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1 Introduction

This short note provides a brief introduction to two of the the most common epidemic models, SIR
and SEIR following the material presented in [1, 2, 4].

The spread of an epidemic is intrinsically a discrete event process. The state of an epidemic in
a population can be represented by discrete variables, such as the number of individuals that are
susceptible to the infection, the number of persons that have been exposed or that are infective,
the number of people that have recovered or are immune because have been vaccinated, etc. The
evolution of such a system depends on the asynchronous and random occurrence of events such as
"a new person has been infected", "an infective has recovered", etc.

However, given the large number of individuals in a population, the formulation and analysis of a
microscopic model, where the state of each person is individually taken into account, is not always
possible. This is why it is common to abstract these models via a technique called fluidization,
which consists in approximating the discrete state value of a high-populated system by means of
continuous average variables so that a macroscopic time-driven model, in terms of differential or
difference equations, can be formulated. Fluidification [3] is an efficient relaxation technique to
tackle classical state explosion problems in discrete event systems and has often been used for
performance analysis and optimization.

Although the epidemic models we present in this note are purely continuous, we emphasize that a
full understanding of their dynamics and of the physical meaning of their parameters is rooted in
the theory of stochastic discrete-event and fluid processes.

As a final comment, we point out that continuous macroscopic models, based on average values,
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are very useful to decision makers: they allow them to study different scenarios depending on
which measure to contrast an epidemic are taken, or to predict its spread in a quantitative way and
thus plan an appropriate use of resources. However, when the number of infected individuals is
quite small — e.g., at the beginning or at the tail of an infection spread — microscopic models,
where all infective individuals are identified and they movements are tracked, are of greater use.

2 The SIR model structure

We want to study how an infective disease caused by a germ can spread in a population. To this
aim we define the following variables.

• S(t): the number of susceptible individuals at time t. These are individuals which are at risk
of being infected.

• I(t): the number of infective individuals at time t. These are individuals that have been
infected with the germ and may transmit it to susceptible individuals.

• R(t): the number of removed individuals at time t. These are individuals that are immune
and cannot transmit the infection to others.

• N(t) = S(t) + I(t) +R(t): the size of the population at time t.

Such a partitioning of the total population into disjoint classes can be seen as a compartmental
model1. We assume that individual may move from one class to another one according to specified
dynamics.

Here we consider the so-called SIR model which is based on several assumptions.

Assumption 1. The size of the population is constant, i.e., N(t) = N for all t. This is a reasonable
assumption if the following conditions both hold: (a) the epidemic spread has a short duration
with respect to the nominal population dynamics characterized by nominal births and deaths; (b)
population is isolated, with no arrivals or departures from/to the external world. Note that deaths
from the disease are possible but will not affect the size of the population (see Assumption 3
below).

Assumption 2. No vaccine is available. Hence susceptible individuals can be infected (moving to
class S) but cannot be removed (moving directly to class R).

Assumption 3. Infected individuals may either recover (and in this case they develop immunity to
the disease) or may also die as a result of the infection. In both cases they move to class R.

1Compartmental models describe how material or energy flows are transmitted between different parts (compart-
ments) of a system. Each compartment is an homogenous entity, i.e., the distribution of material or energy within it
can be considered uniform. They are also often used to model population dynamics: in such a case, a compartment
represent a class of individuals with the same property.
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Figure 1: Compartmental view of a SIR model.

Based on these three assumptions we have a three-compartment model as shown in Figure 1 char-
acterized by two flows.

• qI(t): infection rate. This is the number of susceptible individuals that, at time t, become
infected in a unit of time.

• qR(t): removal rate. This is the number of infective individuals that, at time t, recover or die
in a unit of time.

Note that the two rates are expressed in num. of individuals / time, e.g., 300 persons/day or 21,000
persons/week.

The last assumption we consider is the following.

Assumption 4. The number of individuals in the population is very large and we can assume
all variables S, I , R, qI and qR take real nonnegative values (as opposed to nonnegative integer
values). This allow us to consider a continuous-time fluid model involving these variables and
their derivatives.

Based on all previous assumptions we can present a first SIR model in continuous-time where the
exact dynamics (the precise value of the infection and removal rates) need not be specified.

