Analysis and Control of Cyber-Physical Systems

Midterm exam — 12 April 2021

Problem 1. [4 pt] Let L be the language on alphabet $E = \{a, b, c\}$ consisting of all strings w containing an odd number of a's and such that in each prefix $u \leq w$ it holds $-2 \leq |u|_b - |u|_c \leq 2$.

- (a) (3 pts) Construct a deterministic finite automaton G that accepts language L. Discuss the physical interpretation of each state to show that you understand its structure.
- (b) (1 pt) Is language L prefix-closed? What is its projection $L' = L \uparrow_{E'}$ on alphabet $E' = \{a\}$?

Note: if you prefer, you may use the concurrent composition operator to construct G.

Problem 2. [10 pt]

Consider the plant G in the following figure subject to faults. The set of observable events is $E_o = \{a, b\}$, the set of non-observable regular events is $E_{reg} = \{\varepsilon_1\}$ and the set of non-observable fault events is $E_f = \{\varepsilon_f\}$.

- (a) (2 *pts*) Determine the set of consistent states $\mathcal{X}(w)$ and the set of consistent strings $\mathcal{S}(w)$ for the following observed words:
 - a) w = ab; b) $w = \varepsilon;$ c) w = abb.
- (b) (4 *pts*) Determine the diagnoser Diag(G). You need to show all steps followed to compute the diagnoser from the fault recognizer
- (c) (3 *pts*) Discuss if the fault is diagnosable by the analysis of the uncertain and undeterminate cycles of the diagnoser.
- (d) (1 pts) If the fault is not diagnosable, determine an ambiguous string $s = u\varepsilon_f v \in E^*$ where subfix v can be arbitrarily long.

Problem 3. [6 pt] Consider the DFA G on alphabet $E = \{a, b, c\}$ with initial state x_0 , set of final states $X_m = \{x_2, x_5\}$ and transition function

δ	a	b	С
x_0	x_1	x_5	x_3
$ x_1 $	-	x_2	x_0
x_2	x_4	—	—
x_3	x_3	—	—
$ x_4 $	x_5	x_4	—
x_5	-	x_4	—

- (a) (1 pt) Give a graphical representation of G.
- (b) (1 pt) Determine: $\delta(x_3, \varepsilon)$, $\delta^*(x_5, \varepsilon)$ and $\delta^*(x_3, bbb)$.
- (c) (1 pt) Discuss if the states of G are: reachable, co-reachable, blocking, dead.
- (d) (1 pt) Discuss if G is: reachable, co-reachable, blocking, trim, reversible.
- (e) (1 pt) Determine the strongly connected components of the automaton, specifying which are *transient* and which are *ergodic*. Verify the properties of blocking and reversibility by mean of the components you have determined.
- (f) (1 pt) Discuss if G is complete. If not determine a complete automaton G' accepting the same language of G.

Problem 4. [10 pts]

The figure below shows a plant G on alphabet $E = \{a, b, c\}$ and a language specifications described by automaton H. The set of controllable events is $E_c = \{b, c\}$ and the set of uncontrollable events is $E_{uc} = \{a\}$.

- (a) (4 pts) Determine if the specification is controllable.
- (b) (2 *pts*) Determine a maximally permissive and non-blocking supervisor capable of enforcing this specification.
- (c) (2 *pts*) Is the obtained supervisor a marking or non-marking supervisor? Give the algebraic representation of the closed-loop system.
- (d) (2 pts) Would the maximally permissive and non-blocking supervisor change if $X_m = \{x_0\}$?