Analysis and Control of Cyber-Physical Systems

Homework 2 — 25 March 2025

Problem 1. Consider the nondeterministic finite automaton $G_n = (X, E, \Delta, x_0, X_m)$ with

$$X = \{x_0, x_1, x_2, x_3, x_4\}; \qquad E = \{a, b\}; \qquad X_m = \{x_0, x_3\};$$

 $\Delta = \{(x_0, a, x_1), (x_0, a, x_2), (x_1, a, x_4), (x_2, \varepsilon, x_3), (x_2, b, x_1), (x_3, \varepsilon, x_1), (x_3, b, x_0), (x_4, b, x_3)\}.$

- (a) Show the graphical representation of this NFA. Which are the nondeterministic structures in this model?
- (b) Determine if the following words belong to the language $L(G_n)$ and to the language $L_m(G_n)$. You must also write all runs that generate these words if applicable.

$$w_1 = abab;$$
 $w_2 = aab;$ $w_3 = aa.$

- (c) Determine a DFA G_d equivalent to G_n , i.e., the observer $Obs(G_n)$.
- (d) In general, if an NFA G_n is blocking, is $Obs(G_n)$ blocking? Motivate your answer by means of a proof or by a counterexample.
- (e) Determine an NFA on alphabet $\{a, b\}$ with n = 3 states whose equivalente DFA has $2^3 1$ states.
- (f) An NFA is said to be *current-state opaque* with respect to a set of secret states $S \subseteq X$ if for any observation $w \in E^*$ one cannot conclude that the current state belongs to set S, i.e., $\mathcal{X}(w) \not\subseteq S$. Discuss if G_n is current state opaque w.r.t. the following two secrets:

$$S_1 = \{x_2\}, \qquad S_2 = \{x_1, x_3\}.$$

Problem 2. A website adopts the following user/password recovery procedure: when a request arrives (event r) the username (event u) and password (event p) are sent in random order by means of two different email messages. Event u and p are logged in a file while event r is not. When a password is sent before the username, the transmission could fail and in this case no event is logged (event f).

This recovery procedure can be modeled by the DFA G shown in the figure below, where the set of observable events is $E_o = \{u, p\}$, the set of unobservable events is $E_{uo} = \{r, f\}$, and the fault event set is $E_f = \{f\}$.

- (a) Determine the words in E_o^* that are logged when the following sequences of events are generated:
 - i) $s_1 = rup;$ ii) $s_2 = rfurp.$
- (b) Determine for each logged word w ∈ E^{*}_o listed below the set S(w) of strings consistent with w and the set X(w) of states consistent with w:

i)
$$w_1 = \varepsilon;$$
 ii) $w_2 = u.$

(c) Determine the diagnoser Diag(G). What is the diagnosis state $\varphi(w)$ for the words listed below?

$$i) \quad w_1 = up;$$
 $ii) \quad w_2 = pup;$ $iii) \quad w_3 = uu.$

(d) Discuss if the diagnoser contains uncertain or indeterminate cycles. Is the fault diagnosable?