Definition 1 (Abstract SIR model). The model in Figure 1 is ruled by the following dynamical
equations: 

d
dt
S(t) = −qI(t)

d
dt
I(t) = qI(t)− qR(t)

d
dt
R(t) = qR(t)

(1)

N
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From this abstract model we can verify that, starting from an initial condition S(0), I(0), R(0), the
total number of individuals N(t) = S(t) + I(t) +R(t) is constant because:

d

dt
N(t) =

d

dt
S(t) +

d

dt
I(t) +

d

dt
R(t) = −qI(t) + (qI(t)− qR(t)) + qR(t) = 0,

and thus it holds that N = S(0) + I(0) +R(0).

In addition we observe that:

• The number of susceptible individuals S(t) is non-increasing because its derivative can never
be positive (by definition qI ≥ 0).

• The number of removed individuals R(t) is non-decreasing since its derivative can never be
negative (by definition qR ≥ 0).

• On the contrary, depending on the current values of the infection and removal rates the
number of infective individuals I(t) may increase or decrease.

Finally, it is worth noticing that an equivalent second order model can be obtained considering
only the first two equations in (1), where the variable R does not appear. Once this system of two
differential equations is solved to determine S(t) and I(t), one can directly determine R(t) using
the algebraic equation R(t) = N − S(t)− I(t).

3 Formulation of the SIR model

We now provide a more precise formalization of the flows between compartments in the SIR model
shown in Figure 1. The two flows are the infection rate qI(t) and the removal rate qR(t). Suitable
expressions for these variables can be derived averaging the underlying discrete-event microscopic
dynamics of individuals.

3.1 Infection rate

We assume that the infection can be transmitted when a susceptible and an infective individual
engage in a contact. Let us first define two parameters.

• Transmission factor τ : denotes the probability that an individual is infected when exposed
to the infective agent. This parameter is nondimensional.

• Risky contact rate %: denotes the number of risky contacts that an individual engages in
during a unit of time. A contact is called risky if it may expose an individual to the infective
agent. This parameter has the dimension of the inverse of a time, e.g., day−1 or week−1.
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A risky contact, depending on the disease, may have different definitions: sexual act, physical
proximity, indirect contact via contaminated surfaces, etc. The transmission factor is related to
the infectivity or virulence of the diseases but may also vary according to the type contact: as an
example, there may exist high-risk and low-risk contacts. The risky contact rate also varies from
one individual to another one, depending on lifestyle, profession, etc. Here we consider for both
parameters an average value over all the population and all type of risky contacts.

Example 1. During the COVID-19 epidemic in early 2020, many countries have adopted measures
to limit the spread of the disease. Regulations requiring the use of a face mask or the frequent
disinfection of surfaces in public places aim to reduce the transmission factor of the infection.
Regulations such as the closing of schools or other lockdown measures aim to reduce the risky
contact rate. �

Combining these two values, one can define a fundamental parameter characterizing the SIR
model.

Definition 2 (Adequate contact rate). The adequate contact rate

β = τ · % (2)

denotes the average number of contacts leading to disease transmission in which an individual
engages in a unit of time. This parameter has the dimension of the inverse of a time. N

In the literature is also common to directly define the parameter β without mentioning its two fac-
tors τ and %: in such a case β may be simply called contact rate, not being necessary to distinguish
it from %.

Example 2. The virus of Hepathitis B, called HBV, is sexually trasmissible. Assume that the trans-
mission factor during a risky intercourse is τ = 0.7. If in a population the average individual
engages in % = 2 risky intercourses per year, the adequate contact rate if β = τ · % = 1.4 inter-
courses per year. �

Let us now look at the disease spread from the point of an infective person. The average number
of susceptible persons infected by an infective individual in a unit of time is

φI→S(t) = β · S(t)

N
(3)

since the rate of adequate contacts is β and when the contact is with a susceptible individual (with
probability S(t)/N ) the disease is transmitted. The inverse of this rate is the time

δI→S(t) =
1

φI→S(t)
=

N

β · S(t)
(4)

that passes, on average, between two different transmissions caused by the same infective individ-
ual.

Dually, we can look at the disease spread from the point of a susceptible person. The rate at which
a susceptible individual can be infected is

φS→I(t) = β · I(t)

N
(5)
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since the rate of adequate contacts is β and when the contact is with an infective individual (with
probability I(t)/N ) the disease is transmitted. The inverse of this rate is the time

δS→I(t) =
1

φS→I(t)
=

N

β · I(t)
(6)

that passes, on average, before the susceptible individual gets infected.

