we have two different approaches to compute the set of final adopters ®*. On one
hand we can compute by a single simulation using Algorithm 3. On the other hand, we
could solve the Binary Programm Problem in eq. (8).

Computing an IPP is a computationally hard problem, especially for large graphs. How-
ever, the main advantage of the characterization in IPP (8) is that it can be used to model
and solve other problems, such as the influence maximization problem presented in [6]
where the objective is to find a seed set of bounded cardinality that ensure the maximal
diffusion of the innovation. In problems of this type the set of initial adopters is not known
and thus the influence maximization problem cannot be solved by simulation unless one
tests all possible seed sets, which is impractical.
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