Analysis and Control of Cyber-Physical Systems

Homework 5 — 8 May 2025

Problem 1. Consider the hybrid automaton *H* shown below.

	ℓ_1		ℓ_2
		$x_1 \ge 4?$	
$x_1 := 0$	$\dot{x}_1(t) \in [1,3]$	$x_2 := 2$	$\dot{x}_1(t) = 0$
$r_0 := \begin{bmatrix} 1 & 3 \end{bmatrix}$	$\dot{x}_2(t) = 0$	m < 12	$\dot{x}_2(t) = -2$
$x_2 := [1, 0]$	$\{x_1 < 4\}$	$x_2 \leq 1!$	$\{x_2 > 1\}$
		$x_1 := 1$	

- (a) Determine the time-abstract state transition system T that describes H.
- (b) Compute the reachability set Reach(T) using the procedure presented in class.
- (c) Is state $y = (\ell, x_1, x_2) = (\ell_2, 0.5, 0.5)$ reachable?
- (d) Discuss if Reach(T) allows you to verify if state y is reachable at a time $t \ge 10$. If not, can you suggest a way to verify that?
- **Problem 2.** Consider the state transition system T described by the automaton in figure.

- (a) Determine the algebraic structure of T.
- (b) Compute the set $Pre_b(\{s_5, s_6\})$.
- (c) Consider the following partition: $\Pi = \{\pi_1, \pi_2, \pi_3\}$ with $\pi_1 = \{s_0\}, \pi_2 = \{s_1, s_3, s_5\}$ and $\pi_3 = \{s_2, s_4, s_6\}$. Determine an equivalence relation on the state space of this automaton whose set of equivalence classes is Π .
- (d) Is the equivalence relation R above a bisimulation over the states of T? Justify your answer.
- (e) Determine a minimal bisimulation over the states of T and the corresponding quotient state transition system, showing the steps of the procedure you have used.

Problem 3. Let T be an STS with set of states S. Prove that if $R_1, R_2 \subseteq S \times S$ are two bisimulations for T then $R = R_1 \cup R_2$ is also a bisimulation relation for T.