We can finally compute the total infection rate qI(t) at time t.

Definition 3 (Infection rate). The infection rate in eq. (1) has the following expression:

qI(t) = φI→S(t) · I(t) = φS→I(t) · S(t) = β · S(t) · I(t)

N
, (7)

which can be obtained multiplying for the number I(t) of infectives the rate of infection (3) caused
by each of them or, equivalently, multiplying for the number S(t) of susceptibles the rate (5) at
which each of them is infected. N

Example 3. In a given country with a population of 20M, the number of individuals infected by
HBV is 0.2M and 10M are vaccinated. Thus we can write I = 0.2M, R = 10 and S = 9.8M.

Assume the adequate contact rate per year is β = 1.4. Then the average infective individual in
one year transmits the disease to φI→S = β · S

N
= 0.69 persons. On the average a susceptible

individual can expect to be infected after δS→I = N
β·I = 71 years.

The total infection rate is qI = β · S·I
N

= 137, 000 persons per year. �

3.2 Removal rate

Typically a disease is characterized by a random time from infection to recovery, or more generally
from infection to removal (including also disease induced deaths).

Let us consider a stationary condition, where, on the average, the number of infective people
remains constant. In such a case, the infective compartment can be seen as a stationary queuing
system where Little’s law applies (see Appendix A) and can be rewritten as follows:

Ī = q̄ · θI or equivalently q̄ =
Ī

θI
(8)

where

• Ī is the average number of infectives (averaged over time).

• q̄ = q̄I = q̄R is the average infection/removal rate (averaged over time). Note that the two
average rates coincide due to the stationarity assumption).

• θI is the average infective period, i.e., the duration of the infection (averaged over all infec-
tive individuals).
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Example 4. The world population affected by common cold at any given time is estimated around
Ī = 60M people. Assume the average duration of a cold is: θI = 5 days = 0.7 weeks. The
average number of people that recover by cold in a week is q̄R = I/θI = 84M. Note that the
process can be assumed stationary: this means that also the average number of people that catch
a cold in a week is q̄I = q̄R = 84M. �

Although eq. (8) holds for the average values (over time) of the variables I(t) and qR(t), it is
common to use the same law to compute the instantaneous removal rate, which depends on the
removal coefficient.

Definition 4 (Removal coefficient). The removal coefficient

γ =
1

θI
(9)

denotes the average number of recovered or dead divided by the total number of infected in a unit
of time. This parameter has the dimension of the inverse of a time. N

Definition 5 (Removal rate). The removal rate in eq. (1) has the following expression:

qR(t) = γ · I(t). (10)

which can be obtained multiplying for the number I(t) of infectives the removal coefficient (9). N

It should be remarked that eq. (10) may introduce a significant error but leads to a very simple
dynamics for the infective population:

d

dt
I(t) = qI(t)− γ · I(t), (11)

where the infection rate qI(t) can be seen as an input term.

A more precise model should take into account the effective probability distribution of the infective
period. Following the notation in Appendix B, assume the duration of the infection is a random
variable Θ ∼ (R≥0, f) with probability density function f(θ) and complementary probability
function F ′(θ) = Pr(Θ > θ) = 1−

∫ θ
0
f(s) · ds.

In such a case the solution of eq. (11) starting from initial condition I(0) takes the form:

I(t) = I(0) · F ′(t) +

∫ t

0

qI(s) · F ′(t− s) · ds, (12)

where the first term I(0) · F ′(t) denotes the number of initially infective individual which have
not been removed at time t because their infective period is longer, while in the second term
qI(s) · F ′(t − s) · ds denotes the number of new individuals infected during the time interval
[s, s + ds] which which have not been removed at time t because their infective period is greater
than t − s. This equation can be used to compute a more accurate evolution of the infective
population when f(θ) is known.
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We conclude this analysis considering the particular case in which the length of the infective period
is an exponentially distributed random variable of parameter λ > 0, i.e., it holds (see Appendix B):

f(θ) = λ · e−λθ, F ′(θ) = e−λθ, and θI
def
= E[Θ] =

1

λ
.

