Analysis and Control of Cyber-Physical Systems

Midterm exam — 19 April 2023

Problem 1. [5 pts] Consider a deterministic finite automaton (DFA) G on alphabet $E = \{\Box, \Diamond, \Delta\}$ with initial state x_0 , set of final states $X_m = \{x_2, x_3\}$ and transition function

δ		\diamond	\triangle
x_0	x_2	x_3	_
x_1	x_4	_	x_0
x_2	-	x_1	x_0
x_3	-	_	—
x_4	x_4	x_4	—

- (a) (1 pts) Give a graphical representation of G.
- (b) (1 pts) Discuss if the states of G are: reachable, co-reachable, blocking, dead.
- (c) (1 pts) Discuss if G is: reachable, co-reachable, blocking, trim, reversible.
- (d) (1 pts) Does the language identity $pref(L_m(G)) = L(G)$ holds? If not, show a word that belongs to one of the two languages but not to both.
- (e) (1 pts) If G is blocking, trim it to obtain a new DFA G'. How are the languages generated and accepted by G' related to those generated and accepted by G?

Problem 2. [10 punti] Two machines, M_1 and M_2 , work in parallel. Machine M_1 during a working cycle performs two operations in sequence (first event *a* and then event *b*). Machine M_2 during a working cycle performs a single operation (event *c*). When both machines have completed a cycle they are simultaneously reinitialized (event *d*). The set of controllable events is $E_c = \{a, c\}$.

The system's behavior can be described by the automaton G in figure.

- (a) (1 pts) Show that you have understood this model, briefly discussing the meaning of each state of G.
- (b) (3 pts) In a first operative mode (unsupervised), when machine M_1 has finished a cycle it should not have to wait for the other machine to end its cycle. Describe this constraint as a state specification and determine a maximally permissive supervisor capable of enforcing it. Is this supervisor blocking?
- (c) $(2 \ pts)$ In a second operative mode (supervised), a single operator is required to operate both machines. When the operator starts a cycle on a machine it cannot leave the machine (to work at the other one) until the cycle is completed. This means that no event c cannot occur between an event a and b. Describe this constraint as a language specification.
- (d) (4 *pts*) Determine a maximally permissive supervisor capable of enforcing the language specification determined at the previous point. Is this supervisor blocking?

Problem 3. [10 pts] A website adopts the following user/password recovery procedure: when a request arrives (event r) the username (event u) and password (event p) are sent in random order by means of two different email messages. Event u and p are logged in a file while event r is not. When a password is sent before the username, the transmission could fail and in this case no event is logged (event f).

This recovery procedure can be modeled by the DFA G shown in the figure below, where the set of observable events is $E_o = \{u, p\}$, the set of unobservable events is $E_{uo} = \{r, f\}$, and the fault event set is $E_f = \{f\}$.

(a) (1 pts) Determine the words in E_o^* that are logged when the following sequences of events are generated:

i) $s_1 = rup;$ ii) $s_2 = rfurp.$

(b) (2 pts) Determine for each logged word $w \in E_o^*$ listed below the set S(w) of strings consistent with w and the set $\mathcal{X}(w)$ of states consistent with w:

i) $w_1 = \varepsilon$; ii) $w_2 = u$; iii) $w_3 = up$; iv) $w_4 = pup$.

(c) (5 pts) Determine the diagnoser Diag(G). What is the diagnosis state $\varphi(w)$ for the words listed below?

i) $w_1 = up;$ ii) $w_2 = pu;$ iii) $w_3 = u.$

(d) (2 pts) Discuss if the diagnoser contains uncertain or indeterminate cycles. Is the fault diagnosable?

Problem 4. [5 punti]

Given a language $L \subseteq E^*$ and a word $w \in E^*$, we define the (L, w)-residual language as

$$w^{-1}L = \{ u \in E^* \mid wu \in L \}.$$

- (a) (1 pts) Given $L = \{ab, bab, abbab\}$ and w = ab determine $w^{-1}L$.
- (b) (2 pts) Show that the class of regular languages is closed by residuation. To do this, describe (even informally) an algorithm that, given a DFA G accepting language L and a word w, constructs a new DFA G' accepting $w^{-1}L$.
- (c) (2 pts) Consider the automaton G discussed in the previous problem. Pick up an arbitrary word w of length 2 generated by G and apply your algorithm to it.