Thus eq. (12) becomes:

I(t) = I(0) · e−λt +

∫ t

0

qI(s) · e−λ(t−s) · ds = I(0) · e−λt + e−λt ·
∫ t

0

qI(s) · eλs · ds. (13)

Taking the derivative with respect to time of both sides we get

d

dt
I(t) = −λ · I(0) · e−λθ + e−λt · qI(t) · eλt − λ · e−λt ·

∫ t

0

qI(s) · eλs · ds

= qI(t)− λ ·
[
I(0) +

∫ t

0

qI(s) · e−λ(t−s) · ds
]

= qI(t)− λ · I(t) = qI(t)−
1

θI
· I(t)

where to compute the derivative of the integral we used the standard rule d
dt

∫ t
0
g(s)ds = g(t) and

in the second line we used (11).

As a result we obtain that the expression in eq. (11) is actually correct when the length of the
infection period is an exponentially distributed random variable.

3.3 The standard and normalized SIR model

The expression previously derived in eq. (7) and (10) for infection and removal rates can be sub-
stituted in the abstract SIR model (1) to obtain the so-called standard model

Definition 6 (Standard SIR model).

d

dt
S(t) = −β · S(t) · I(t)

N

d

dt
I(t) = β · S(t) · I(t)

N
− γ · I(t)

d

dt
R(t) = γ · I(t)

(14)

N

The standard model defined in eq. (14) can be normalized considering as variables

• s(t) = S(t)/N : the fraction of susceptible individuals on the total population;
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• i(t) = I(t)/N : the fraction of infective individuals on the total population;

• r(t) = R(t)/N : the fraction of removed individuals on the total population.

Using these new variables, eq. (14) can be rewritten as follows.

Definition 7 (Normalized SIR model).

d

dt
s(t) = −β · s(t) · i(t)

d

dt
i(t) = β · s(t) · i(t)− γ · i(t)

d

dt
r(t) = γ · i(t)

(15)

N

In the standard model, two important epidemic measures can be immediately recognized.

• Prevalence of the disease: it is variable i(t) = I(t)/N which represents the fraction of the
population that is infective.

• Incidence of the disease: it is the term β ·s(t) · i(t) = qI(t)/N which represents the infection
rate as a fraction of the total population.

Example 5. In a population of 1.6M individuals there are about 80k carriers of a disease and 40
new cases are reported in a given year. The prevalence of the disease is 80,000/1,600,000 = 5%
and its yearly incidence is 80/1,600,000=0.005%. It also common to express the prevalence as
500/100,000 inhabitants and the yearly incidence as 500/100,000 inhabitants. �

4 Evolution of the SIR model

We will consider the normalized SIR model (15).

Note that this is a positive system, i.e., starting from a nonnegative initial condition such that
s(0), i(0), r(0) ≥ 0, for all t ≥ 0 it also holds s(t), i(t), r(t) ≥ 0. To prove this for the first
two variables, we observe that in (15) as s(t) (resp., i(t)) goes to zero, its derivative also goes
to zero hence it cannot further decrease. Finally if i(t) is nonnegative, then r(t) is obviously
nondecreasing.

Furthermore, by definition, we assume that the initial condition is such that

s(0) + i(0) + r(0) =
S(0)

N
+
I(0)

N
+
R(0)

N
=
S(0) + I(0) +R(0)

N
= 1.
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Then for all t ≥ 0 it also holds s(t) + i(t) + r(t) = 1 because

d

dt
(s(t) + i(t) + r(t)) =

d

dt
s(t) +

d

dt
i(t) +

d

dt
r(t) = 0.

We also observe from (15) that s(t) is always nonincreasing because its derivative is nonpositive
while, as we have already observed, r(t) is always nondecreasing because its derivative is nonneg-
ative.

Before we discuss the evolution of the infective population i(t), which may increase or decrease,
let us define two important parameters.

Definition 8 (Contact number (or basic reproduction number)). The contact number

σ = β/γ (16)

denotes the average number of adequate contacts that an infective individual has during the infec-
tive period. This parameter is also called basic reproduction number and in this case it is denoted
R0. N

The contact number is a structural parameter that does not depend on the current state. Note that it
is given by the product of the adequate contact rate β and the average length of the infective period
θI , i.e., σ = β · θI .
Definition 9 (Reproduction number). The reproduction number

R(t) = σ · s(t) (17)

denotes the average number of new contagions that an infective individual causes during the in-
fective period. N

The reproduction number is not a structural parameter and thus it depends on the current state of the
system (it changes over time). Note that it is given by the product the average number of adequate
contacts during an infective period σ and the probability that a contact transmit the infection s(t).

We can finally discuss, in qualitative terms, the evolution of the infective population i(t). Assuming
i(t) > 0, the prevalence (fraction of the infectives) will increase if and only

d

dt
i(t) = β · s(t) · i(t)− γ · i(t) > 0 =⇒ β · s(t)− γ > 0 =⇒ σ · s(t) > 1

i.e., when the reproduction number R(t) = σ · s(t) is greater than 1. In fact, according to its defi-
nition this parameter expresses the average number of new infections caused by a single infective
individual and a value greater that 1 determines an increase in the prevalence of the disease. Note,
however, that the reproduction number will continuously decrease as the fraction of susceptible
individuals s(t) left in the population decreases and in particular as soon as the threshold value
s(t) = 1/σ is crossed the number of infectives will monotonically decrease.

We point out that the contact number σ is equal to the reproduction number when s(t) ' 1: this is
what happens when a single infective is introduced into a completely susceptible host population.
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Figure 2: State space plot of the SIR model in Example 6 with contact number σ = 2 and average
infective period θI = 20 days.

Note that when σ < 1 even if the initial condition is such that s(0) ' 1 the number of infectives
will monotonically decrease.

Finally we remark that (15) has an infinite number of equilibrium points:

{(s, i, r) ∈ R3
≥0 | i = 0, s+ i+ r = 1}

since a value i = 0 causes all derivatives to go to zero.

Example 6. Considers a normalized SIR model with adequate contact rate βI = 0.1 and average
infective period 1/γ = 20 days: this corresponds to a contact number σ = 2.

Figure 2 shows the state space plot for different initial conditions (denoted by a circle). In such a
case, only the plane s(t)− i(t) is considered for the sake of simplicity:

• Initial conditions on the blue line, correspond to s(0) + i(0) = 1. Evolutions starting
from an initial state s(0) > 1/σ — which determines a reproduction number R(0) > 1 —
are characterized by a number of infectives that is initially increasing until the threshold
s = 1/σ is reached: after the crossing i(t) will monotonically decrease to zero, reaching an
equilibrium point. Evolutions starting from an initial state s(0) ≤ 1/σ — which determines
a reproduction number R(0) ≤ 1 — are characterized by a number of infectives that is
monotonically decreasing.

• All points on axis i = 0 are equilibrium points. Equilibrium points on the right of the
threshold s = 1/σ are instable: perturbing the system with the introduction of a single
infective, i.e., i(0) = 1/N , will cause the disease to spread (reproduction numberR(0) > 1).
All equilibrium points on the left of the threshold s(t) = 1/σ are stable (not asymptotically).

Figure 4 shows an evolution from the initial condition (s(0), i(0), r(0)) = (0.9999, 0.0001, 0) with
time measured in days. Note that although the initial prevalence is very small, the disease will
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Figure 3: Time evolution of the SIR model in Example 6 with contact number σ = 2, average
infective period θI = 20 days and initial condition i(0) = 0.0001.

reach about 80% of the population with a peak of infectives close to 18% about 5 months later. It
should also be noted that it takes more than 240 days (8 months) for the disease to disappear. �

Example 7. As a second example, consider a normalized SIR model with adequate contact rate
βI = 0.04 and average infective period 1/γ = 20 days: this corresponds to a contact number
σ = 0.8.

In particular, Figure 4 shows the state space plot for different initial conditions (denoted by a
circle). Since the contact number is σ < 1, for all values of s(t) the reproduction number R(t)
will always be smaller than 1 and the number of infectives will constantly decrease to zero. All
points on axis i = 0 are stable equilibrium points.

Figure 4 shows an evolution from the initial condition (s(0), i(0), r(0)) = (0.9, 0.1, 0) with time
measured in days. Note that the constant decrease of the number of infectives does not mean
that no new infections occur, i.e., that the incidence of the disease is zero. As can be seen from
the figure, the number of susceptibles decrease from s(0) = 0.9 to almost 0.72: this decrement
corresponds to newly infected individuals.

5 Formulation of the SEIR model

Many variations of the SIR model have been considered. Depending on the epidemic nature, the
population can be partitioned into more than the three classes that characterize the standard SIR
model, namely susceptible S, infected I , removed R.

Here we list some of the most common classes that could be considered in an epidemic model:
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Figure 4: State space plot of the SIR model in Example 7 with contact number σ = 0.8 and average
infective period θI = 20 days.
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Figure 5: Time evolution of the SIR model in Example 7 with contact number σ = 0.8, average
infective period θI = 20 days and initial condition i(0) = 0.1.
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• D(t): the number of deceased individuals at time t. These are individuals which die because
of the infection. With the introduction of this class, the class R takes on the meaning of
recovered individuals.

• A(t): the number of asymptomatic individuals at time t. These are individuals that have been
infected with the germ, may transmit it to susceptible individuals but are not showing any
symptoms. With the introduction of this class, the class I takes on the meaning of infective
individuals showing symptoms.

• M(t): the number of maternally-derived immunity individuals at time t. These are individu-
als (usually newborns) which may have temporary passive immunity due to protection from
maternal antibodies.

• C(t): the number of carrier individuals at time t. These are individuals that have (not
completely) recovered from the disease but continue to carry the germ with the probability
to transmit it to the susceptibles.

• E(t): the number of exposed individuals at time t. These are individuals which are incubat-
ing the virus and may transmit (depending on the disease) the infection.

In next section we are going to describe a modified SIR model in which the class of exposed
population is introduced.

5.1 The SEIR model

We want to study an infective disease caused by a germ whose incubation period is not negligible.
In this case, after contracting the disease, an individual passes through two phases. In the first
phase, before the onset of the symptoms of the the disease, the is called exposed. In second phase,
after the onset of the symptoms of the the disease, the individual is called infective. Note, however,
that an individual may transmit the disease in both phases: for this reason we call infectious all
exposed and infective individuals and we denote infectious period the total period spent as exposed
or infective. Distinguishing the two phases allows one to derive a more precise model where the
adequate contact rate may vary from one phase to the other one.

Based on the Assumptions 1-4 made in Section 2 and taking inspiration from [4], we consider in
this case a four-compartment model as shown in Figure 6 characterized by three flows.

• qI(t): infection rate. This is the number of susceptible individuals that, at time t, contract the
disease in a unit of time and will enter the first stage of infection becoming exposed. Note
that qI(t) = qI.E(t) + qI.I , where:

– qI.E(t) is the infection rate caused by exposed. This is the number of susceptible indi-
viduals that, at time t, contract the disease in a unit of time from an exposed individual.

14
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Figure 6: Compartmental view of a SEIR model.

– qI.I(t) is the infection rate caused by infective. This is the number of susceptible indi-
viduals that, at time t, contract the disease from an infective individual in a unit of time
from an infective individual.

• qO(t): onset rate. This is the number of exposed individuals that, at time t, show the onset
of symptoms in a unit of time.

• qR(t): removal rate. This is the number of infective individuals that, at time t, recover or die
in a unit of time.

We can present a first SEIR model in continuous-time where the exact dynamics (the precise value
of the infection and removal rates) need not be specified.

Definition 10 (Abstract SEIR model). The model in Figure 6 is ruled by the following dynamical
equations: 

d
dt
S(t) = −qI(t)

d
dt
I(t) = qI(t)− qO(t)

d
dt
I(t) = qO(t)− qR(t)

d
dt
R(t) = qR(t)

(18)

N

The expression previously derived in eq. (7) for the infection rate qI(t) can be generalized for the
infection rates qI.E(t) and qI.I(t) as follows

qI.E(t) = φE→S(t) · E(t) = φS→E(t) · S(t) = βE ·
S(t) · E(t)

N
,

qI.I(t) = φI→S(t) · I(t) = φS→I(t) · S(t) = βI ·
S(t) · I(t)

N
,
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where

• the exposed adequate contact rate βE = τE ·ρE is given by the product between the exposed
transmission factor τE and the exposed risky contact rate ρE .

• the infective adequate contact rate βI = τI · ρI is given by the product between the infective
transmission factor τI and the infective risky contact rate ρI ;

Similarly, the expression previously derived in eq. (10) can be used for the onset rate and the
removal rate as follows

qO(t) = γE · I(t), qR(t) = γI · I(t),

where

• the onset coefficient γE = 1/θI is the inverse of the average incubation period θE .

• the removal coefficient γI = 1/θI is the inverse of the average infective period θI ,

Finally, substituting these expressions in the abstract SEIR model (18), we obtain the following
standard model.

Definition 11 (Standard SEIR model).

d

dt
S(t) = −βE ·

S(t) · E(t)

N
− βI ·

S(t) · I(t)

N

d

dt
E(t) = βE ·

S(t) · E(t)

N
+ βI ·

S(t) · I(t)

N
− γE · E(t)

d

dt
I(t) = γE · E(t)− γI · I(t)

d

dt
R(t) = γI · I(t)

(19)

N

The standard model defined in eq. (19) can be normalized considering as variables

• s(t) = S(t)/N : the fraction of susceptible individuals on the total population;

• e(t) = E(t)/N : the fraction of exposed individuals on the total population;

• i(t) = I(t)/N : the fraction of infective individuals on the total population;

• r(t) = R(t)/N : the fraction of removed individuals on the total population.

Using these new variables, eq. (14) can be rewritten as follows.

16



Definition 12 (Normalized SEIR model).

d

dt
s(t) = −βE · s(t) · e(t)− βI · s(t) · i(t)

d

dt
e(t) = βE · s(t) · e(t) + βI · s(t) · i(t)− γE · e(t)

d

dt
i(t) = γE · e(t)− γI · i(t)

d

dt
r(t) = γI · i(t)

(20)

N

We can give the expression of the contact number for the SEIR model.

Definition 13 (Contact number). The contact number

σ =
βI
γI

+
βE
γE
, (21)

denotes the average number of adequate contacts that an infectious (exposed or infective) individ-
ual has during the total period in which they are infectious. This parameter is also called basic
reproduction number and denotedR0. N

Note that the contact number is in this case the sum of two terms: βI/γI is the average number of
adequate contacts that an exposed individual has during the incubation period θE , while βI/γI is
the average number of adequate contacts that an infective individual has during the infective period
θI .

Example 8. Figure 5.1 compares the evolution of the SIR model that was discussed in Example 6
with that of an equivalent SEIR model: time is measured in days.

The parameters for the two models are consistent in the the sense that the SEIR model has:

• Infective adequate contact rate βI = 0.05;

• Exposed adequate contact rate βE = 5 · βI = 0.25

• Average infective period θI = 15 days;

• Average incubation period θE = 5 days;

• Contact number σ = 2.

while the SIR model, as previously mentioned, has,

• Adequate contact rate β = 0.1;

17



• Average infective period θI = 20 days;

• Contact number σ = 2.

The SEIR model has initial condition (s(0), e(0), i(0), r(0)) = (0.9999, 0, 0.0001, 0) while the SIR
model has initial condition (s(0), i(0), r(0)) = (0.9999, 0.0001, 0).

Note that, even if the initial condition and the contact number is the same, the spread of the disease
is faster according to the SEIR models although the final number of removed remains the same. �
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Figure 7: Comparison between the evolution of the SIR model in Example 6 (left) and an equiva-
lent SEIR model in Example 8 (right). Both models have contact number σ = 2.
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Figure 8: A stationary queuing system illustrating Little’s law (time is measured in hours).

Appendix

A Little’s Law

Consider a queuing system where customers arrive according to a stochastic process, remain in the
system for a random time and finally leave. Assume this system reaches a stationary condition,
which can be informally described as a situation in which the average values of the variables of
interest do not change over time.

In stationary condition (see Figure 8) Little’s law holds:

N = λ · θ (22)

where;

• N is the average number of customers in the system;

• λ is the average arrival rate, which by the stationary assumption is also equal to the average
departure rate;

• θ is the average traversal time, i.e., the time spent in the system by a customer.

It is important to stress the generality of Little’s law (22): it holds regardless of the distribution of
the random variable describing the arrival and traversal processes: it only requires the stationarity
assumption.

Example 9. In a large supermarket, the number of customers during a Saturday afternoon can be
considered stationary. Suppose one observes an input flow λ = 30 customers/min and an average
number of N = 600 customers: the average time spent in the shop is θ = N/λ = 20 min.

Note that computing λ and N is not difficult: one just needs to count the number of customers
entering and leaving the shop at all time. Measuring θ, on the contrary, would require identi-
fying each single customer when entering and leaving so that individual traversal time could be
computed and averaged over all customers. �
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